High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge
In this work, the characteristics of high-current operation modes of planar magnetron sputtering system with magnetically insulated anode without going to the arc discharge mode is investigated. The possibility of using an additional spatially modulated magnetic field in the anode region to prevent...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109210 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge / A.A. Bizyukov, K.N. Sereda, V.V. Sleptsov, I.K. Tarasov, A.G. Chunadra // Вопросы атомной науки и техники. — 2012. — № 6. — С. 190-192. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109210 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092102016-11-22T03:02:36Z High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge Bizyukov, A.A. Sereda, K.N. Sleptsov, V.V. Tarasov, I.K. Chunadra, A.G. Низкотемпературная плазма и плазменные технологии In this work, the characteristics of high-current operation modes of planar magnetron sputtering system with magnetically insulated anode without going to the arc discharge mode is investigated. The possibility of using an additional spatially modulated magnetic field in the anode region to prevent a transition from the magnetron to the arc is shown experimentally. It is shown that the use of such a magnetic field configuration provides efficient interruption of the arc current without external forced shutdown of the discharge. Исследованы особенности сильноточных режимов работы планарной магнетронной распылительной системы с магнитоизолированным анодом без перехода разряда в дуговой режим. Экспериментально показана возможность использования пространственно-модулированного дополнительного магнитного поля в прианодной области для предотвращения перехода режима работы из магнетронного в дуговой. Показано, что использование такой конфигурации магнитного поля обеспечивает эффективное прерывание дугового тока без принудительного внешнего выключения магнетронного разряда. Досліджені особливості сильнострумових режимів роботи планарної магнетронної розпилювальної системи з магнітоізольованим анодом без переходу розряду в дуговий режим. Експериментально показана можливість використання просторово-модульованого допоміжного магнітного поля в прианодній області для запобігання переходу режиму роботи з магнетронного в дуговий. Показано, що використання такої конфігурації магнітного поля забезпечує ефективне переривання дугового струму без примусового зовнішнього вимикання магнетронного розряду. 2012 Article High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge / A.A. Bizyukov, K.N. Sereda, V.V. Sleptsov, I.K. Tarasov, A.G. Chunadra // Вопросы атомной науки и техники. — 2012. — № 6. — С. 190-192. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 51.50.+v, 52.25.Jm http://dspace.nbuv.gov.ua/handle/123456789/109210 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Bizyukov, A.A. Sereda, K.N. Sleptsov, V.V. Tarasov, I.K. Chunadra, A.G. High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge Вопросы атомной науки и техники |
description |
In this work, the characteristics of high-current operation modes of planar magnetron sputtering system with magnetically insulated anode without going to the arc discharge mode is investigated. The possibility of using an additional spatially modulated magnetic field in the anode region to prevent a transition from the magnetron to the arc is shown experimentally. It is shown that the use of such a magnetic field configuration provides efficient interruption of the arc current without external forced shutdown of the discharge. |
format |
Article |
author |
Bizyukov, A.A. Sereda, K.N. Sleptsov, V.V. Tarasov, I.K. Chunadra, A.G. |
author_facet |
Bizyukov, A.A. Sereda, K.N. Sleptsov, V.V. Tarasov, I.K. Chunadra, A.G. |
author_sort |
Bizyukov, A.A. |
title |
High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge |
title_short |
High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge |
title_full |
High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge |
title_fullStr |
High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge |
title_full_unstemmed |
High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge |
title_sort |
high-current pulsed operation modes of the planar mss with magnetically insulated anode without transition to the arc discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109210 |
citation_txt |
High-current pulsed operation modes of the planar MSS with magnetically insulated anode without transition to the arc discharge / A.A. Bizyukov, K.N. Sereda, V.V. Sleptsov, I.K. Tarasov, A.G. Chunadra // Вопросы атомной науки и техники. — 2012. — № 6. — С. 190-192. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bizyukovaa highcurrentpulsedoperationmodesoftheplanarmsswithmagneticallyinsulatedanodewithouttransitiontothearcdischarge AT seredakn highcurrentpulsedoperationmodesoftheplanarmsswithmagneticallyinsulatedanodewithouttransitiontothearcdischarge AT sleptsovvv highcurrentpulsedoperationmodesoftheplanarmsswithmagneticallyinsulatedanodewithouttransitiontothearcdischarge AT tarasovik highcurrentpulsedoperationmodesoftheplanarmsswithmagneticallyinsulatedanodewithouttransitiontothearcdischarge AT chunadraag highcurrentpulsedoperationmodesoftheplanarmsswithmagneticallyinsulatedanodewithouttransitiontothearcdischarge |
first_indexed |
2025-07-07T22:42:40Z |
last_indexed |
2025-07-07T22:42:40Z |
_version_ |
1837029823628705792 |
fulltext |
190 ISSN 1562-6016. ВАНТ. 2012. №6(82)
HIGH-CURRENT PULSED OPERATION MODES OF THE PLANAR MSS
WITH MAGNETICALLY INSULATED ANODE WITHOUT TRANSITION
TO THE ARC DISCHARGE
A.A. Bizyukov1, K.N. Sereda1, V.V. Sleptsov2, I.K. Tarasov1,3, A.G. Chunadra1
1V.N. Karazin Kharkov National University, Kharkov, Ukraine;
2K.E. Tsiolkovsky Russian State Technological University (MATI), Moscow, Russia;
3Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
E-mail: sekons@mail.ru
In this work, the characteristics of high-current operation modes of planar magnetron sputtering system with
magnetically insulated anode without going to the arc discharge mode is investigated. The possibility of using an
additional spatially modulated magnetic field in the anode region to prevent a transition from the magnetron to the
arc is shown experimentally. It is shown that the use of such a magnetic field configuration provides efficient
interruption of the arc current without external forced shutdown of the discharge.
PACS: 51.50.+v, 52.25.Jm
INTRODUCTION
Magnetron sputtering systems (MSS) are widely
used in coating technology on substrates of different
materials [1]. Recently, the pulsed mode of operation
MSS becomes of interest, because it can reduce the
energy impact on the surface of the treated sample [2].
The synthesis coatings of complex composition,
expanding the range of process parameters, the
uniformity of the coating of complicated topography, as
well as the relative stability of arcing on the target is
provided by the high-density pulsed plasma. Pulse
magnetron discharge can exist in a wide range of
parameters; it has many forms, depending on the type of
electrode materials and design, configuration and
magnitude of the magnetic field, the characteristics of
the power supply. One of the main factors determining
the performance of the MSS is the configuration of the
magnetic field above the cathode of the magnetron,
which defines temperature influence on treated surface
and uniformity of the deposited coating [3, 4].
In this paper we investigate the features of high-
current modes of a planar MSS with a magnetically
insulated anode without transition to the arc discharge
mode. Experimentally was demonstrated the
opportunity of using additional spatially modulated
magnetic field in the anode region to prevent the
transition of the magnetron discharge operation mode to
the arc one.
1. EXPERIMENTAL METHODS
The experiments were performed using a
longitudinal planar MSS with copper sputtering target
size of 45×180 mm. Cross-section and planar magnetic
field configuration of MSS has been calculated using
the standard software package FEMM 4.0 [5].
The MSS and equipment were shielded with a
screen biased at floating potential. MSS design assumed
the setup of external anode magnetic circuit under
which 16 permanent magnets with a cubic shape
(10×10×10 mm) were installed. The distance between
adjacent magnets was 27 mm. The polarity of the
magnets was selected in such a way that the direction of
the near-anode additional external magnetic field and
the magnetic field above the cathode coincide.
MSS was located in a vacuum chamber pumped
down to a pressure of 10-5 Torr. Working pressure was
maintained due to inlet of the argon gas through the gas
distribution system directly above the sputtering target.
MSS was operated by a pulsed power supply (no forced
limitation of the discharge current or interruptions was
used). None of the clamps of the power supply unit is
grounded.
In order to provide stable discharge ignition the
magnetic trap above the surface of the cathode pre-filled
by plasma, which was generated using pulse igniter
device similar to a Bosticks gun [6]. Voltage to the
electrodes of the MSS from the pulsed power source
applied with the delay of 10 μs after the end of the pulse
ignition.
In the experiments, we measured the voltage and
current of discharge using capacitive voltage divider,
providing isolation from the ground, and a current
transformer, allowing registration of pulse processes in
a wide range of durations.
2. RESULTS AND DISCUSSION
Fig. 1 shows typical waveforms of the current (upper
trace) and voltage (lower trace) at a pressure of
(2…5)⋅10-3 Torr in the chamber. The duration of the
sweep is 5 ms. Amplifiers of both signals are positioned
on 1 V/div, which corresponds to a current of 16 A and
voltage of 200 V.
Shape and duration of the waveforms of current and
voltage indicate that after discharge ignition MSS works
in a high-voltage mode when the voltage across the
electrodes is 200…300 V and a current of 18…30 A
during few milliseconds. At the same time, the high-
frequency noise over the constant component of voltage
and current evidences short-term micro-breakdown
(sparking) on the cathode surface, due to which the
discharge voltage value is relatively low in comparison
ISSN 1562-6016. ВАНТ. 2012. №6(82) 191
with the stationary mode (300…400 V). The value of
the discharge current for MSS with such dimensions of
the sputtering target significantly exceeds the typical
values of the steady-state current level (up to several
times). So discharge is unstable with respect to the
transition to the arc mode.
Fig. 1. Waveforms of the current (upper trace) and
voltage (lower trace) at a pressure of (2…5)⋅10-3 Torr in
the chamber
The transition to the arc mode is accompanied by a
sharp increase of the discharge current up to a value of
hundreds of amperes and breakdown voltage down to
tens of volts. Such failures are regularly seen in a few
milliseconds after the ignition of the discharge.
However, their duration does not exceed 0.5 ms after
which a reduction of the discharge current and restoring
the high voltage values on the electrodes is observed.
Thus, MSS with proposed configuration of the magnetic
field may work in conditions with high discharge
current. Discharge disruption to the arc mode effectively
suppressed by additional near-anode spatially
modulated magnetic field, providing additional
resistance to the arc current. It is lead to the death of the
cathode spots of the second kind. After some time of
discharge (from 3 to 12 ms) the plasma density in the
discharge increases to the value at which the collision
frequency becomes comparable to the electron-
cyclotron frequency. The effect of additional near-anode
spatially modulated magnetic field disappears and the
next transition to the arc discharge shortens the
discharge gap.
Fig. 2 shows the waveforms of current and voltage at
increased pressure in the chamber. The final arc transition
occurs much faster, however the serial failures of the arc current
are observed. That indicates the death and subsequent rebirth of
the cathode spots of the second kind on the target surface.
Fig. 2. Waveforms of the current (upper trace) and
voltage (lower trace) at a pressure of 8⋅10-3 Torr in the
chamber
Taking into account that the cathode spots move
along the zone of erosion in a transverse magnetic field
of the magnetron with a velocity of (7…10)⋅103 сm/s,
the duration of the bursts and disruptions of arc current
on the waveform corresponds to the period of the spatial
modulation of the additional near-anode magnetic field.
Fig. 3 shows a photo of the discharge in the MSS.
Exposure duration exceeds the duration of the voltage
pulse discharge, therefore, one can see place of birth,
death and the subsequent rebirth of the cathode spots, as
well as their trajectories on the surface of the target.
Fig. 3. Image of the discharge in MSS
CONCLUSIONS
In present work pulsed discharges with an average
current of the magnetron discharge up to few tens of
amperes and durations of up to 10 ms are obtained. Such
current value substantially exceeds the current in
steady-state regimes of the MSS. Taking into account
that the characteristic time of formation of the cathode
spots of the second kind is 0.1 μs received modes can be
considered as quasi-stationary.
Proposed magnetic field configuration using
provides an effective interruption of the arc current
without externally forced interruption of the magnetron
discharge. Voltage and current waveforms of the
discharge show that the frequency of pulses of arc
failures correspond to the spatial modulation of the
magnetic field, and their duration is less than the
characteristic time of formation of cathode spots of the
second kind. Photographing of the sputtered target
during the discharge pulse allow to classify failures as
the cathode spots of the first kind (sparks), which
significantly increases the erosion of the target material
in comparison with the regime of ion-atom sputtering,
without generating a droplet phase. Microscopic studies
of the deposited coatings shown absence of droplets and
solid fragments of the target material.
REFERENCES
1. B.S. Danilin. Low temperature plasma application
for thin films deposition. M.: “Energoatomizdat”, 1989
(in Russian).
2. J. Kobain, G. Acker, J. Farell, A. Greenwood,
L. Harris. Vacuum arcs. Transl. from Engl./ Edited by
J. Lafferty. M.: “Mir”, 1982.
192 ISSN 1562-6016. ВАНТ. 2012. №6(82)
3. A.А. Аndreev, L.P. Sablev, V.M. Shulaev,
S.N. Grirorjev. Vacuum-arc devices and coatings.
Kharkov: NNC KhPhTI, 2005.
4. I.I. Aksenov. Vacuum arc in the erosive sources of
plasma. Kharkov: NNC KhPhTI, 2005.
5. A.A. Bizyukov, O.I. Girka, K.N. Sereda,
V.V. Sleptsov, A.G. Chunadra. Control of planar
magnetron sputtering system Operating modes by
additional anode magnetic field.// Problems of
Atomic Science and Technology. Series “Рlasma
physics» (16), 2010, №6. p. 144-146.
6. W. H. Bostick. Experimental Study of Ionized Matter
Projected across a Magnetic Field // Physical
Review. Oct 1956, v.104, №2, p. 292-299.
Article received 16.10.12
СИЛЬНОТОЧНЫЕ ИМПУЛЬСНЫЕ РЕЖИМЫ РАБОТЫ ПЛАНАРНОЙ МРС
С МАГНИТОИЗОЛИРОВАННЫМ АНОДОМ БЕЗ ПЕРЕХОДА РАЗРЯДА В ДУГОВОЙ РЕЖИМ
А.А. Бизюков, К.Н. Середа, В.В. Слепцов, И.K. Тарасов, A.Г. Чунадра
Исследованы особенности сильноточных режимов работы планарной магнетронной распылительной
системы с магнитоизолированным анодом без перехода разряда в дуговой режим. Экспериментально
показана возможность использования пространственно-модулированного дополнительного магнитного поля
в прианодной области для предотвращения перехода режима работы из магнетронного в дуговой. Показано,
что использование такой конфигурации магнитного поля обеспечивает эффективное прерывание дугового
тока без принудительного внешнего выключения магнетронного разряда.
СИЛЬНОСТРУМОВІ ІМПУЛЬСНІ РЕЖИМИ РОБОТИ ПЛАНАРНОЇ МРС
З МАГНІТОІЗОЛЬОВАНИМ АНОДОМ БЕЗ ПЕРЕХОДУ РОЗРЯДУ В ДУГОВОЙ РЕЖИМ
О.А. Бізюков, К.М. Середа, В.В. Слєпцов, І.K. Тарасов, A.Г. Чунадра
Досліджені особливості сильнострумових режимів роботи планарної магнетронної розпилювальної
системи з магнітоізольованим анодом без переходу розряду в дуговий режим. Експериментально показана
можливість використання просторово-модульованого допоміжного магнітного поля в прианодній області
для запобігання переходу режиму роботи з магнетронного в дуговий. Показано, що використання такої
конфігурації магнітного поля забезпечує ефективне переривання дугового струму без примусового
зовнішнього вимикання магнетронного розряду.
|