Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copperplate with a central tungsten (W) insert of 50 mm in...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109192 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility / E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz, E. Zielinska // Вопросы атомной науки и техники. — 2012. — № 6. — С. 246-248. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109192 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091922016-11-22T03:03:06Z Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility Skladnik-Sadowska, E. Kwiatkowski, R. Malinowski, K. Sadowski, M.J. Kubkowska, M. Paduch, M. Scholz, M. Zielinska, E. Диагностика плазмы The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copperplate with a central tungsten (W) insert of 50 mm in diameter. Interactions of the collapsing current sheath and electron beams with this insert have changed characteristics of the X-ray and VR emission considerably. New spectroscopic measurements were performed at the chosen angle and perpendicular to the discharge axis. In the second case optical emission spectra were recorded at different distances from the electrode outlets, and at various instants after the current peculiarity (dip). It enabled to determine dynamics of the VR emission in the investigated VR range. Представлены результаты недавних спектроскопических исследований импульсных потоков плазмы, генерируемых установкой ПФ-1000, которая расположена в ИФПиЛМ в Варшаве. Эта установка недавно была оснащена модифицированным внутренним электродом, который имел переднюю медную пластину с центральной вольфрамовой (W) вставкой диаметром 5 мм. Взаимодействие схлопывающейся токовой оболочки и электронных пучков с этой вставкой значительно изменило характеристики рентгеновского и излучения в видимом диапазоне. Новые спектроскопические измерения проводились при выбранном угле и перпендикулярно к оси разряда. Во втором случае оптические спектры излучения были зарегистрированы на разных расстояниях от среза электродов и в различные моменты после токовой особенности осциллограммы тока (провала). Это позволило определить динамику ВИ в исследованном диапазоне. Представлені результати недавніх спектроскопічних досліджень імпульсних потоків плазми, що генеруються установкою ПФ-1000, яка розташована в ІФПіЛМ у Варшаві. Ця установка нещодавно була оснащена модифікованим внутрішнім електродом, який мав передню мідну пластину з центральною вольфрамовою (W) вставкою діаметром 50 мм. Взаємодія оболонки струму, яка схлопується, і електронних пучків з цією вставкою значно змінило характеристики рентгенівського випромінювання у видимому діапазоні. Нові спектроскопічні вимірювання проводилися при заданному куті та перпендикулярно до осі розряду. У другому випадку оптичні спектри випромінювання були зареєстровані на різних відстанях від зрізу електродів, і в різні моменти після особливості осцилограми струму (провалу). Це дозволило визначити динаміку ВВ у дослідженому діапазоні. 2012 Article Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility / E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz, E. Zielinska // Вопросы атомной науки и техники. — 2012. — № 6. — С. 246-248. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.59.Hq, 52.70.Kz, 52.30.q http://dspace.nbuv.gov.ua/handle/123456789/109192 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Диагностика плазмы Диагностика плазмы |
spellingShingle |
Диагностика плазмы Диагностика плазмы Skladnik-Sadowska, E. Kwiatkowski, R. Malinowski, K. Sadowski, M.J. Kubkowska, M. Paduch, M. Scholz, M. Zielinska, E. Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility Вопросы атомной науки и техники |
description |
The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copperplate with a central tungsten (W) insert of 50 mm in diameter. Interactions of the collapsing current sheath and electron beams with this insert have changed characteristics of the X-ray and VR emission considerably. New spectroscopic measurements were performed at the chosen angle and perpendicular to the discharge axis. In the second case optical emission spectra were recorded at different distances from the electrode outlets, and at various instants after the current peculiarity (dip). It enabled to determine dynamics of the VR emission in the investigated VR range. |
format |
Article |
author |
Skladnik-Sadowska, E. Kwiatkowski, R. Malinowski, K. Sadowski, M.J. Kubkowska, M. Paduch, M. Scholz, M. Zielinska, E. |
author_facet |
Skladnik-Sadowska, E. Kwiatkowski, R. Malinowski, K. Sadowski, M.J. Kubkowska, M. Paduch, M. Scholz, M. Zielinska, E. |
author_sort |
Skladnik-Sadowska, E. |
title |
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility |
title_short |
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility |
title_full |
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility |
title_fullStr |
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility |
title_full_unstemmed |
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility |
title_sort |
optical emission spectroscopy of pulsed plasma streams emitted from a modified pf-1000 facility |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Диагностика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109192 |
citation_txt |
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility / E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz, E. Zielinska // Вопросы атомной науки и техники. — 2012. — № 6. — С. 246-248. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT skladniksadowskae opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT kwiatkowskir opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT malinowskik opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT sadowskimj opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT kubkowskam opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT paduchm opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT scholzm opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility AT zielinskae opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility |
first_indexed |
2025-07-07T22:41:19Z |
last_indexed |
2025-07-07T22:41:19Z |
_version_ |
1837029739011768320 |
fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 246
OPTICAL EMISSION SPECTROSCOPY OF PULSED PLASMA STREAMS
EMITTED FROM A MODIFIED PF-1000 FACILITY
E. Skladnik-Sadowska1, R. Kwiatkowski1, K. Malinowski1, M.J. Sadowski1-2,
M. Kubkowska2, M. Paduch2, M. Scholz2 and E. Zielinska2
1National Centre for Nuclear Research (NCBJ), 05-400 Otwock, Poland;
2Institute of Plasma Physics and Laser Microfusion (IFPiLM), 01-497 Warsaw, Poland
E-mail: Elzbieta.Skladnik-Sadowska@ncbj.gov.pl
The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at
the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copper-
plate with a central tungsten (W) insert of 50 mm in diameter. Interactions of the collapsing current sheath and electron beams
with this insert have changed characteristics of the X-ray and VR emission considerably. New spectroscopic measurements
were performed at the chosen angle and perpendicular to the discharge axis. In the second case optical emission spectra were
recorded at different distances from the electrode outlets, and at various instants after the current peculiarity (dip). It enabled to
determine dynamics of the VR emission in the investigated VR range.
PACS: 52.59.Hq, 52.70.Kz, 52.30.q
INTRODUCTION
The operation of Plasma-Focus (PF) devices is based
on pulsed high-current discharges performed between two
coaxial electrodes placed in a chamber, which is filled up
with a working gas (e.g. deuterium) under an appropriate
pressure [1]. During the last years the interest in PF
facilities has grown considerably, because they constitute
very efficient sources of the fusion-produced neutron
emission [2-7]. Therefore, many PF experiments are run
all over the world, but the problem of the scaling and
saturation of the neutron yield is still open.
The PF-1000 machine operated at the IFPiLM in
Warsaw, Poland, is the largest Mather-type PF facility in
Europe. It has been investigated for many years, and it has
been modified several times [3-7]. Studies of PF-1000
discharges have been carried out by means of different
diagnostic techniques [6]. Recently the PF-1000 machine
has been modified. It has changed some important
characteristics, and particularly the X-ray and VR
emission. The main aim of this paper was to present some
results of the recent optical emission studies.
1. EXPERIMENTAL SETUP
The described studies were performed within the PF-
1000 facility with the anode made of a thick-wall Cu tube
of 230 mm in diameter, which was equipped with a
central diametr 50 mm insert made of tungsten (W). The
modified machine was operated at a D2 filling under the
pressure of 1.3 hPa, and powered by a condenser bank
charged to 24 kV, 380 kJ. The maximum discharge
current amounted to 1.8 MA. Optical measurements were
started by taking time-integrated pictures of the VR
emitted from plasma streams, which was observed behind
an optical window and recorded by means of a CCD-
camera with various filters. Spectroscopic measurements
were performed behind optical windows, which looked at
chosen angles and perpendicular to the z-axis (see Fig. 1).
insulator
quartz collimator
window I
electrodes
vacuum chamber
quartz fibre
to MECHELLE*900
optical spectrometer
Deuterium
plasma stream
Zobs
PF-1000 (Cu & W)
quartz collimator
W
Fig. 1. Scheme of the PF-1000 experimental setup
To record optical emission spectra the use was made
of an optical collimator coupled with the optical-fiber
cable and a Mechelle®900-type spectrometer.
2. EXPERIMENTAL RESULTS
The first series of the spectroscopic measurements was
carried out at an angle of 670 to the z-axis in order to
record emission from plasma at the centre of the W-insert.
An exemplary optical spectrum is presented in Fig. 2.
3 9 0 3 9 5 4 0 0 4 0 5 4 1 0 4 1 5 4 2 0 4 2 5 4 3 0 4 3 5 4 4 0
6 0 0 0
8 0 0 0
1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0
2 0 0 0 0
2 2 0 0 0
W
I 4
26
.9
8
W
I 4
27
. 5
W
I 4
29
.4
5
W
I 4
21
.5
3
W
I 4
37
.2
7
W
I 4
37
.8
5
W
I 4
35
.5
2
W
I 4
24
.1
3/
42
4.
4
W
I 4
21
.5
3
W
II
39
5.
54
W
II
39
3.
54
W
II
39
1.
54
W
II
41
3.
76
W
II
41
5.
70
W
II
41
7.
5 6
W
II
43
4.
81
W
II
43
4.
32
W
II
43
3.
56
W
II
40
8.
13
W
I 4
10
.3
0
W
I 4
04
.3
8
W
I 4
06
.4
8
W
I 4
07
.4
5
l a s e r 2 0 0 7 1 0 3 0 _ p o z . 1 2 _ 1 2 7 _ 5 0 s h o t s _ t e x p = 2 , t d e l= 0 ( C o u n t s ) f L = 3 9 x 2
2 0 1 2 0 5 2 1 0 6 9 5 2 3 t e x p = 5 u s t d e l= 5 u s 3 - 8 W ( C o u n t s )
2 0 1 2 0 5 2 2 0 2 9 5 2 6 t e x p = 5 u s t d e l= 7 . 3 u s 5 - 1 0 W ( C o u n t s )
2 0 1 2 0 5 2 4 0 2 9 5 4 4 z = 2 . 5 c m t e x p = 5 u s t d e l= 1 0 . 3 u s 8 . 8 - 1 3 . 9 ( C o u n t s )
in
te
ns
ity
, a
.u
.
w a v e le n g t h , n m
W I
W I I
W
I 4
00
.8
8P F - 1 0 0 0 ( C u & W )
U o = 2 4 k V , p o = 1 . 3 T o r
z = 0 c m , a n g le 6 7 d e g
Fig. 2. Optical emission spectrum from plasma produced at the W-insert center and recorded at 67O to the z-axis
ISSN 1562-6016. ВАНТ. 2012. №6(82) 247
The second series of measurements was performed
side-on, with the exposition (texp) equal to 5 μs - in order
to record the time-integrated optical spectra of discharges.
The measurements were made at different z-distances
(varied in several steps from 0 to 14 cm) from the
electrode ends. An example is presented in Fig. 3.
Fig. 3. Optical emission spectra recorded perpendicular
to the discharge axis, at different distances and texp= 5 μs
The detailed spectroscopic measurements were carried
out at distances of 3.5, 6.5 and 8.5 cm from the electrode
outlets, at much shorter exposition (texp = 100 ns) in order
to determine dynamics of the emission of various spectral
lines, and in particular of the deuterium and tungsten (WI
and WII) lines. Two examples are presented in Fig. 4.
Fig. 4. Optical emission spectra recorded at texp= 0.1 μs,
and different instants after the discharge current dip,
at z = 3.5 cm and 8.5 cm
3. ANALYSIS OF EXPERIMENTAL DATA
The preliminary analysis concerned the experimental
data shown in Fig. 2, which presents a comparison of the
optical emission spectrum recorded in a laser & W-target
experiment (red line) with three spectra recorded in the
PF-1000 facility at an angle of 670 to the z-axis, but at
different temporal instants (ranging from 5 μs to 10 μs).
One could easily notice that these optical spectra, emitted
from a region near the anode center and the W-insert,
contained many WI and WII spectral lines. The emission
of those lines could be explained by interactions of the
collapsing current sheath and electron beams with the W-
insert surface. It should be mentioned that such lines were
also recorded in earlier laser-experiments with W targets
[10]. Unfortunately, the detailed analysis of rich tungsten
spectra in Fig. 2 could hardly be performed because of an
interference of numerous W-lines and intense continuum
emission. It constituted an experimental evidence that the
erosion of the W-insert was relatively strong. Effects of
this erosion could also be observed upon the surface of
the W-insert after series of discharges, as shown in Fig. 5.
Fig. 5. Picture of PF-1000 electrodes ends, which shows
distinct tracks of the erosion of the anode (Cu-plate and
W-insert). The center of the anode was illuminated with
an auxiliary laser beam
Analyzing the spectra presented in Fig. 3, which were
recorded perpendicular to the z-axis of the PF-1000
facility, at different distances from the electrode outlet
and at a relatively long exposition time texp= 5 μs, one
could also observe intense continuum and very rich
spectrum containing not only D- and W-lines, but also
Cu-lines and other impurities. Intensity of the optical
emission was considerably lower at distances larger than
10 cm from the electrode ends. In that case the
identification of Dα and Dß lines was possible, but their
quantitative analysis could hardly be performed because
these lines were deformed by other near lines and re-
absorption effects. In spite of the careful calibration, the
observed ratio of Dα and Dβ intensities was found to be
different from the correct value, what could be explained
by a lack of the complete thermalization.
Considering the optical spectra presented in Fig. 4,
which were recorded at various instants after the
characteristic peculiarity (dip) of the discharge current
and at different z-planes (z = 3.5 cm and 8.5 cm), one
could notice that relative intensities of some WI lines
observed in the earlier phase decreased in the period from
350 400 450 500 550 600 650 700 750
0
5000
10000
15000
20000
25000
30000
35000
PF-1000 (Cu&W)
Uo=24 kV, po=1.3 hPa
texp=5μs, 90o, ttodip=9-14μs
z=14cm
z=12cm
z=10cm
z=6cm
z=4cm
z=2cm
wavelength, nm
in
te
ns
ity
, a
.u
.
z=0cm
350 400 450 500 550 600 650 700 750
0
500
1000
1500
2000
2500
tim
e t
o
di
p[
μs
]
wavelength [nm]
in
te
ns
ity
, a
.u
.
PF-1000 (Cu&W)
Uo=24 kV, po=1.3 hPa
z=3.5 cm, 900, texp=0.1μs
10.0
3.0
2.0
1.0
0
350 400 450 500 550 600 650 700 750
0
200
400
600
800
1000PF-1000 (Cu&W)
Uo=24 kV, po=1.3 hPa
z=8.5 cm, 90o, texp=0.1μs
in
te
ns
ity
[a
.u
.]
tim
e
to
d
ip
[μ
s]
20.0
50.0
10.0
7.0
5.0
wavelenght [nm]
-0.1
0.05
1.0
248 ISSN 1562-6016. ВАНТ. 2012. №6(82)
t = 0 to t = 10 µs. In contrary, the relative intensities of
some distinct WII lines recorded in the plane z = 8.5 cm
increased during that period (until t = 10 µs) noticeable. It
delivered some information about dynamics of the W-
plasma production and expansion. It should, however, be
noted that information about W-ions with a higher
ionization could not be collected because of limitations of
the applied optical spectrometer and a lack of data (about
WIII and higher W-lines) in available databases. A
quantitative analysis of the Dß line could hardly be
performed, but estimates based on the analysis of the Dα
line delivered information that the plasma concentration
at distances from z = 3.5 cm to z = 8.5 cm varied in a
range from 9 x 1015 cm-3 to 6 x 1016 cm-3, respectively.
SUMMARY AND CONCLUSIONS
The most important results of the reported studies can
be summarized as follows: 1. The use of optical emission
spectroscopy made it possible to record the spectral lines
emitted from the plasma-ion streams generated in the
modified PF-1000 facility; 2. A quantitative analysis of
the recorded W-lines could hardly be performed because
of the very rich spectrum and intense continuum, but
some information about dynamics of the optical emission
was obtained; 3. In some cases the quantitative analysis
of the Dα line was performed and approximate values of
the electron concentration were calculated.
One can conclude that spectroscopic studies of the
optical emission in the present version of the PF-1000
facility should be continued, and particularly more
accurate space- and time-resolved optical measurements
should be performed in order to collect information about
behavior of free-propagating plasma streams and their
interactions with different solid targets.
ACKNOWLEDGEMENTS
The research was performed in the frame of the task
No.2 of the research project realized under the contract
No. SP/J/2/143234/11 between NCBiR and IFPiLM,
Poland. This work was also partly supported by grants
W32/IAEA/2012 and W33/IAEA/2012 from the Ministry
of Science and Higher Education in Poland.
REFERENCES
1. A. Bernard et al.// J. Moscow Phys. Soc. 1998, v 8,
p. 93-170.
2. M.J. Sadowski, M. Scholz // Plasma Sources Sci. &
Technol. 2008, v. 17, p. 024001.
3 M. Scholz et al. // Nukleonika 2001, v. 46(S1), p. 35-39.
4. M.J. Sadowski, M. Scholz // PAST. Series « Plasma
Phys.». 2010, v. 16, p. 194-198.
5. M.J. Sadowski, M. Scholz // Nukleonika. 2012, v. 57,
p. 11-24.
6. P. Kubes et al. // IEEE Trans. Plasma Sci. 2012, v. 40,
p. 1075-1081.
7. M. Scholz et al. // Nukleonika 2012, v. 57, p. 183-188.
8. M. Kubkowska et al. // PAST. Series «Plasma Phys.».
2010, v. 16, p. 202-204.
9. E. Skladnik-Sadowska et al.// Contrib. Plasma Phys.
2011, v. 51, p. 288-292.
10. M.J. Sadowski et al .// Rad. Eff. & Def. Solids. 2008,
v. 163, p. 569-577.
Article received 20.09.12
ОПТИЧЕСКО-ЭМИССИОННАЯ СПЕКТРОСКОПИЯ ИМПУЛЬСНЫХ ПЛАЗМЕННЫХ ПОТОКОВ,
ИЗЛУЧАЕМЫХ ИЗ МОДИФИЦИРОВАННОЙ УСТАНОВКИ PF-1000
E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski,
M. Kubkowska, M. Paduch, M. Scholz and E. Zielinska
Представлены результаты недавних спектроскопических исследований импульсных потоков плазмы,
генерируемых установкой ПФ-1000, которая расположена в ИФПиЛМ в Варшаве. Эта установка недавно была
оснащена модифицированным внутренним электродом, который имел переднюю медную пластину с
центральной вольфрамовой (W) вставкой диаметром 5 мм. Взаимодействие схлопывающейся токовой оболочки
и электронных пучков с этой вставкой значительно изменило характеристики рентгеновского и излучения в
видимом диапазоне. Новые спектроскопические измерения проводились при выбранном угле и
перпендикулярно к оси разряда. Во втором случае оптические спектры излучения были зарегистрированы на
разных расстояниях от среза электродов и в различные моменты после токовой особенности осциллограммы
тока (провала). Это позволило определить динамику ВИ в исследованном диапазоне.
ОПТИЧНО-ЕМІСІЙНА СПЕКТРОСКОПІЯ ІМПУЛЬСНИХ ПЛАЗМОВИХ ПОТОКІВ,
ЯКІ ВИПРОМІНЮЮТЬСЯ З МОДИФІКОВАНОЇ УСТАНОВКИ PF-1000
E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski,
M. Kubkowska, M. Paduch, M. Scholz and E. Zielinska
Представлені результати недавніх спектроскопічних досліджень імпульсних потоків плазми, що
генеруються установкою ПФ-1000, яка розташована в ІФПіЛМ у Варшаві. Ця установка нещодавно була
оснащена модифікованим внутрішнім електродом, який мав передню мідну пластину з центральною
вольфрамовою (W) вставкою діаметром 50 мм. Взаємодія оболонки струму, яка схлопується, і електронних
пучків з цією вставкою значно змінило характеристики рентгенівського випромінювання у видимому діапазоні.
Нові спектроскопічні вимірювання проводилися при заданному куті та перпендикулярно до осі розряду. У
другому випадку оптичні спектри випромінювання були зареєстровані на різних відстанях від зрізу електродів,
і в різні моменти після особливості осцилограми струму (провалу). Це дозволило визначити динаміку ВВ у
дослідженому діапазоні.
|