Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility

The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copperplate with a central tungsten (W) insert of 50 mm in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Skladnik-Sadowska, E., Kwiatkowski, R., Malinowski, K., Sadowski, M.J., Kubkowska, M., Paduch, M., Scholz, M., Zielinska, E.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109192
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility / E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz, E. Zielinska // Вопросы атомной науки и техники. — 2012. — № 6. — С. 246-248. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109192
record_format dspace
spelling irk-123456789-1091922016-11-22T03:03:06Z Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility Skladnik-Sadowska, E. Kwiatkowski, R. Malinowski, K. Sadowski, M.J. Kubkowska, M. Paduch, M. Scholz, M. Zielinska, E. Диагностика плазмы The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copperplate with a central tungsten (W) insert of 50 mm in diameter. Interactions of the collapsing current sheath and electron beams with this insert have changed characteristics of the X-ray and VR emission considerably. New spectroscopic measurements were performed at the chosen angle and perpendicular to the discharge axis. In the second case optical emission spectra were recorded at different distances from the electrode outlets, and at various instants after the current peculiarity (dip). It enabled to determine dynamics of the VR emission in the investigated VR range. Представлены результаты недавних спектроскопических исследований импульсных потоков плазмы, генерируемых установкой ПФ-1000, которая расположена в ИФПиЛМ в Варшаве. Эта установка недавно была оснащена модифицированным внутренним электродом, который имел переднюю медную пластину с центральной вольфрамовой (W) вставкой диаметром 5 мм. Взаимодействие схлопывающейся токовой оболочки и электронных пучков с этой вставкой значительно изменило характеристики рентгеновского и излучения в видимом диапазоне. Новые спектроскопические измерения проводились при выбранном угле и перпендикулярно к оси разряда. Во втором случае оптические спектры излучения были зарегистрированы на разных расстояниях от среза электродов и в различные моменты после токовой особенности осциллограммы тока (провала). Это позволило определить динамику ВИ в исследованном диапазоне. Представлені результати недавніх спектроскопічних досліджень імпульсних потоків плазми, що генеруються установкою ПФ-1000, яка розташована в ІФПіЛМ у Варшаві. Ця установка нещодавно була оснащена модифікованим внутрішнім електродом, який мав передню мідну пластину з центральною вольфрамовою (W) вставкою діаметром 50 мм. Взаємодія оболонки струму, яка схлопується, і електронних пучків з цією вставкою значно змінило характеристики рентгенівського випромінювання у видимому діапазоні. Нові спектроскопічні вимірювання проводилися при заданному куті та перпендикулярно до осі розряду. У другому випадку оптичні спектри випромінювання були зареєстровані на різних відстанях від зрізу електродів, і в різні моменти після особливості осцилограми струму (провалу). Це дозволило визначити динаміку ВВ у дослідженому діапазоні. 2012 Article Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility / E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz, E. Zielinska // Вопросы атомной науки и техники. — 2012. — № 6. — С. 246-248. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.59.Hq, 52.70.Kz, 52.30.q http://dspace.nbuv.gov.ua/handle/123456789/109192 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Диагностика плазмы
Диагностика плазмы
spellingShingle Диагностика плазмы
Диагностика плазмы
Skladnik-Sadowska, E.
Kwiatkowski, R.
Malinowski, K.
Sadowski, M.J.
Kubkowska, M.
Paduch, M.
Scholz, M.
Zielinska, E.
Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
Вопросы атомной науки и техники
description The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copperplate with a central tungsten (W) insert of 50 mm in diameter. Interactions of the collapsing current sheath and electron beams with this insert have changed characteristics of the X-ray and VR emission considerably. New spectroscopic measurements were performed at the chosen angle and perpendicular to the discharge axis. In the second case optical emission spectra were recorded at different distances from the electrode outlets, and at various instants after the current peculiarity (dip). It enabled to determine dynamics of the VR emission in the investigated VR range.
format Article
author Skladnik-Sadowska, E.
Kwiatkowski, R.
Malinowski, K.
Sadowski, M.J.
Kubkowska, M.
Paduch, M.
Scholz, M.
Zielinska, E.
author_facet Skladnik-Sadowska, E.
Kwiatkowski, R.
Malinowski, K.
Sadowski, M.J.
Kubkowska, M.
Paduch, M.
Scholz, M.
Zielinska, E.
author_sort Skladnik-Sadowska, E.
title Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
title_short Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
title_full Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
title_fullStr Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
title_full_unstemmed Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility
title_sort optical emission spectroscopy of pulsed plasma streams emitted from a modified pf-1000 facility
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Диагностика плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/109192
citation_txt Optical emission spectroscopy of pulsed plasma streams emitted from a modified PF-1000 facility / E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz, E. Zielinska // Вопросы атомной науки и техники. — 2012. — № 6. — С. 246-248. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT skladniksadowskae opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT kwiatkowskir opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT malinowskik opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT sadowskimj opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT kubkowskam opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT paduchm opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT scholzm opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
AT zielinskae opticalemissionspectroscopyofpulsedplasmastreamsemittedfromamodifiedpf1000facility
first_indexed 2025-07-07T22:41:19Z
last_indexed 2025-07-07T22:41:19Z
_version_ 1837029739011768320
fulltext ISSN 1562-6016. ВАНТ. 2012. №6(82) 246 OPTICAL EMISSION SPECTROSCOPY OF PULSED PLASMA STREAMS EMITTED FROM A MODIFIED PF-1000 FACILITY E. Skladnik-Sadowska1, R. Kwiatkowski1, K. Malinowski1, M.J. Sadowski1-2, M. Kubkowska2, M. Paduch2, M. Scholz2 and E. Zielinska2 1National Centre for Nuclear Research (NCBJ), 05-400 Otwock, Poland; 2Institute of Plasma Physics and Laser Microfusion (IFPiLM), 01-497 Warsaw, Poland E-mail: Elzbieta.Skladnik-Sadowska@ncbj.gov.pl The paper presents results of the recent spectroscopic studies of pulsed plasma streams generated in the PF-1000 facility at the IFPiLM in Warsaw. This facility has recently been equipped with a modified inner electrode, which had the front copper- plate with a central tungsten (W) insert of 50 mm in diameter. Interactions of the collapsing current sheath and electron beams with this insert have changed characteristics of the X-ray and VR emission considerably. New spectroscopic measurements were performed at the chosen angle and perpendicular to the discharge axis. In the second case optical emission spectra were recorded at different distances from the electrode outlets, and at various instants after the current peculiarity (dip). It enabled to determine dynamics of the VR emission in the investigated VR range. PACS: 52.59.Hq, 52.70.Kz, 52.30.q INTRODUCTION The operation of Plasma-Focus (PF) devices is based on pulsed high-current discharges performed between two coaxial electrodes placed in a chamber, which is filled up with a working gas (e.g. deuterium) under an appropriate pressure [1]. During the last years the interest in PF facilities has grown considerably, because they constitute very efficient sources of the fusion-produced neutron emission [2-7]. Therefore, many PF experiments are run all over the world, but the problem of the scaling and saturation of the neutron yield is still open. The PF-1000 machine operated at the IFPiLM in Warsaw, Poland, is the largest Mather-type PF facility in Europe. It has been investigated for many years, and it has been modified several times [3-7]. Studies of PF-1000 discharges have been carried out by means of different diagnostic techniques [6]. Recently the PF-1000 machine has been modified. It has changed some important characteristics, and particularly the X-ray and VR emission. The main aim of this paper was to present some results of the recent optical emission studies. 1. EXPERIMENTAL SETUP The described studies were performed within the PF- 1000 facility with the anode made of a thick-wall Cu tube of 230 mm in diameter, which was equipped with a central diametr 50 mm insert made of tungsten (W). The modified machine was operated at a D2 filling under the pressure of 1.3 hPa, and powered by a condenser bank charged to 24 kV, 380 kJ. The maximum discharge current amounted to 1.8 MA. Optical measurements were started by taking time-integrated pictures of the VR emitted from plasma streams, which was observed behind an optical window and recorded by means of a CCD- camera with various filters. Spectroscopic measurements were performed behind optical windows, which looked at chosen angles and perpendicular to the z-axis (see Fig. 1). insulator quartz collimator window I electrodes vacuum chamber quartz fibre to MECHELLE*900 optical spectrometer Deuterium plasma stream Zobs PF-1000 (Cu & W) quartz collimator W Fig. 1. Scheme of the PF-1000 experimental setup To record optical emission spectra the use was made of an optical collimator coupled with the optical-fiber cable and a Mechelle®900-type spectrometer. 2. EXPERIMENTAL RESULTS The first series of the spectroscopic measurements was carried out at an angle of 670 to the z-axis in order to record emission from plasma at the centre of the W-insert. An exemplary optical spectrum is presented in Fig. 2. 3 9 0 3 9 5 4 0 0 4 0 5 4 1 0 4 1 5 4 2 0 4 2 5 4 3 0 4 3 5 4 4 0 6 0 0 0 8 0 0 0 1 0 0 0 0 1 2 0 0 0 1 4 0 0 0 1 6 0 0 0 1 8 0 0 0 2 0 0 0 0 2 2 0 0 0 W I 4 26 .9 8 W I 4 27 . 5 W I 4 29 .4 5 W I 4 21 .5 3 W I 4 37 .2 7 W I 4 37 .8 5 W I 4 35 .5 2 W I 4 24 .1 3/ 42 4. 4 W I 4 21 .5 3 W II 39 5. 54 W II 39 3. 54 W II 39 1. 54 W II 41 3. 76 W II 41 5. 70 W II 41 7. 5 6 W II 43 4. 81 W II 43 4. 32 W II 43 3. 56 W II 40 8. 13 W I 4 10 .3 0 W I 4 04 .3 8 W I 4 06 .4 8 W I 4 07 .4 5 l a s e r 2 0 0 7 1 0 3 0 _ p o z . 1 2 _ 1 2 7 _ 5 0 s h o t s _ t e x p = 2 , t d e l= 0 ( C o u n t s ) f L = 3 9 x 2 2 0 1 2 0 5 2 1 0 6 9 5 2 3 t e x p = 5 u s t d e l= 5 u s 3 - 8 W ( C o u n t s ) 2 0 1 2 0 5 2 2 0 2 9 5 2 6 t e x p = 5 u s t d e l= 7 . 3 u s 5 - 1 0 W ( C o u n t s ) 2 0 1 2 0 5 2 4 0 2 9 5 4 4 z = 2 . 5 c m t e x p = 5 u s t d e l= 1 0 . 3 u s 8 . 8 - 1 3 . 9 ( C o u n t s ) in te ns ity , a .u . w a v e le n g t h , n m W I W I I W I 4 00 .8 8P F - 1 0 0 0 ( C u & W ) U o = 2 4 k V , p o = 1 . 3 T o r z = 0 c m , a n g le 6 7 d e g Fig. 2. Optical emission spectrum from plasma produced at the W-insert center and recorded at 67O to the z-axis ISSN 1562-6016. ВАНТ. 2012. №6(82) 247 The second series of measurements was performed side-on, with the exposition (texp) equal to 5 μs - in order to record the time-integrated optical spectra of discharges. The measurements were made at different z-distances (varied in several steps from 0 to 14 cm) from the electrode ends. An example is presented in Fig. 3. Fig. 3. Optical emission spectra recorded perpendicular to the discharge axis, at different distances and texp= 5 μs The detailed spectroscopic measurements were carried out at distances of 3.5, 6.5 and 8.5 cm from the electrode outlets, at much shorter exposition (texp = 100 ns) in order to determine dynamics of the emission of various spectral lines, and in particular of the deuterium and tungsten (WI and WII) lines. Two examples are presented in Fig. 4. Fig. 4. Optical emission spectra recorded at texp= 0.1 μs, and different instants after the discharge current dip, at z = 3.5 cm and 8.5 cm 3. ANALYSIS OF EXPERIMENTAL DATA The preliminary analysis concerned the experimental data shown in Fig. 2, which presents a comparison of the optical emission spectrum recorded in a laser & W-target experiment (red line) with three spectra recorded in the PF-1000 facility at an angle of 670 to the z-axis, but at different temporal instants (ranging from 5 μs to 10 μs). One could easily notice that these optical spectra, emitted from a region near the anode center and the W-insert, contained many WI and WII spectral lines. The emission of those lines could be explained by interactions of the collapsing current sheath and electron beams with the W- insert surface. It should be mentioned that such lines were also recorded in earlier laser-experiments with W targets [10]. Unfortunately, the detailed analysis of rich tungsten spectra in Fig. 2 could hardly be performed because of an interference of numerous W-lines and intense continuum emission. It constituted an experimental evidence that the erosion of the W-insert was relatively strong. Effects of this erosion could also be observed upon the surface of the W-insert after series of discharges, as shown in Fig. 5. Fig. 5. Picture of PF-1000 electrodes ends, which shows distinct tracks of the erosion of the anode (Cu-plate and W-insert). The center of the anode was illuminated with an auxiliary laser beam Analyzing the spectra presented in Fig. 3, which were recorded perpendicular to the z-axis of the PF-1000 facility, at different distances from the electrode outlet and at a relatively long exposition time texp= 5 μs, one could also observe intense continuum and very rich spectrum containing not only D- and W-lines, but also Cu-lines and other impurities. Intensity of the optical emission was considerably lower at distances larger than 10 cm from the electrode ends. In that case the identification of Dα and Dß lines was possible, but their quantitative analysis could hardly be performed because these lines were deformed by other near lines and re- absorption effects. In spite of the careful calibration, the observed ratio of Dα and Dβ intensities was found to be different from the correct value, what could be explained by a lack of the complete thermalization. Considering the optical spectra presented in Fig. 4, which were recorded at various instants after the characteristic peculiarity (dip) of the discharge current and at different z-planes (z = 3.5 cm and 8.5 cm), one could notice that relative intensities of some WI lines observed in the earlier phase decreased in the period from 350 400 450 500 550 600 650 700 750 0 5000 10000 15000 20000 25000 30000 35000 PF-1000 (Cu&W) Uo=24 kV, po=1.3 hPa texp=5μs, 90o, ttodip=9-14μs z=14cm z=12cm z=10cm z=6cm z=4cm z=2cm wavelength, nm in te ns ity , a .u . z=0cm 350 400 450 500 550 600 650 700 750 0 500 1000 1500 2000 2500 tim e t o di p[ μs ] wavelength [nm] in te ns ity , a .u . PF-1000 (Cu&W) Uo=24 kV, po=1.3 hPa z=3.5 cm, 900, texp=0.1μs 10.0 3.0 2.0 1.0 0 350 400 450 500 550 600 650 700 750 0 200 400 600 800 1000PF-1000 (Cu&W) Uo=24 kV, po=1.3 hPa z=8.5 cm, 90o, texp=0.1μs in te ns ity [a .u .] tim e to d ip [μ s] 20.0 50.0 10.0 7.0 5.0 wavelenght [nm] -0.1 0.05 1.0 248 ISSN 1562-6016. ВАНТ. 2012. №6(82) t = 0 to t = 10 µs. In contrary, the relative intensities of some distinct WII lines recorded in the plane z = 8.5 cm increased during that period (until t = 10 µs) noticeable. It delivered some information about dynamics of the W- plasma production and expansion. It should, however, be noted that information about W-ions with a higher ionization could not be collected because of limitations of the applied optical spectrometer and a lack of data (about WIII and higher W-lines) in available databases. A quantitative analysis of the Dß line could hardly be performed, but estimates based on the analysis of the Dα line delivered information that the plasma concentration at distances from z = 3.5 cm to z = 8.5 cm varied in a range from 9 x 1015 cm-3 to 6 x 1016 cm-3, respectively. SUMMARY AND CONCLUSIONS The most important results of the reported studies can be summarized as follows: 1. The use of optical emission spectroscopy made it possible to record the spectral lines emitted from the plasma-ion streams generated in the modified PF-1000 facility; 2. A quantitative analysis of the recorded W-lines could hardly be performed because of the very rich spectrum and intense continuum, but some information about dynamics of the optical emission was obtained; 3. In some cases the quantitative analysis of the Dα line was performed and approximate values of the electron concentration were calculated. One can conclude that spectroscopic studies of the optical emission in the present version of the PF-1000 facility should be continued, and particularly more accurate space- and time-resolved optical measurements should be performed in order to collect information about behavior of free-propagating plasma streams and their interactions with different solid targets. ACKNOWLEDGEMENTS The research was performed in the frame of the task No.2 of the research project realized under the contract No. SP/J/2/143234/11 between NCBiR and IFPiLM, Poland. This work was also partly supported by grants W32/IAEA/2012 and W33/IAEA/2012 from the Ministry of Science and Higher Education in Poland. REFERENCES 1. A. Bernard et al.// J. Moscow Phys. Soc. 1998, v 8, p. 93-170. 2. M.J. Sadowski, M. Scholz // Plasma Sources Sci. & Technol. 2008, v. 17, p. 024001. 3 M. Scholz et al. // Nukleonika 2001, v. 46(S1), p. 35-39. 4. M.J. Sadowski, M. Scholz // PAST. Series « Plasma Phys.». 2010, v. 16, p. 194-198. 5. M.J. Sadowski, M. Scholz // Nukleonika. 2012, v. 57, p. 11-24. 6. P. Kubes et al. // IEEE Trans. Plasma Sci. 2012, v. 40, p. 1075-1081. 7. M. Scholz et al. // Nukleonika 2012, v. 57, p. 183-188. 8. M. Kubkowska et al. // PAST. Series «Plasma Phys.». 2010, v. 16, p. 202-204. 9. E. Skladnik-Sadowska et al.// Contrib. Plasma Phys. 2011, v. 51, p. 288-292. 10. M.J. Sadowski et al .// Rad. Eff. & Def. Solids. 2008, v. 163, p. 569-577. Article received 20.09.12 ОПТИЧЕСКО-ЭМИССИОННАЯ СПЕКТРОСКОПИЯ ИМПУЛЬСНЫХ ПЛАЗМЕННЫХ ПОТОКОВ, ИЗЛУЧАЕМЫХ ИЗ МОДИФИЦИРОВАННОЙ УСТАНОВКИ PF-1000 E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz and E. Zielinska Представлены результаты недавних спектроскопических исследований импульсных потоков плазмы, генерируемых установкой ПФ-1000, которая расположена в ИФПиЛМ в Варшаве. Эта установка недавно была оснащена модифицированным внутренним электродом, который имел переднюю медную пластину с центральной вольфрамовой (W) вставкой диаметром 5 мм. Взаимодействие схлопывающейся токовой оболочки и электронных пучков с этой вставкой значительно изменило характеристики рентгеновского и излучения в видимом диапазоне. Новые спектроскопические измерения проводились при выбранном угле и перпендикулярно к оси разряда. Во втором случае оптические спектры излучения были зарегистрированы на разных расстояниях от среза электродов и в различные моменты после токовой особенности осциллограммы тока (провала). Это позволило определить динамику ВИ в исследованном диапазоне. ОПТИЧНО-ЕМІСІЙНА СПЕКТРОСКОПІЯ ІМПУЛЬСНИХ ПЛАЗМОВИХ ПОТОКІВ, ЯКІ ВИПРОМІНЮЮТЬСЯ З МОДИФІКОВАНОЇ УСТАНОВКИ PF-1000 E. Skladnik-Sadowska, R. Kwiatkowski, K. Malinowski, M.J. Sadowski, M. Kubkowska, M. Paduch, M. Scholz and E. Zielinska Представлені результати недавніх спектроскопічних досліджень імпульсних потоків плазми, що генеруються установкою ПФ-1000, яка розташована в ІФПіЛМ у Варшаві. Ця установка нещодавно була оснащена модифікованим внутрішнім електродом, який мав передню мідну пластину з центральною вольфрамовою (W) вставкою діаметром 50 мм. Взаємодія оболонки струму, яка схлопується, і електронних пучків з цією вставкою значно змінило характеристики рентгенівського випромінювання у видимому діапазоні. Нові спектроскопічні вимірювання проводилися при заданному куті та перпендикулярно до осі розряду. У другому випадку оптичні спектри випромінювання були зареєстровані на різних відстанях від зрізу електродів, і в різні моменти після особливості осцилограми струму (провалу). Це дозволило визначити динаміку ВВ у дослідженому діапазоні.