Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber
The injection of plasma flow with dust particles into axially symmetric chamber filled with neutral gas is investigated using computer simulation. Calculations were carried out at different plasma flow velocities and dust particles sizes. As a result, the spatial distributions of the plasma and dust...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/109197 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Sulation of the plasma jet with a dispersed phase in an axisymmetric chamber / O.Yu. Kravchenko, E.V. Kurhanovich, I.S. Marushchak // Вопросы атомной науки и техники. — 2012. — № 6. — С. 229-231. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109197 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091972016-11-22T03:02:14Z Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber Kravchenko, O.Yu. Kurhanovich, E.V. Marushchak, I.S. Низкотемпературная плазма и плазменные технологии The injection of plasma flow with dust particles into axially symmetric chamber filled with neutral gas is investigated using computer simulation. Calculations were carried out at different plasma flow velocities and dust particles sizes. As a result, the spatial distributions of the plasma and dust component parameters were obtained in the chamber at different times from the start of injection. All held calculations based on hydrodynamic approximation of plasma (without taking into account the effects of turbulence and absorption of particles on the walls of vessel) and processed by method of large particles. It is shown that large dust particles are distributed in chamber along its axis. In this case a narrow plasma jet is formed in the chamber. Dust particles of small size also extend in a radial direction, forming a wave structure. In this case, it is observed a significant expansion of the plasma jet. С помощью компьютерного моделирования исследуется инжекция плазменного потока с пылевыми частицами в аксиально-симметричную камеру, заполненную нейтральным газом. Расчеты выполнены при различных скоростях инжекции струи и различных размерах пылевых частиц. Вычисления основаны на гидродинамическом приближении для плазмы и дисперсной фазы и проведены методом крупных частиц. Получены пространственные распределения параметров плазмы и пылевой компоненты в камере в разные моменты времени от начала инжекции. Показано, что пылевые частицы большого размера распространяются в камере вдоль ее оси. При этом в камере формируется узкая плазменная струя. Пылевые частицы малого размера распространяются также в радиальном направлении, образуя волновую структуру. В этом режиме наблюдается значительное расширение плазменной струи. За допомогою комп’ютерного моделювання досліджується інжекція плазмового потоку з пиловими частинками в аксіально-симетричну камеру, заповнену нейтральним газом. Розрахунки проведені при різних швидкостях інжекції струменю та при різних розмірах пилових частинок. Обчислення ґрунтуються на гідродинамічномунаближаннідля плазми та дисперсійної фази і проведеніметодом крупних частинок. Одержані просторові розподіли параметрів плазми та пилової компоненти в камері в різні моменти часу від початку інжекції. Показано, що пилові частинки великого розміру розповсюджуються в камері вздовж її осі. При цьому в камері формується вузький плазмовий струмінь. Пилові частинки малого розміру розповсюджуються також в радіальному напрямі, утворюючи хвильову структуру. В цьому випадку спостерігається значне розширення плазмового струменю. 2012 Article Sulation of the plasma jet with a dispersed phase in an axisymmetric chamber / O.Yu. Kravchenko, E.V. Kurhanovich, I.S. Marushchak // Вопросы атомной науки и техники. — 2012. — № 6. — С. 229-231. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.27.Lw. http://dspace.nbuv.gov.ua/handle/123456789/109197 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Kravchenko, O.Yu. Kurhanovich, E.V. Marushchak, I.S. Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber Вопросы атомной науки и техники |
description |
The injection of plasma flow with dust particles into axially symmetric chamber filled with neutral gas is investigated using computer simulation. Calculations were carried out at different plasma flow velocities and dust particles sizes. As a result, the spatial distributions of the plasma and dust component parameters were obtained in the chamber at different times from the start of injection. All held calculations based on hydrodynamic approximation of plasma (without taking into account the effects of turbulence and absorption of particles on the walls of vessel) and processed by method of large particles. It is shown that large dust particles are distributed in chamber along its axis. In this case a narrow plasma jet is formed in the chamber. Dust particles of small size also extend in a radial direction, forming a wave structure. In this case, it is observed a significant expansion of the plasma jet. |
format |
Article |
author |
Kravchenko, O.Yu. Kurhanovich, E.V. Marushchak, I.S. |
author_facet |
Kravchenko, O.Yu. Kurhanovich, E.V. Marushchak, I.S. |
author_sort |
Kravchenko, O.Yu. |
title |
Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber |
title_short |
Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber |
title_full |
Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber |
title_fullStr |
Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber |
title_full_unstemmed |
Simulation of the plasma jet with a dispersed phase in an axisymmetric chamber |
title_sort |
simulation of the plasma jet with a dispersed phase in an axisymmetric chamber |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109197 |
citation_txt |
Sulation of the plasma jet with a dispersed phase in an axisymmetric chamber / O.Yu. Kravchenko, E.V. Kurhanovich, I.S. Marushchak // Вопросы атомной науки и техники. — 2012. — № 6. — С. 229-231. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kravchenkooyu simulationoftheplasmajetwithadispersedphaseinanaxisymmetricchamber AT kurhanovichev simulationoftheplasmajetwithadispersedphaseinanaxisymmetricchamber AT marushchakis simulationoftheplasmajetwithadispersedphaseinanaxisymmetricchamber |
first_indexed |
2025-07-07T22:41:41Z |
last_indexed |
2025-07-07T22:41:41Z |
_version_ |
1837029762068905984 |
fulltext |
ISSN 1562-6016. ВАНТ. 2012. №6(82) 229
SIMULATION OF THE PLASMA JET WITH A DISPERSED PHASE
IN AN AXISYMMETRIC CHAMBER
O.Yu. Kravchenko, E.V. Kurhanovich, I.S. Marushchak
Taras Shevchenko Kiev University, Kiev, Ukraine
The injection of plasma flow with dust particles into axially symmetric chamber filled with neutral gas is
investigated using computer simulation. Calculations were carried out at different plasma flow velocities and dust
particles sizes. As a result, the spatial distributions of the plasma and dust component parameters were obtained in
the chamber at different times from the start of injection. All held calculations based on hydrodynamic
approximation of plasma (without taking into account the effects of turbulence and absorption of particles on the
walls of vessel) and processed by method of large particles. It is shown that large dust particles are distributed in
chamber along its axis. In this case a narrow plasma jet is formed in the chamber. Dust particles of small size also
extend in a radial direction, forming a wave structure. In this case, it is observed a significant expansion of the
plasma jet.
PACS: 52.27.Lw.
INTRODUCTION
Two-phase flows of plasma with solid or liquid
particles are widespread in the various processes of
energy, plasma-chemical technologies, aviation, etc.
With increasing concentration of the dispersed phase its
impact on the transport processes in the carrier medium
increases. In this case, plasma has a significant effect on
the propagation of dispersed particles in two-phase
flow. Therefore there is a need to consider the mutual
influence of the two phases at each other.
Earlier in the measurements observed the
phenomenon of the concentration of particles in the
axial zone of the jet and the intense scattering dispersed
particles in the cross section of the jet [1]. The transition
from one regime to the other occurs with increasing
particle diameter. In [2] shows the importance of the
flow prehistory on the propagation of dispersed
particles.
Despite the large number of studies in this field, a
number of questions of the dynamics of the plasma jets
with the dispersed phase remain unexplored. In
particular, the mechanism for the transition from the
regime of pinching to dispersal of dust particles is not
sufficiently researched. Particularly, it is important to
study the effect of dust particles on the spatial
distribution of ions and electrons, their size and
concentration on dynamics of two-phase jets for solving
of plasma chemistry problems.
1. MODEL
This paper considers the problem of propagation of
dispersed particles in a two-phase axisymmetric
submerged jet. The plasma jet with disperse phase
(spherical dust particles) enters into the cylindrical
chamber with radius R and length L through the round
hole (with radius 0R ) at some initial time. All plasma
parameters are constant in this cross-section during a
simulation time. The chamber is filled with neutral gas
at a pressure 0p . At the side of the camera there are
holes through which the gas can come out from the
chamber.
We adopt the basic assumptions of mechanics of
multiphase media [3]. In addition, we assume that there
are no phases transformations, spherical dust particles
do not collide with each other, do not break up and have
a constant heat. The study was conducted in the
framework of in viscid perfect gas.
Plasma jet with dust particles can be described by set
of hydrodynamic equations for carrier and dispersed
phases:
( )1
1 1 0,div w
t
ρ
ρ
∂
+ =
∂
r
( )2
2 2 0,div w
t
ρ
ρ
∂
+ =
∂
r
( ) 2
1 ,i
i r e i
n
div n w n n
t
β
∂
+ = −
∂
r
( ) ( )1 1
1 1 1 ,d r
u Pdiv u w n f
t r
ρ
ρ
∂ ∂
+ = − −
∂ ∂
r
( ) ( )2 2
2 2 2 2 ,d r
u Pdiv u w n f
t r
ρ
ρ α
∂ ∂
+ = − +
∂ ∂
r
( ) ( )
( )
1 1 2 2 1 1 1 2 2 2
1 1 2 2 0,
E E div E w E w
t
div Pw Pw
ρ ρ ρ ρ
α α
∂
+ + + +
∂
+ =
r r
K
r r
( ) ( )2 2
2 2 2 ,d
I
div I w n Q
t
ρ
ρ
∂
+ =
∂
r
2 2
1 1
1 12 2
u v
E I= + + ,
2 2
2 2
2 2 ,
2 2
u v
E I= + +
( ) ( )2
1 1 2 1 2/ 2 ,d df r C w w w wπ ρ= − −
r r r r r
( )1 1 22 ,dQ r Nu T Tπ= −
1 1 2 2 1 1
3 3 2, ,
2 2 3
I T I T P I Rρ= = = .
Here the subscripts 1 and 2 refer to the parameters of
the carrier and the dispersed phase; , , ,w I Eρ r are
normalized density, velocity vector ( ,i iu v - its
components along r and z axis), internal and full
230 ISSN 1562-6016. ВАНТ. 2012. №6(82)
energies; ,f Q
r
are a force of an aerodynamic
interaction between a plasma and a dust particle ( rf and
zf - its components along the r and z) and an intensity
of their heat; 2, , , ,d i eP n n n α are a plasma pressure,
dust, ion and electron concentrations, volume fraction of
the dust; dC is drag coefficient of dust, 1Nu is Nusselt
number, 1λ is the thermal conductivity of the plasma,
rβ is three-body recombination rate, R is gas constant.
The system of equations is solved numerically by
the method of large particles [4]. The calculations were
carried out at different parameters of plasma flow
entering in the vessel and continued until a steady flow
of plasma.
2. SIMULATION RESULTS
The calculations were performed for various sizes of
dust particles, different values of the dust density and
velocities of the plasma jet at the nozzle exit.
Simulations continued until a steady flow of plasma. As
results, spatial distributions of the plasma parameters
and disperse phase parameters (densities, drift
velocities, temperatures and the plasma pressure) were
obtained in various times after entering of the plasma jet
into the chamber.
Fig.1 shows spatial distribution of dust density at
time 150t = for two cases, corresponding to the radius
of the dust 1dR mμ= (see Fig. 1,a) and
20dR mμ= (fig.1b). Densities are normalized to
plasma density at the nozzle exit 0ρ , spatial coordinates
are normalized to 0R , and time is normalized to
0 0 0/t R v= . In both cases the velocity of the plasma
flow was 0 200 /v m s= and the dust density was
0 30.1 /d kg mρ −= at the nozzle exit. The gas
pressure was 1p atm= in the chamber prior to injection
of the plasma jet.
One can see from this figure, that small dust
particles ( 1dR mμ= ) are distributed effectively in the
radial direction, forming a wave structure. As a result
there is a significant density of dust particles along the
axis of the chamber and close the chamber walls.
Between the axis and the chamber walls can be seen
forming a region with a very low concentration of dust.
Large dust particles practically do not expand in the
radial direction, so their concentration is significant only
along the axis of the camera.
The results showed that the dust particles have a
significant effect on the parameters of the plasma flow,
which can be seen in Figs. 2 and 3. Figure 2 shows the
distribution of the plasma density for the variants
presented in Fig. 1. It is evident that in areas of high
concentration of dust particle the plasma density is also
increased. In this regard, the characteristic feature is the
forming of the region with low plasma density in Fig. 2,
which corresponds to the low density of the dust
particles (Fig. 1,a). The cause of the observed
relationship between the dispersed and the carrier phase
flows is the force of the hydrodynamic friction.
2
4
6
8
10
0,000
0,004
0,008
0,012
0,016
2
4
6
8
10
ρd
z
r
a
2
4
6
8
10
0,00
0,02
0,04
0,06
2
4
6
8
10
ρd
z
r
b
Fig. 1. Spatial distributions of dust density in the
chamber at 1dR mμ= (a) and at 20dR mμ= (b)
0,30
0,25
0,20
0,15
0,10
0,080
0,080
0,35
0,10
2 4 6 8 10
4
8
12
16
20
z
r a
0,25 0,20
0,15
0,10
0,080
0,060
0,060
0,30
2 4 6 8 10
4
8
12
16
20
Z
r b
Fig. 2. Spatial distributions of the gas density in the
chamber at 1dR mμ= (a) and at 20dR mμ= (b)
In Fig.3 are presented spatial distributions of the ion
concentration normalized to the neutral atom
ISSN 1562-6016. ВАНТ. 2012. №6(82) 231
concentration in the nozzle exit. Figure 3,a and
figure 3,b correspond to the cases of small ( 1dR mμ= )
and large ( 20dR mμ= ) dust particles. As the figure
shows, the concentration of ions in the case of small
dust particles is much larger than in the case of large
dust particles. In the case of injection of large dust
particles visible ion concentration is realized only near
the nozzle.
6,0E-75,0E-7
1,0E-7
5,0E-8
1,0E-8
1,0E-9
5,0E-8
2 4 6 8 10
4
8
12
16
20
z
r
a
1,0E-7
5,0E-8
1,0E-8 1,0E-9
1,0E-8
1,0E-8
2 4 6 8 10
4
8
12
16
20
z
r
b
Fig. 3. Spatial ddistributions of the ion density in the
chamber at 1dR mμ= (a) and at 20dR mμ= (b)
The degree of the gas ionization in the rest of the
chamber is insignificant. In the case of injection of
small dust particles the degree of the gas ionization in
the chamber is substantially higher. This result is due to
the friction of plasma jet with the dust component,
which is greater in the case of large dust particles. The
size increasing of dust particles at a constant relative
density of the dispersed phase decreases the mixing of
plasma jet and the neutral gas in the chamber.
CONCLUSIONS
Results of simulations show that the injection of the
plasma jet with a dispersed phase in a chamber filled
with neutral gas is more effective in the case of small
dust particles due to the decrease of the friction force
with the dispersed phase with decreasing particle size.
It is shown that dust particles of a large radius move
along the axis of the chamber, but the small particles
also propagate in the radial direction, forming a wave
structure.
REFERENCES
1. M.K. Laats, F.A. Frishman // Izv.AN USSR, 1970,
№.2, р. 153.
2. I.V. Derevich // Teplofizika vysokih temperature.
2002, v. 40, №1, p.86.
3. R.I. Nigmatulin. Mehanika mnogofasnyh sred. M.:
«Nauka», 1987, 464 p.
4. O.M. Belozerkovskiy, Yu.M. Davydov. Metod
krupnyh chastiz v gasovoj dinamike. M.: «Nauka»,
1982, 392 p.
Article received 20.09.12
МОДЕЛИРОВАНИЕ ПЛАЗМЕННОЙ СТРУИ С ДИСПЕРСНОЙ ФАЗОЙ
В ОСЕСИММЕТРИЧНОЙ КАМЕРЕ
А.Ю. Кравченко, Е.В .Курганович, И.С. Марущак
С помощью компьютерного моделирования исследуется инжекция плазменного потока с пылевыми
частицами в аксиально-симметричную камеру, заполненную нейтральным газом. Расчеты выполнены при
различных скоростях инжекции струи и различных размерах пылевых частиц. Вычисления основаны на
гидродинамическом приближении для плазмы и дисперсной фазы и проведены методом крупных частиц.
Получены пространственные распределения параметров плазмы и пылевой компоненты в камере в разные
моменты времени от начала инжекции. Показано, что пылевые частицы большого размера
распространяются в камере вдоль ее оси. При этом в камере формируется узкая плазменная струя. Пылевые
частицы малого размера распространяются также в радиальном направлении, образуя волновую структуру.
В этом режиме наблюдается значительное расширение плазменной струи.
МОДЕЛЮВАННЯ ПЛАЗМОВОГО СТРУМЕНЮ З ДИСПЕРСНОЮ ФАЗОЮ
В ОСЕСИМЕТРИЧНІЙ КАМЕРІ
О.Ю. Кравченко, Є.В. Курганович, І.С. Марущак
За допомогою комп’ютерного моделювання досліджується інжекція плазмового потоку з пиловими
частинками в аксіально-симетричну камеру, заповнену нейтральним газом. Розрахунки проведені при різних
швидкостях інжекції струменю та при різних розмірах пилових частинок. Обчислення ґрунтуються на
гідродинамічномунаближаннідля плазми та дисперсійної фази і проведеніметодом крупних частинок.
Одержані просторові розподіли параметрів плазми та пилової компоненти в камері в різні моменти часу від
початку інжекції. Показано, що пилові частинки великого розміру розповсюджуються в камері вздовж її осі.
При цьому в камері формується вузький плазмовий струмінь. Пилові частинки малого розміру
розповсюджуються також в радіальному напрямі, утворюючи хвильову структуру. В цьому випадку
спостерігається значне розширення плазмового струменю.
|