Technological aprobation of integral cluster setup for complex compound composites syntesis
In the present paper the results of technological approbation of the integral cluster set-up for synthesis of various types of high-quality coatings such as Al₂O₃, TiO₂, ZrO₂, AlN, TiN, and others with coating thickness up to 10 mkm are presented. Сurrent-voltage characteristics of magnetron dischar...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/109200 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Technological aprobation of integral cluster setup for complex compound composites syntesis / S. Yakovin, S. Dudin, A. Zykov, A. Shyshkov, V. Farenik // Вопросы атомной науки и техники. — 2012. — № 6. — С. 220-222. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109200 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092002016-11-22T03:02:21Z Technological aprobation of integral cluster setup for complex compound composites syntesis Yakovin, S. Dudin, S. Zykov, A. Shyshkov, A. Farenik, V. Низкотемпературная плазма и плазменные технологии In the present paper the results of technological approbation of the integral cluster set-up for synthesis of various types of high-quality coatings such as Al₂O₃, TiO₂, ZrO₂, AlN, TiN, and others with coating thickness up to 10 mkm are presented. Сurrent-voltage characteristics of magnetron discharge in argon mixtures with oxygen and nitrogen for various gas pressures and for various target materials have been measured. Представлены результаты технологической апробации интегральной кластерной установки для синтеза высококачественных покрытий типа Al₂O₃, TiO₂, ZrO₂, AlN, TiN и других, толщиной до 10 мкм. Были измерены вольт-амперные характеристики магнетронного разряда в смесях аргона с кислородом и азотом, при различных давлениях рабочего газа и разных материалах мишени. Представлено результати технологічної апробації інтегральної кластерноїї установки для синтезу високоякісних покриттів типу Al₂O₃, TiO₂, ZrO₂, AlN, TiN та інших, товщиною до 10 мкм. Було виміряно вольт-амперні характеристики магнетронного розряду в сумішах аргону з киснем та азотом, при різних тисках робочого газу та різних матеріалах мішені. 2012 Article Technological aprobation of integral cluster setup for complex compound composites syntesis / S. Yakovin, S. Dudin, A. Zykov, A. Shyshkov, V. Farenik // Вопросы атомной науки и техники. — 2012. — № 6. — С. 220-222. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.77.-j, 81.15.-z http://dspace.nbuv.gov.ua/handle/123456789/109200 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Yakovin, S. Dudin, S. Zykov, A. Shyshkov, A. Farenik, V. Technological aprobation of integral cluster setup for complex compound composites syntesis Вопросы атомной науки и техники |
description |
In the present paper the results of technological approbation of the integral cluster set-up for synthesis of various types of high-quality coatings such as Al₂O₃, TiO₂, ZrO₂, AlN, TiN, and others with coating thickness up to 10 mkm are presented. Сurrent-voltage characteristics of magnetron discharge in argon mixtures with oxygen and nitrogen for various gas pressures and for various target materials have been measured. |
format |
Article |
author |
Yakovin, S. Dudin, S. Zykov, A. Shyshkov, A. Farenik, V. |
author_facet |
Yakovin, S. Dudin, S. Zykov, A. Shyshkov, A. Farenik, V. |
author_sort |
Yakovin, S. |
title |
Technological aprobation of integral cluster setup for complex compound composites syntesis |
title_short |
Technological aprobation of integral cluster setup for complex compound composites syntesis |
title_full |
Technological aprobation of integral cluster setup for complex compound composites syntesis |
title_fullStr |
Technological aprobation of integral cluster setup for complex compound composites syntesis |
title_full_unstemmed |
Technological aprobation of integral cluster setup for complex compound composites syntesis |
title_sort |
technological aprobation of integral cluster setup for complex compound composites syntesis |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109200 |
citation_txt |
Technological aprobation of integral cluster setup for complex compound composites syntesis / S. Yakovin, S. Dudin, A. Zykov, A. Shyshkov, V. Farenik // Вопросы атомной науки и техники. — 2012. — № 6. — С. 220-222. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT yakovins technologicalaprobationofintegralclustersetupforcomplexcompoundcompositessyntesis AT dudins technologicalaprobationofintegralclustersetupforcomplexcompoundcompositessyntesis AT zykova technologicalaprobationofintegralclustersetupforcomplexcompoundcompositessyntesis AT shyshkova technologicalaprobationofintegralclustersetupforcomplexcompoundcompositessyntesis AT farenikv technologicalaprobationofintegralclustersetupforcomplexcompoundcompositessyntesis |
first_indexed |
2025-07-07T22:41:55Z |
last_indexed |
2025-07-07T22:41:55Z |
_version_ |
1837029776107241472 |
fulltext |
220 ISSN 1562-6016. ВАНТ. 2012. №6(82)
TECHNOLOGICAL APROBATION OF INTEGRAL CLUSTER SET-UP
FOR COMPLEX COMPOUND COMPOSITES SYNTESIS
S. Yakovin, S. Dudin, A. Zykov, A. Shyshkov, V. Farenik
V.N. Karazin Kharkov National Universty,
Kharkov, Ukraine
In the present paper the results of technological approbation of the integral cluster set-up for synthesis of various
types of high-quality coatings such as Al2O3, TiO2, ZrO2, AlN, TiN, and others with coating thickness up to 10 mkm
are presented. Сurrent-voltage characteristics of magnetron discharge in argon mixtures with oxygen and nitrogen
for various gas pressures and for various target materials have been measured.
PACS: 52.77.-j, 81.15.-z
INTRODUCTION
In previous study the results of elaboration and inves-
tigations of cluster technological setup for synthesis of
complex compound composites were demonstrated [1].
The presented set-up consists of complimentary DC-
magnetron system, RF-inductive plasma source and ion
source. The set-up system allows to independently form
the fluxes of metal atoms, chemically active particles,
ions and also to synthesize the thin films of complex
compound composites, including nano composites.
The research results of the different module compo-
nents were published previously:
• the research of the low-pressure DC magnetron [2];
• the research of arcing processes at the magnetron
target in the oxygen atmosphere [3];
• the research of the target passivation [4];
• the research of the RF inductive plasma source [5].
On the base of this module we created the experimen-
tal multifunctional cluster ion-plasma system with pa-
rameters corresponding the demands of industrial opera-
tion. The main purpose of this system is synthesis and
processing of complex-composite (including nano-
composite) coatings and structures based on TiN, AlN,
TiO2, Al2O3, ZrO2 and their combinations.
The tasks of this work were the measurement of cur-
rent-voltage characteristics of magnetron discharge in
argon mixtures with oxygen and nitrogen for various gas
pressures and for various target materials and analysis of
the dependences of discharge parameters on target mate-
rial, pressure and composition of working gas.
1. EXPERIMENTAL SETUP
The cluster set-up is schematically shown in the fig.1.
The system consists of the low-pressure magnetron 2 lo-
cated on the butt end of chamber, the RF inductive source
of plasma and activated particles of reactive gas 3 located
inside the chamber, the ion source 8 located on lateral
flange of the chamber. The relative location of these com-
ponents has been chosen to provide the possibility of the
simultaneous action on the processed surface of the flows
of metal atoms, activated particles of reactive gas and ions
of rare or reactive gase.
In the system a planar magnetron with permanent
magnets was used (Fig. 2). The magnetron power supply
allows to bias the magnetron target at up to 1 kV negative
potential at the discharge current up to 20 A, maximum
power of the supply is 6 kW. The magnetron targets of
170 mm diameter are made of aluminum, zirconium or
titanium. Distance from the target to the processed sam-
ples is variable within the limits 100-500 mm in the case
of pure magnetron deposition, and is fixed in approxi-
mately 300 mm for the case of simultaneous operation of
the magnetron and the ion source.
2. EXPERIMENTAL RESULTS
The oxide Al2O3 and ZrO2 coating deposition was per-
formed in high vacuum pumping system with the base
pressure about 10-5 mBar. There was the problem of target
oxidation during deposition process. At the excessive
oxygen flow conditions the process shifts to the target
passivation regime. The sputtering process should be
made in the regimes far from the target passivation both
for aluminum and for zirconium target materials for oxide
coatings deposition with highly stoichiometric composi-
tion. Also, such deposition conditions allow to avoid mi-
cro-arcs and micro-drops formation increasing the corro-
sion resistance properties.
О2
Ar 2 3
5
6
1
12
7
4
10 cm
8
9
11
О2
Ar
10
Fig. 1. Scheme of the cluster set-up for complex compos-
ite compounds synthesis. 1 – DC magnetron power sup-
ply, 2 – magnetron, 3 – RF ICP source, 4, 6 – RF genera-
tor, 5, 7 – RF matchbox, 8 – ion source, 9 – DC power
supply, 10 – pulsed power supply for samples polariza-
tion, 11 – samples rotation system, 12 – shutter
ISSN 1562-6016. ВАНТ. 2012. №6(82 221
The optimum conditions were realized for the upper
part of VAC curves of magnetron discharge in argon with
oxygen both for aluminum and zirconium target materials
Figs. 2-4 presents the current-voltage characteristic
(CVC) of the magnetron with targets of aluminum, zirco-
nium and titanium in a mixture of argon with oxygen or
nitrogen at various reactive gas flows. In Fig. 2 the cur-
rent-voltage characteristics for the aluminum target are
shown. As can be seen from the figure, the CVC is S-
shaped, and consists of the transition region and two satu-
ration regions: the higher for pure argon, and the lower
appearing in the target passivation mode at sufficiently
high flow of oxygen. For medium flow values of oxygen
there is a region with a negative slope. One can also see
that in the transition region a hysteresis effect is observed.
At the reactive gas flow increase the width of the hyster-
etic loop increases. For small gas flow values the S-
shaped curve can be passed completely, but above a cer-
tain threshold value the slope of the S-curve becomes
greater than the slope of the load curve of our power sup-
ply and abrupt transition happens from the passivation
regime to the "metallic" mode. With further reactive gas
flow increase the exit current from the passivation appears
too high, so the power of the power supply is insufficient.
When nitrogen is used with the aluminum target (Fig-
ure 2), we observe a pronounced hysteresis in the form of
S-shaped curve similar to the oxygen case.
Fig. 3 shows the magnetron current-voltage character-
istics for zirconium target. With the oxygen used as a re-
active gas the same effect is observed, but the S-shaped
curve is less pronounced on the branch with negative
slope, the effect of hysteresis is also pesent. As in the case
of the aluminum target, at the oxygen flow increase the
curves are shifted to the right. When the zirconium target
is used with nitrogen (Fig. 3), there is almost no hystere-
sis.
For aluminum and zirconium targets the oxide coating
deposition process must be done in the "metallic mode",
i.e. when the target is far from passivation. This is neces-
sary to avoid microarcs and, as a consequence the drop-
lets. These conditions are satisfied at the upper part of the
curves higher than the hysteresis.
Fig. 4 shows the current-voltage characteristics for ti-
tanium target, which looks differently. As we can see,
there is also the phenomenon of hysteresis, but the loop is
N-shaped and crossed herself. In contrast to the CVC for
aluminum, CVC for titanium and zirconium cross the
curve for pure nitrogen: the high power curves for nitro-
gen are lower, and the small power ones are higher than
the curve for pure nitrogen. As can be seen from the fig-
ure, the higher the nitrogen flow, the higher the intersec-
tion point lies.
The obtained results allow us to choose the "process
window" for the synthesis of oxide and nitride coatings of
aluminum, zirconium and titanium.
Fig. 5 shows the surface topography of ZrO2 obtained
using an atomic force microscope. Table lists some of the
mechanical and tribological properties of the deposited
coatings.
CONCLUSIONS
Thus, in the present paper the experimental research of
the current-voltage characteristics of the magnetron dis-
charge in inert (argon) and reactive gases (oxygen, nitro-
gen) for different target materials (aluminum, zirconium,
titanium) is reported. It is found that for pure argon for all
target materials and for all investigated pressures the same
shape and behavior of the CVC is observed. With oxygen
filling the pronounced hysteresis effect is observed for all
the targets: for aluminum and zirconium there is a
S-haped curve while for titanium target the curve is
N-shaped, hat is consistent with the similar characteristic
0
100
200
300
400
500
600
0 2 4 6 8 10 12 14
I, A
U
, V
5,5 sccm
7,5 sccm
13,5 sccm
21,5 sccm
0 sccm
0
100
200
300
400
500
600
0 2 4 6 8 10
I, A
U
, V
0 sccm
7,5 sccm
10 sccm
13,5 sccm
17 sccm
Fig. 2. CVC of magnetron discharge for different flows
of oxygen (left) and nitrogen (right). Argon pressure
p = 1.5 × 10-3 Torr, the target material: aluminum
0
100
200
300
400
500
600
0 2 4 6 8 10 12
I, A
U
, V
0 sccm
21,5 sccm
25,5 sccm
30 sccm
0
100
200
300
400
500
600
0 2 4 6 8 10 12
I, A
U
, V
0 sccm
21,5 sccm
25,5 sccm
30 sccm
Fig. 3. CVC of magnetron discharge for different flows
of oxygen (left) and nitrogen (right). Argon pressure
p = 1 × 10-3 Torr, the target material: zirconium
0
100
200
300
400
500
600
0 2 4 6 8 10
0 sccm
13,5 sccm
17 sccm
21,5 sccm
I, A
U
, V
0
100
200
300
400
500
600
0 2 4 6 8 10 12
0 sccm
13,5 sccm
21,5 sccm
30 sccm
I, A
U
, V
Fig. 4. CVC of magnetron discharge for different flows
of oxygen (left) and nitrogen (right). Argon pressure
p = 1 × 10-3 Torr, the target material: titanium
Fig. 5. The surface topography of ZrO2 obtained by
AFM
222 ISSN 1562-6016. ВАНТ. 2012. №6(82)
in [5]. For nitrogen filling the hysteresis effect is present
in the CVC for aluminum (similar to that for oxygen) and
titanium. In the CVC for zirconium no hysteresis effect is
observed.
Basing on the research results it has been found that
the deposition of the oxide and nitride coatings is most
expedient to perform at the top branch of the CVC, i.e. in
"metallic mode".
The present work was supported by Ministry of Edu-
cation and Science of Ukraine, Project 0111U001463.
REFERENCES
1. S. Yakovin, S. Dudin, A. Zykov, V. Farenik, Integral
cluster set-up for complex compound composites syntesis
// Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2011, № 1, p. 152-154.
2. A.V. Zykov, S.D. Yakovin, S.V. Dudin Synthesis of
dielectric compounds by DC magnetron // Physical Sur-
face Engineering. 2009, v. 7, № 3, p. 195-203.
3. S.V. Dudin, V.I. Farenik, A.N. Dahov. Development
of arc suppression technique for reactive magnetron sput-
tering // Physical Surface Engineering. 2005, v. 3, № 3-4.
4. Jan Walkowicz, Aleksandr Zykov, Stanislav Dudin,
Stanislav Yakovin, Rafal Brudnias. ICP enhanced reactive
magnetron sputtering system for syntesis of alumina coat-
ing // Tribologia. 2006, № 6, p. 163-174.
5. I. Denysenko, S. Dudin, A. Zykov, N. Azarenkov. Ion
flux uniformity in inductively coupled plasma sources //
Phys. Plasmas. 2002, v. 9, № 11.
6. A.V. Zykov, S.V. Dudin, S.D. Yakovin, J. Walkowicz.
Magnetron sputtering system for synthesis dielectric coat-
ings // 10th Intl. Conf. on Plasma Physics and Controlled
Fusion, Alushta, Ukraine, September 13-18, 2004/ Book
of Abstracts, 2004, p.170.
Article received 20.09.12
ТЕХНОЛОГИЧЕСКАЯ АПРОБАЦИЯ ИНТЕГРАЛЬНОЙ КЛАСТЕРНОЙ УСТАНОВКИ ДЛЯ
СИНТЕЗА СЛОЖНОКОМПОЗИЦИОННЫХ СТРУКТУР
С. Яковин, С. Дудин, А. Зыков, А. Шишков, В. Фареник
Представлены результаты технологической апробации интегральной кластерной установки для синтеза вы-
сококачественных покрытий типа Al2O3, TiO2, ZrO2, AlN, TiN и других, толщиной до 10 мкм. Были измерены
вольт-амперные характеристики магнетронного разряда в смесях аргона с кислородом и азотом, при различных
давлениях рабочего газа и разных материалах мишени.
ТЕХНОЛОГІЧНА АПРОБАЦІЯ ІНТЕГРАЛЬНОЇ КЛАСТЕРНОЇ УСТАНОВКИ ДЛЯ СИНТЕЗУ
СКЛАДНОКОМПОЗИЦІЙНИХ СТРУКТУР
С. Яковін, С. Дудін, О. Зиков, О. Шишков, В. Фаренік
Представлено результати технологічної апробації інтегральної кластерноїї установки для синтезу високоякі-
сних покриттів типу Al2O3, TiO2, ZrO2, AlN, TiN та інших, товщиною до 10 мкм. Було виміряно вольт-амперні
характеристики магнетронного розряду в сумішах аргону з киснем та азотом, при різних тисках робочого газу
та різних матеріалах мішені.
Mechanical and tribological characteristics of oxide coatings Al2O3 and ZrO2
Mechanical parameters (average results of 10 tests) Material/ Coating
type Hardness Hv Hardness H [Mpa] Young Modulus
[Gpa]
Adhesion [N]
Zr/ZrO2 755.5 7831.5 167.7 28.5
Zr/ Al2O3 782.0 8115.2 184.4 27.1
Ti/ZrO2 767.5 8072.4 172.3 38.4
Ti/ Al2O3 953.6 8289.9 197.0 40.3
|