Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge
The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N⁺, O⁺, and CmHn⁺ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surfa...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109195 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge / A.I. Timoshenko, V.S. Taran, I.O. Misiruk // Вопросы атомной науки и техники. — 2012. — № 6. — С. 235-237. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109195 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091952016-11-22T03:02:20Z Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge Timoshenko, A.I. Taran, V.S. Misiruk, I.O. Низкотемпературная плазма и плазменные технологии The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N⁺, O⁺, and CmHn⁺ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surface microhardness of samples treated by fluxes of ions in non-self maintained gaseous discharge grows from 1.5 for HSS (except the carburization) to 6 times for Ti and SS. Образцы из нержавеющей стали (SS), быстрорежущей стали (HSS) и титана (Ti) подвергались воздействию потоков ионов N⁺, O⁺, и CmHn⁺, которые эжектировались из полого анода в полый катод (вакуумную камеру). Найдено, что процесс оксидирования титана идет с большей скоростью, чем азотирование. Поверхностная микротвердость образцов, обработанных потоками ионов в несамостоятельном газовом разряде, увеличивается от 1,5 для быстрорежущей стали (за исключением карбидизации) до 6 раз для титана и нержавеющей стали. Зразки з нержавіючої сталі (SS), швидкоріжучої сталі (HSS) і титану (Ti) були піддані дії потоків іонів N⁺, O⁺ і CmHn⁺, які ежектувалися з порожнистого анода в порожнистий катод (вакуумну камеру). Знайдено, що процес оксидування титану йде з більшою швидкістю, ніж азотування. Поверхнева мікротвердість зразків, оброблених потоками іонів в несамостійному газовому розряді, збільшується від 1,5 для швидкоріжучої сталі (за винятком карбідизації) до 6 разів для титану і нержавіючої сталі. 2012 Article Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge / A.I. Timoshenko, V.S. Taran, I.O. Misiruk // Вопросы атомной науки и техники. — 2012. — № 6. — С. 235-237. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.77.Dq http://dspace.nbuv.gov.ua/handle/123456789/109195 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Timoshenko, A.I. Taran, V.S. Misiruk, I.O. Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge Вопросы атомной науки и техники |
description |
The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N⁺, O⁺, and CmHn⁺ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the oxidation of Ti is going faster than the nitriding does. The surface microhardness of samples treated by fluxes of ions in non-self maintained gaseous discharge grows from 1.5 for HSS (except the carburization) to 6 times for Ti and SS. |
format |
Article |
author |
Timoshenko, A.I. Taran, V.S. Misiruk, I.O. |
author_facet |
Timoshenko, A.I. Taran, V.S. Misiruk, I.O. |
author_sort |
Timoshenko, A.I. |
title |
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge |
title_short |
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge |
title_full |
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge |
title_fullStr |
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge |
title_full_unstemmed |
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge |
title_sort |
nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109195 |
citation_txt |
Nitriding, oxidation and carburization of titanium and steels in non-self maintained gaseous discharge / A.I. Timoshenko, V.S. Taran, I.O. Misiruk // Вопросы атомной науки и техники. — 2012. — № 6. — С. 235-237. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT timoshenkoai nitridingoxidationandcarburizationoftitaniumandsteelsinnonselfmaintainedgaseousdischarge AT taranvs nitridingoxidationandcarburizationoftitaniumandsteelsinnonselfmaintainedgaseousdischarge AT misirukio nitridingoxidationandcarburizationoftitaniumandsteelsinnonselfmaintainedgaseousdischarge |
first_indexed |
2025-07-07T22:41:32Z |
last_indexed |
2025-07-07T22:41:32Z |
_version_ |
1837029752081219584 |
fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 235
NITRIDING, OXIDATION AND CARBURIZATION OF TITANIUM AND
STEELS IN NON-SELF MAINTAINED GASEOUS DISCHARGE
A.I. Timoshenko, V.S. Taran, I.O. Misiruk
National Science Center "Kharkov Institute of Physics and Technology",
Kharkov, Ukraine
E-mail: timoshen@yandex.ru
The samples of stainless steel (SS), high speed steel (HSS) and titanium (Ti) were exposed to fluxes of ions N+, O+,
and CmHn
+ which have been ejected from hollow anode into hollow cathode (vacuum chamber). It has been found that the
oxidation of Ti is going faster than the nitriding does. The surface microhardness of samples treated by fluxes of ions in
non-self maintained gaseous discharge grows from 1.5 for HSS (except the carburization) to 6 times for Ti and SS.
PACS: 52.77.Dq
INTRODUCTION
Non-self maintained gaseous discharge where the
vacuum arc plasma gun is used as a source of supple-
mentary charges has been successfully applied for ni-
triding of high speed steel cutting tools [1-4]. The hard-
ness of instrument enhance to 1400 HV, the thickness of
nitriding layer grows with a speed of 1 μ/min and
reaches up to dozens of microns. In [5] it has been re-
ported about the non-self maintained gaseous discharge
with a hollow anode. At standard vacuum arc apparatus
this type of discharge allows obtaining a dense flux of
gaseous ions with a current density of 30÷40 mA/cm2
and higher. The energy of ions can be varied by chang-
ing the voltage between the hollow anode and vacuum
chamber.
The goal of this paper is to provide a surface harden-
ing of stainless steel (SS), high speed steel (HSS) and ti-
tanium (Ti) through action of directed ion fluxes of N+,
O+, and CnHm
+ generated in non-self maintained dis-
charge with a hollow anode.
1. EXPERIMENTAL APPARATUS AND
METHOD
The “Bulat”, a plant for vacuum arc deposition, has
been used for experiments. The scheme for generation
of dense flux of ions in non-self maintained gaseous
discharge with a hollow anode has been presented in
[5]. The specimens of SS, HSS and Ti with dimensions
of 20×10×2 (in millimeters) have been attached in
various ways to the walls of stainless steel tube with a
25 mm inside diameter and with a length of 120 mm.
The first group of samples has been attached to frontal
part of tube, so that its surface was oriented normal to
the ion flux. The second group was oriented tangentially
to ion flux, Fig. 1. Additionally, the third group of sam-
ples was placed inside the tube, out of ion flux. The tube
could be rotated so that the frontal samples periodically
came and went away from ion flux. The temperature of
the tube could be varied by applying to it a negative po-
tential of 100÷500 Volts and has been measured with py-
rometer Optris P20. The process time for all samples was
20 min. The hardness of the samples has been measured
using a PMT-3 hardness tester. The hardness in a depth of
the sample has been defined as an average of 10 meas-
urements performed at equal distances from the surface at
a microsection of the sample.
2. RESULTS
2.1. TREATMENT OF SURFACES ORIENTED
PERPENDICULAR TO THE ION FLUX
As can be seen from Table, the microhardness of
samples treated with the perpendicular to its surface flux
of ions grows from 1.5 for HSS (except the carburiza-
tion) to 6 times for Ti and SS. The oxidation of Ti is go-
ing faster then the nitriding does (Fig. 2). A depth of ni-
triding or oxidization reach up to 10…20 μm, that cor-
responds to the speed of forming of hardening layer
0,5…,0 μm /min. The back sides of samples are harden-
ing too (see Figs. 3 and 4) despite of its close overlap-
ping to the tube wall.
Material SS HSS Ti
Initial microhardness, GPa 2.2 9.0 1.9
Nitriding 14.0 14.0 8.0
Oxidation 4.5 14.0 11.0
Microhardness,
GPa, after:
Carburization 5.6 9.0 9.0
Microhardness SS, HSS, and Ti after 20 min of exposi-
tion to fluxes of N+, O+ and CnHm+
236 ISSN 1562-6016. ВАНТ. 2012. №6(82)
2.2. NITRIDING AND OXIDATION IN
TANGENTIAL ION FLUX
The Figs. 6 and 7 show that the nitriding or oxidation
is more effective if the ion flux is directed tangential to
the treated surface. The rate of formation of nitrided layer
is about 10 times higher than in the normal to the surface
ion flow. Perhaps, it occurs due to less energy load ap-
plied to the surface as compared to the case of perpen-
dicular flow. This, in turn, reduces the rate of TiN layer
forming at the Ti surface that is an obstacle for the diffu-
sion of nitrogen in titanium.
2.3. NITRIDING AND OXIDATION OF INNER
WALL OF TUBE
To simulate nitriding (oxidation) of inner wall of tita-
nium tube, the titanium plates was placed inside a stain-
less steel tube in its center. In this case, near the surface
of the sample are neither ions nor the electric field. Nev-
ertheless, the Figs. 8 and 9 testify that the processes of ni-
triding or oxidation take place even when the treated
surface is in the shadow of the ion flux. This confirms a
point of view [6] according to which for the successful
nitriding (oxidization) it is enough the presence of excited
atoms of nitrogen (oxygen) and suitable temperature. A
relatively small a depth of the hardened layer indicates
that the concentration of excited atoms inside of tube is
much lower than that is outside of it.
Fig 2. Microhardness of Ti plate versus temperature
after 20 min treatment with ions of N+ and O+
T 0C200 400 600
4
8
12
HV, GPa
N+
O+
0 800
Fig. 3. Microhardness of Ti plate versus a distance
from surface after 20 min of oxidation. Т=900 0С.
1 – side turned to stream of ions; 2 – back side
Distance from surface, μm
40 60 80
4
8
12 HV, GPa
1
2
0 20
Distance from surface, μm
30 60
4
8
12 HV, GPa
0
Fig. 5. Microhardness distribution along a depth af-
ter 20 min of nitriding at 900 0С in Ti plate that was
rotated periodically leaving the area of N+ ion flux
Fig. 4. Microhardness distribution along a depth in
stainless steel sample after 20 min of nitriding at 700
0С. 1 – side turned to stream of ions; 2 – back side
Distance from surface, μm
20 40 60 80
4
8
12
HV, GPa
1
2
0
16
Fig. 6. Microhardness distribution along a depth in Ti
sample after nitriding at 900 0С during 20 min.
1 – the side turned to stream of ions; 2 – back side
Distance from surface, μm
1
2
4
8
12
16
0 100 200 300
HV, GPa
Distance from surface, μm
4
8
12
0 50 100 150 200 250
HV, GPa
Fig. 7. Microhardness distribution along a depth in
stainless steel plate after 20 min of oxidization at 700 0С
ISSN 1562-6016. ВАНТ. 2012. №6(82) 237
CONCLUSIONS
The most interesting result of this work is an ex-
tremely high speed of nitriding or oxidation in tangential
flux of ions produced in non-self maintained discharge. It
reaches almost 10 μm/min (Figs. 6, 7). Despite the hard-
ness at a depth of 50 μm and dipper is less than at the sur-
face, it continue to be quit high and is near 3…3,5 times
more than the origin material has. Thus, by orienting the
surface that being treated in the optimal way, we can sig-
nificantly increase the rate of the process of hardening of
material. The results presented suggest that the non-self
maintained discharge with a hollow anode may be an ef-
fective instrument for giving the useful properties to
products from titanium and steels.
REFERENCES
1. L.P. Sablev, A.A. Andreev, et al. US Patent
№. 5,503,725, 2 April 1996.
2. L.P. Sablev, V.M. Shulaev, et al. UA Patent №53365,
15 February 2006.
3. A.A. Andreev, I.V. Bubnov, et al. USSR Patent
№ 1307886, 1987, (in Russian).
4. A.A. Andreev, L.P. Sablev, V.M. Shulaev,
S.N. Grigor’ev, Vacuum-arc devices and coatings.
Kharkov: “NSC KIPT”, 2005 (in Russian).
5. A.I. Timoshenko, V.S. Taran and V.I. Tereshin.
Plasma characteristics of twostep vacuum-arc discharge
and its application for a coating deposition // Problems of
Atomic Science and Technology. Series “Plasma Phys-
ics” (13). 2007, № 1, p. 179-181.
6. B.N. Arzamasov, A.G. Bratuhin, Ju.S. Yeliseev,
T.A. Panayotti, Ion chemical heat treatment of alloys.
Moscow: “MGTU im. Baumana”, 1999 (in Russian).
Article received 24.10.12
АЗОТИРОВАНИЕ, ОКСИДИРОВАНИЕ И КАРБИДИЗАЦИЯ ТИТАНА И СТАЛЕЙ
В НЕСАМОСТОЯТЕЛЬНОМ ГАЗОВОМ РАЗРЯДЕ
А.И. Тимошенко, В.С. Таран, И.А. Мисирук
Образцы из нержавеющей стали (SS), быстрорежущей стали (HSS) и титана (Ti) подвергались воздействию
потоков ионов N+, O+, и CmHn
+, которые эжектировались из полого анода в полый катод (вакуумную камеру).
Найдено, что процесс оксидирования титана идет с большей скоростью, чем азотирование. Поверхностная
микротвердость образцов, обработанных потоками ионов в несамостоятельном газовом разряде, увеличивается
от 1,5 для быстрорежущей стали (за исключением карбидизации) до 6 раз для титана и нержавеющей стали.
АЗОТУВАННЯ, ОКСИДУВАННЯ ТА КАРБІДИЗАЦІЯ ТИТАНУ І СТАЛЕЙ В НЕСАМОСТІЙНОМУ
ГАЗОВОМУ РОЗРЯДІ
О.І. Тимошенко, В.С. Таран, І.О. Місірук
Зразки з нержавіючої сталі (SS), швидкоріжучої сталі (HSS) і титану (Ti) були піддані дії потоків іонів N+,
O+ і CmHn
+, які ежектувалися з порожнистого анода в порожнистий катод (вакуумну камеру). Знайдено, що
процес оксидування титану йде з більшою швидкістю, ніж азотування. Поверхнева мікротвердість зразків, об-
роблених потоками іонів в несамостійному газовому розряді, збільшується від 1,5 для швидкоріжучої сталі (за
винятком карбідизації) до 6 разів для титану і нержавіючої сталі.
Fig. 8. Ti plate is placed inside of tube. Microhardness
distribution along a depth after 20 min of nitriding at
800…900 0С. 1 – Side turned to the axis of tube;
2 – side turned to the wall of tube
Distance from surface, μm
HV, GPa
0 30 60 90 120
4
8
12
16
1
2
Fig. 9. Ti plate is placed inside of tube. Microhard-
ness distribution along a depth after 20 min of oxidi-
zation at 800…900 0С. 1 – Side turned to the axis of
tube; 2 – side turned to the wall of tube
Distance from surface, μm
HV, GPa
0 15 30 45 60
5
10
15
20
1
2
|