Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge

The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N⁺, O⁺, and CmHn⁺ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surfa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Timoshenko, A.I., Taran, V.S., Misiruk, I.O.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109195
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge / A.I. Timoshenko, V.S. Taran, I.O. Misiruk // Вопросы атомной науки и техники. — 2012. — № 6. — С. 235-237. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109195
record_format dspace
spelling irk-123456789-1091952016-11-22T03:02:20Z Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge Timoshenko, A.I. Taran, V.S. Misiruk, I.O. Низкотемпературная плазма и плазменные технологии The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N⁺, O⁺, and CmHn⁺ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surface microhardness of samples treated by fluxes of ions in non-self maintained gaseous discharge grows from 1.5 for HSS (except the carburization) to 6 times for Ti and SS. Образцы из нержавеющей стали (SS), быстрорежущей стали (HSS) и титана (Ti) подвергались воздействию потоков ионов N⁺, O⁺, и CmHn⁺, которые эжектировались из полого анода в полый катод (вакуумную камеру). Найдено, что процесс оксидирования титана идет с большей скоростью, чем азотирование. Поверхностная микротвердость образцов, обработанных потоками ионов в несамостоятельном газовом разряде, увеличивается от 1,5 для быстрорежущей стали (за исключением карбидизации) до 6 раз для титана и нержавеющей стали. Зразки з нержавіючої сталі (SS), швидкоріжучої сталі (HSS) і титану (Ti) були піддані дії потоків іонів N⁺, O⁺ і CmHn⁺, які ежектувалися з порожнистого анода в порожнистий катод (вакуумну камеру). Знайдено, що процес оксидування титану йде з більшою швидкістю, ніж азотування. Поверхнева мікротвердість зразків, оброблених потоками іонів в несамостійному газовому розряді, збільшується від 1,5 для швидкоріжучої сталі (за винятком карбідизації) до 6 разів для титану і нержавіючої сталі. 2012 Article Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge / A.I. Timoshenko, V.S. Taran, I.O. Misiruk // Вопросы атомной науки и техники. — 2012. — № 6. — С. 235-237. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.77.Dq http://dspace.nbuv.gov.ua/handle/123456789/109195 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Timoshenko, A.I.
Taran, V.S.
Misiruk, I.O.
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
Вопросы атомной науки и техники
description The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N⁺, O⁺, and CmHn⁺ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surface microhardness of samples treated by fluxes of ions in non-self maintained gaseous discharge grows from 1.5 for HSS (except the carburization) to 6 times for Ti and SS.
format Article
author Timoshenko, A.I.
Taran, V.S.
Misiruk, I.O.
author_facet Timoshenko, A.I.
Taran, V.S.
Misiruk, I.O.
author_sort Timoshenko, A.I.
title Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
title_short Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
title_full Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
title_fullStr Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
title_full_unstemmed Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
title_sort nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/109195
citation_txt Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge / A.I. Timoshenko, V.S. Taran, I.O. Misiruk // Вопросы атомной науки и техники. — 2012. — № 6. — С. 235-237. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT timoshenkoai nitridingoxidationandcarburizationoftitaniumandsteelsinnonselfmaintainedgaseousdischarge
AT taranvs nitridingoxidationandcarburizationoftitaniumandsteelsinnonselfmaintainedgaseousdischarge
AT misirukio nitridingoxidationandcarburizationoftitaniumandsteelsinnonselfmaintainedgaseousdischarge
first_indexed 2025-07-07T22:41:32Z
last_indexed 2025-07-07T22:41:32Z
_version_ 1837029752081219584
fulltext ISSN 1562-6016. ВАНТ. 2012. №6(82) 235 NITRIDING, OXIDATION AND CARBURIZATION OF TITANIUM AND STEELS IN NON-SELF MAINTAINED GASEOUS DISCHARGE A.I. Timoshenko, V.S. Taran, I.O. Misiruk National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine E-mail: timoshen@yandex.ru The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N+, O+, and CmHn + which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surface microhardness of samples treated by fluxes of ions in non-self maintained gaseous discharge grows from 1.5 for HSS (except the carburization) to 6 times for Ti and SS. PACS: 52.77.Dq INTRODUCTION Non-self maintained gaseous discharge where the vacuum arc plasma gun is used as a source of supple- mentary charges has been successfully applied for ni- triding of high speed steel cutting tools [1-4]. The hard- ness of instrument enhance to 1400 HV, the thickness of nitriding layer grows with a speed of 1 μ/min and reaches up to dozens of microns. In [5] it has been re- ported about the non-self maintained gaseous discharge with a hollow anode. At standard vacuum arc apparatus this type of discharge allows obtaining a dense flux of gaseous ions with a current density of 30÷40 mA/cm2 and higher. The energy of ions can be varied by chang- ing the voltage between the hollow anode and vacuum chamber. The goal of this paper is to provide a surface harden- ing of stainless steel (SS), high speed steel (HSS) and ti- tanium (Ti) through action of directed ion fluxes of N+, O+, and CnHm + generated in non-self maintained dis- charge with a hollow anode. 1. EXPERIMENTAL APPARATUS AND METHOD The “Bulat”, a plant for vacuum arc deposition, has been used for experiments. The scheme for generation of dense flux of ions in non-self maintained gaseous discharge with a hollow anode has been presented in [5]. The specimens of SS, HSS and Ti with dimensions of 20×10×2 (in millimeters) have been attached in various ways to the walls of stainless steel tube with a 25 mm inside diameter and with a length of 120 mm. The first group of samples has been attached to frontal part of tube, so that its surface was oriented normal to the ion flux. The second group was oriented tangentially to ion flux, Fig. 1. Additionally, the third group of sam- ples was placed inside the tube, out of ion flux. The tube could be rotated so that the frontal samples periodically came and went away from ion flux. The temperature of the tube could be varied by applying to it a negative po- tential of 100÷500 Volts and has been measured with py- rometer Optris P20. The process time for all samples was 20 min. The hardness of the samples has been measured using a PMT-3 hardness tester. The hardness in a depth of the sample has been defined as an average of 10 meas- urements performed at equal distances from the surface at a microsection of the sample. 2. RESULTS 2.1. TREATMENT OF SURFACES ORIENTED PERPENDICULAR TO THE ION FLUX As can be seen from Table, the microhardness of samples treated with the perpendicular to its surface flux of ions grows from 1.5 for HSS (except the carburiza- tion) to 6 times for Ti and SS. The oxidation of Ti is go- ing faster then the nitriding does (Fig. 2). A depth of ni- triding or oxidization reach up to 10…20 μm, that cor- responds to the speed of forming of hardening layer 0,5…,0 μm /min. The back sides of samples are harden- ing too (see Figs. 3 and 4) despite of its close overlap- ping to the tube wall. Material SS HSS Ti Initial microhardness, GPa 2.2 9.0 1.9 Nitriding 14.0 14.0 8.0 Oxidation 4.5 14.0 11.0 Microhardness, GPa, after: Carburization 5.6 9.0 9.0 Microhardness SS, HSS, and Ti after 20 min of exposi- tion to fluxes of N+, O+ and CnHm+ 236 ISSN 1562-6016. ВАНТ. 2012. №6(82) 2.2. NITRIDING AND OXIDATION IN TANGENTIAL ION FLUX The Figs. 6 and 7 show that the nitriding or oxidation is more effective if the ion flux is directed tangential to the treated surface. The rate of formation of nitrided layer is about 10 times higher than in the normal to the surface ion flow. Perhaps, it occurs due to less energy load ap- plied to the surface as compared to the case of perpen- dicular flow. This, in turn, reduces the rate of TiN layer forming at the Ti surface that is an obstacle for the diffu- sion of nitrogen in titanium. 2.3. NITRIDING AND OXIDATION OF INNER WALL OF TUBE To simulate nitriding (oxidation) of inner wall of tita- nium tube, the titanium plates was placed inside a stain- less steel tube in its center. In this case, near the surface of the sample are neither ions nor the electric field. Nev- ertheless, the Figs. 8 and 9 testify that the processes of ni- triding or oxidation take place even when the treated surface is in the shadow of the ion flux. This confirms a point of view [6] according to which for the successful nitriding (oxidization) it is enough the presence of excited atoms of nitrogen (oxygen) and suitable temperature. A relatively small a depth of the hardened layer indicates that the concentration of excited atoms inside of tube is much lower than that is outside of it. Fig 2. Microhardness of Ti plate versus temperature after 20 min treatment with ions of N+ and O+ T 0C200 400 600 4 8 12 HV, GPa N+ O+ 0 800 Fig. 3. Microhardness of Ti plate versus a distance from surface after 20 min of oxidation. Т=900 0С. 1 – side turned to stream of ions; 2 – back side Distance from surface, μm 40 60 80 4 8 12 HV, GPa 1 2 0 20 Distance from surface, μm 30 60 4 8 12 HV, GPa 0 Fig. 5. Microhardness distribution along a depth af- ter 20 min of nitriding at 900 0С in Ti plate that was rotated periodically leaving the area of N+ ion flux Fig. 4. Microhardness distribution along a depth in stainless steel sample after 20 min of nitriding at 700 0С. 1 – side turned to stream of ions; 2 – back side Distance from surface, μm 20 40 60 80 4 8 12 HV, GPa 1 2 0 16 Fig. 6. Microhardness distribution along a depth in Ti sample after nitriding at 900 0С during 20 min. 1 – the side turned to stream of ions; 2 – back side Distance from surface, μm 1 2 4 8 12 16 0 100 200 300 HV, GPa Distance from surface, μm 4 8 12 0 50 100 150 200 250 HV, GPa Fig. 7. Microhardness distribution along a depth in stainless steel plate after 20 min of oxidization at 700 0С ISSN 1562-6016. ВАНТ. 2012. №6(82) 237 CONCLUSIONS The most interesting result of this work is an ex- tremely high speed of nitriding or oxidation in tangential flux of ions produced in non-self maintained discharge. It reaches almost 10 μm/min (Figs. 6, 7). Despite the hard- ness at a depth of 50 μm and dipper is less than at the sur- face, it continue to be quit high and is near 3…3,5 times more than the origin material has. Thus, by orienting the surface that being treated in the optimal way, we can sig- nificantly increase the rate of the process of hardening of material. The results presented suggest that the non-self maintained discharge with a hollow anode may be an ef- fective instrument for giving the useful properties to products from titanium and steels. REFERENCES 1. L.P. Sablev, A.A. Andreev, et al. US Patent №. 5,503,725, 2 April 1996. 2. L.P. Sablev, V.M. Shulaev, et al. UA Patent №53365, 15 February 2006. 3. A.A. Andreev, I.V. Bubnov, et al. USSR Patent № 1307886, 1987, (in Russian). 4. A.A. Andreev, L.P. Sablev, V.M. Shulaev, S.N. Grigor’ev, Vacuum-arc devices and coatings. Kharkov: “NSC KIPT”, 2005 (in Russian). 5. A.I. Timoshenko, V.S. Taran and V.I. Tereshin. Plasma characteristics of twostep vacuum-arc discharge and its application for a coating deposition // Problems of Atomic Science and Technology. Series “Plasma Phys- ics” (13). 2007, № 1, p. 179-181. 6. B.N. Arzamasov, A.G. Bratuhin, Ju.S. Yeliseev, T.A. Panayotti, Ion chemical heat treatment of alloys. Moscow: “MGTU im. Baumana”, 1999 (in Russian). Article received 24.10.12 АЗОТИРОВАНИЕ, ОКСИДИРОВАНИЕ И КАРБИДИЗАЦИЯ ТИТАНА И СТАЛЕЙ В НЕСАМОСТОЯТЕЛЬНОМ ГАЗОВОМ РАЗРЯДЕ А.И. Тимошенко, В.С. Таран, И.А. Мисирук Образцы из нержавеющей стали (SS), быстрорежущей стали (HSS) и титана (Ti) подвергались воздействию потоков ионов N+, O+, и CmHn +, которые эжектировались из полого анода в полый катод (вакуумную камеру). Найдено, что процесс оксидирования титана идет с большей скоростью, чем азотирование. Поверхностная микротвердость образцов, обработанных потоками ионов в несамостоятельном газовом разряде, увеличивается от 1,5 для быстрорежущей стали (за исключением карбидизации) до 6 раз для титана и нержавеющей стали. АЗОТУВАННЯ, ОКСИДУВАННЯ ТА КАРБІДИЗАЦІЯ ТИТАНУ І СТАЛЕЙ В НЕСАМОСТІЙНОМУ ГАЗОВОМУ РОЗРЯДІ О.І. Тимошенко, В.С. Таран, І.О. Місірук Зразки з нержавіючої сталі (SS), швидкоріжучої сталі (HSS) і титану (Ti) були піддані дії потоків іонів N+, O+ і CmHn +, які ежектувалися з порожнистого анода в порожнистий катод (вакуумну камеру). Знайдено, що процес оксидування титану йде з більшою швидкістю, ніж азотування. Поверхнева мікротвердість зразків, об- роблених потоками іонів в несамостійному газовому розряді, збільшується від 1,5 для швидкоріжучої сталі (за винятком карбідизації) до 6 разів для титану і нержавіючої сталі. Fig. 8. Ti plate is placed inside of tube. Microhardness distribution along a depth after 20 min of nitriding at 800…900 0С. 1 – Side turned to the axis of tube; 2 – side turned to the wall of tube Distance from surface, μm HV, GPa 0 30 60 90 120 4 8 12 16 1 2 Fig. 9. Ti plate is placed inside of tube. Microhard- ness distribution along a depth after 20 min of oxidi- zation at 800…900 0С. 1 – Side turned to the axis of tube; 2 – side turned to the wall of tube Distance from surface, μm HV, GPa 0 15 30 45 60 5 10 15 20 1 2