Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode

In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO₂) and liquid electrode. Carbon dioxide was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Nedybaliuk, O.A., Solomenko, Ol.V., Chernyak, V.Ya., Martysh, E.V., Lisitchenko, T.E., Simonchik, L.V., Arkhipenko, V.I., Kirillov, A.A., Liptuga, A.I., Belenok, N.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/109214
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode / O.A. Nedybaliuk, Ol.V. Solomenko, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, L.V. Simonchik,V.I. Arkhipenko, A.A. Kirillov, A.I. Liptuga, N.V. Belenok // Вопросы атомной науки и техники. — 2012. — № 6. — С. 178-180. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109214
record_format dspace
spelling irk-123456789-1092142016-11-22T03:02:24Z Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode Nedybaliuk, O.A. Solomenko, Ol.V. Chernyak, V.Ya. Martysh, E.V. Lisitchenko, T.E. Simonchik, L.V. Arkhipenko, V.I. Kirillov, A.A. Liptuga, A.I. Belenok, N.V. Низкотемпературная плазма и плазменные технологии In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO₂) and liquid electrode. Carbon dioxide was added in reforming the system to influence the plasma-chemical processes in the conversion of hydrocarbons. As the working fluid was used ethanol solution in distilled water (ratio C₂H₅OH/H₂O = 1/9,5). The system was investigated by emission spectroscopy, current-voltage characteristics, gas chromatography. Изучено реформирование биоэтанола с использованием комбинированной системы, которая включает плазменную обработку и обработку в пиролитической камере. В качестве источника плазмы была использована плазменно-жидкостная система с обратновихревым потоком газа (смесь воздуха и СО₂) и жидким электродом. Углекислый газ добавлялся в систему при реформировании для того, чтобы влиять на плазмохимические процессы конверсии углеводородов. В качестве рабочей жидкости использовался раствор этилового спирта в дистиллированной воде (соотношение C₂H₅OH/H₂O = 1/9, 5).Система была исследована с помощью эмиссионной спектроскопии, вольт-амперных характеристик, газовой хроматографии. Вивчено реформування біоетанолу з використанням комбінованої системи, яка включає плазмову обробку і обробку в піролітичній камері. В якості джерела плазми було використано плазмово-рідинну систему зі зворотновихровим потоком газу (суміш повітря і СО₂) з рідким електродом. Вуглекислий газ додавався в систему під час реформування для того, щоб впливати на плазмохімічні процеси конверсії вуглеводнів. В якості робочої рідини використовувався розчин етилового спирту в дистильованій воді (співвідношення C₂H₅OH/H₂O = 1/9, 5). Система була досліджена за допомогою емісійної спектроскопії, вольт-амперних характеристик, газової хроматографії. 2012 Article Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode / O.A. Nedybaliuk, Ol.V. Solomenko, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, L.V. Simonchik,V.I. Arkhipenko, A.A. Kirillov, A.I. Liptuga, N.V. Belenok // Вопросы атомной науки и техники. — 2012. — № 6. — С. 178-180. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 50., 52., 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/109214 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Nedybaliuk, O.A.
Solomenko, Ol.V.
Chernyak, V.Ya.
Martysh, E.V.
Lisitchenko, T.E.
Simonchik, L.V.
Arkhipenko, V.I.
Kirillov, A.A.
Liptuga, A.I.
Belenok, N.V.
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
Вопросы атомной науки и техники
description In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO₂) and liquid electrode. Carbon dioxide was added in reforming the system to influence the plasma-chemical processes in the conversion of hydrocarbons. As the working fluid was used ethanol solution in distilled water (ratio C₂H₅OH/H₂O = 1/9,5). The system was investigated by emission spectroscopy, current-voltage characteristics, gas chromatography.
format Article
author Nedybaliuk, O.A.
Solomenko, Ol.V.
Chernyak, V.Ya.
Martysh, E.V.
Lisitchenko, T.E.
Simonchik, L.V.
Arkhipenko, V.I.
Kirillov, A.A.
Liptuga, A.I.
Belenok, N.V.
author_facet Nedybaliuk, O.A.
Solomenko, Ol.V.
Chernyak, V.Ya.
Martysh, E.V.
Lisitchenko, T.E.
Simonchik, L.V.
Arkhipenko, V.I.
Kirillov, A.A.
Liptuga, A.I.
Belenok, N.V.
author_sort Nedybaliuk, O.A.
title Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
title_short Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
title_full Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
title_fullStr Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
title_full_unstemmed Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
title_sort reforming of bioethanol in the system with reverse vortex air/сo₂ flow of “tornado” type with liquid electrode
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/109214
citation_txt Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode / O.A. Nedybaliuk, Ol.V. Solomenko, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, L.V. Simonchik,V.I. Arkhipenko, A.A. Kirillov, A.I. Liptuga, N.V. Belenok // Вопросы атомной науки и техники. — 2012. — № 6. — С. 178-180. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT nedybaliukoa reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT solomenkoolv reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT chernyakvya reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT martyshev reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT lisitchenkote reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT simonchiklv reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT arkhipenkovi reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT kirillovaa reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT liptugaai reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
AT belenoknv reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode
first_indexed 2025-07-07T22:42:57Z
last_indexed 2025-07-07T22:42:57Z
_version_ 1837029841526849536
fulltext 178 ISSN 1562-6016. ВАНТ. 2012. №6(82) REFORMING OF BIOETHANOL IN THE SYSTEM WITH REVERSE VORTEX AIR/CO2 FLOW OF “TORNADO” TYPE WITH LIQUID ELECTRODE O.A. Nedybaliuk1, Ol.V. Solomenko1, V.Ya. Chernyak1, E.V. Martysh1, T.E. Lisitchenko1, L.V. Simonchik2,V.I. Arkhipenko, A.A. Kirillov2, A.I. Liptuga3, N.V. Belenok4 1Taras Shevchenko National University, Faculty of Radio Physics, Kiev, Ukraine; 2B.I. Stepanov Institute of Physics, National Academy of Sciences, Minsk, Belorusssia; 3V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of Ukraine, Kiev, Ukraine; 4National Technical University of Ukraine “Kiev Polytechnic Institute”, Kiev, Ukraine E-mail: oanedybaliuk@gmail.com In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO2) and liquid electrode. Carbon dioxide was added in reforming the system to influence the plasma-chemical processes in the conversion of hydrocarbons. As the working fluid was used ethanol solution in distilled water (ratio C2H5OH/H2O = 1/9,5). The system was investigated by emission spectroscopy, current-voltage characteristics, gas chromatography. PACS: 50., 52., 52.50.Dg INTRODUCTION It is well known [1] that hydrogen (H2) as the environmentally friendly fuel is considered to be one of the future most promising energy sources. Recently, interest in hydrogen energy has increased significantly, mainly due to the energy consumption increase in the world, and recent advances in the fuel cell technology. Because of the traditional fossil fuels depletion, today there's a growing interest in renewable energy sources (f.e. – bioethanol, biodiesel). Bioethanol can be produced from the renewable biomass, also it can be easily and safely transported due to its low toxicity, but it's not a very good fuel. It is common knowledge that [2] addition of the syngas to the fuel (H2 and CO) improves the combustion efficiency: less burning time, rapid propagation of the combustion wave, burning stabilization, more complete mixture combustion and reduction of dangerous emissions (NOx). As well, it should be taken into consideration that for efficient combustion (in terms of energy) of the synthesis gas it should contain more hydrogen, and in the case of the synthesis materials – they should contain more CO. The main advantages of plasma-liquid systems are – high chemical plasma activity and good plasma-chemical conversions selectivity. Moreover, those are systems of atmospheric pressure and above, and this increases their technological advantages. Many modern energy projects have difficulties with the large amount of CO2 storing and disposing. And it is also known that the addition of CO2 to plasma during the hydrocarbons reforming may help to control plasma-chemical processes [3]. That is why the objective of the research is to study the influence of different amounts of CO2 in the working gas on the plasma-chemical processes during the hydrocarbons conversion. 1. EXPERIMENTAL SETUP The experimental setting is shown in Fig. 1. Its base is a cylindrical quartz chamber (1) with diameter of 90 mm and height of 50 mm. Top (2) and bottom (3) it is hermetically closed with metal flanges. Camera is filled with fluid (4), the level of which has been maintained by the injection pump through the hole (5). Bottom flange is made of stainless steel. The stainless steel T-shaped cylindrical electrode (6), cooled with water, immerses in the liquid through the central hole in the bottom flange. There is a 5 mm thick metal washer on its surface (7) in the middle of which there is a hole in diameter of 10 mm. Sharp corners are rounded. This washer is used for reducing the waves (which have been moving to the quartz wall) amplitude on the liquid surface. The top flange, made from duralumin, contains copper sleeve (13) with a diameter of 20 mm is placed in the center (2), and plays the role of the second electrode. The nozzle with diameter of 4 mm and length of 6 mm is located in the center of the copper sleeve (8). Gas is introduced into the flange (2) through the aperture (9). Gas flow changes the direction at 90 degrees inside the flange and injects tangentially into the channel (10). The gas is rotated in the circular channel. Rotating gas (11) lands on the surface liquid and moves to the central axis of the system, where fells into the quartz cell (14) through the nozzle, forming a plasma torch (12). Camera (14), in its turn, plays a role of pyrolytic chamber. Flow rate reaches the maximum value near the nozzle. Due to this, the zone of lower pressure is formed in the center of the gas layer, compared to the periphery. The conical structure appears over the liquid’s surface near the system axis (Fig. 1). External static pressure is 1 atm. and internal – 1,2 atm (during discharge burning). Gas from quartz ISSN 1562-6016. ВАНТ. 2012. №6(82) 179 chamber (14) gets into the refrigerator (15), which is cooled with water at room temperature. Condensed matter (16) together with the gas from the refrigerator gets to the chamber (17). At the chamber exit (17) there's a flask (18), where gas is gathered for its composition diagnostics by means of mass spectrometry and gas chromatography. Study of plasma parameters is performed by emission spectrometry. The emission spectra registration procedure uses the system which consists of optical fiber (19), the spectral unit S-150-2-3648 USB (20), and the computer (21). Fiber is focusing on the sight line in the middle between the top flange (2) and the surface of the liquid (4). The spectrometer works in the wavelength range from 200 to 1100 nm. The computer is used in both control measurements process and data processing, received from the spectrometer. The voltage between the top flange and electrode, immersed in the liquid, is supplied by the power unit "PU". DC voltage provided is up to 7 kV. Two modes of operation have been considered: "liquid" cathode (LC) – electrode immersed in the liquid has "minus" and the top flange has "plus"; "solid" cathode (SC) - with the opposite polarity. Liquid Water Input Gas Output Gas V A PU 12 14 8 13 9 2 3 1 11 5 6 4 19 20 21 15 16 17 18 10 10 7 B B: 9 Fig. 1. Scheme of the TORNADO-LE plasma-liquid system with the vortex gas flow For the analysis of the plasma-chemical processes kinetics the ethanol (ethyl alcohol solution in distilled water with a molar ratio C2H5OH/H2O = 1/9,5), as a hydrocarbon model have been used. As the working gas mixture of air with CO2, in a wide range of air flow and CO2 ratios has been used. The ratio between air and CO2 in the working gas changes in the ranges: CO2/Air = 1/20 ÷ 1/3 for the working fluid C2H5OH/H2O (1/9,5). 2. RESULTS AND DISCUSSIONS The process of discharge ignition occurred as follows: the chamber is filled with liquid to a fixed level (5 mm above the washer). Liquid layer thickness of 5 mm has been chosen because that is the minimum liquid thickness in which the discharge burns between the liquid surface and the top flange. If the thickness is smaller plasma pushes the water toward the electrode immersed in the liquid and the discharge starts burning between two metal electrodes. Discharge goes into the arc regime. When the thickness of the distilled water layer above the washer is 5 mm (in the case of air flow only) break voltage reaches 4,5 kV and for a CO2 flow - 6 kV. It is known [7], this increase in break-out voltage derives from the appearance of an additional loss channel of electrons – due to their sticking onto CO2 molecules. This sticking has dissociative character and it is accompanied by the energy expense. For example, the threshold reaction with CO2 is 3,85 eV. When the thickness of the С2Н5ОН/H2O (1/9,5) solution layer above the washer is 5 mm (in the case of air flow only) the break voltage is 5.5 kV, and for the air flow mixture with CO2 (CO2/Air = 1/3) - 6, 5 kV. Adding CO2 to the air leads to the increase in the break-out voltage value. Adding ethanol to distilled water (С2Н5ОН/H2O = 1/9,5) results in the increase of break voltage on 1 kV. Power supply unit provides maximum voltage of 7 kV. Increasing the thickness of the fluid layer above the washer (> 5 mm) leads to the increase of the break-out voltage value. There is no discharge ignition with a break-out voltage value of more than 7 kV. Therefore, 5 mm thickness of the liquid layer above the surface immersed in a liquid metal electrode (washer) has been chosen as the optimum one. The current-voltage characteristics show that adding a small amount of СО2 (near 20%) of the working gas has no effect on the discharge type. In the range of flow ratios CO2/Air from 1/20 to 1/5 characteristics are straight lines. It was observed that the increasing of СО2 share in working gas causes discharge voltage supply rise. The emission spectra show that when the working liquid is С2Н5ОН/H2O solution (1/9,5), plasma contains the following components: atoms H, O, C, and hydroxyl OH. During the study, it turned out that the addition of CO2 weakly affects the population temperature of excited electron, vibration and rotational levels of plasma components (Fig. 2) (I = 300 mA, U = 1,9…2,4 kV, air flow – 55 and 82,5 cm3/s, the flow of CO2 – 0; 4.25; 8.5; 17). Weak tendency to temperature decrease has been observed, but these changes do not exceed the error. Fig. 2. Population temperatures of excited electron, vibration and rotational levels of plasma components at different ratio of CO2/Air in the working gas Fig. 3 shows the gas chromatography comparison of bioethanol conversion output products with and without the addition of CO2. The air flow is constant – 55 cm3/s, in case of CO2/Air = 1/3 – 17 cm3/s of CO2 has been added to the air (the total flow has been increased, which may explain the decrease in the percentage of nitrogen at a constant air flow; I = 300 mA, U = 2…2,2 kV). This histogram shows that adding of carbon dioxide leads to a 180 ISSN 1562-6016. ВАНТ. 2012. №6(82) significant increase of the H2 component percentage, CO (syngas) and CH4 in the output gas. This may indicate that the addition of CO2 during the ethanol reforming increases the conversion efficiency, because CO2 plays a burning retarder role. Fig. 3. Gas chromatography comparison of bioethanol conversion output products with and without the addition of CO2 According to the gas chromatography, in the studied correlations range of CO2/Air, syngas ratio ([H2]/[CO]), changes slightly. Measurements were made by two air streams of 55 and 82.5 cm3/s and three CO2 streams of – 4.25, 8.5 and 17 cm3/s; I = 300 mA, U = 2…2.2 kV. Electrical energy transformation coefficient α has value of 0.81 for the "TORNADO-LE" type plasma-liquid system with an ethanol solution and pure air flow 55 cm3/s. And the CO2 addition (the ratio of CO2/air = 1/3) gives the value of α = 1,01. System electrical parameters are as follows: I = 300 mA, U = 2…2.2 kV. CONCLUSIONS Carbon dioxide adding leads to a significant increase the percentage of H2 + CO (syngas) and CH4 components in the exhaust. This may indicate that the CO2 addition under the ethanol reforming increases the conversion efficiency, because CO2 plays a role of the retarder in the system by reducing the intensity of the conversion components combustion. All the diagnostic methods, used in the "TORNADO- LE" PLS indicate that there're no NOx compounds in the bioethanol and bioglycerol reforming products. ACNOWLEDGEMENTS This work was partially supported by the State fund for fundamental researches (Grant F41.1/014), Ministry of Education and Science of Ukraine, National Academy of Sciences of Ukraine. REFERENCES 1. AEO2011 Early Release Overview, available on the sight: http://www.eia.gov/forecast/aeo/pdf/0383er(2011).pdf. 2. E.A. Sharvin, Ye.Yu. Aristova. Syn-gas generator for internal combustion engines // "Alternative energy and ecology". 2010, v. 8, № 88, p. 31-37 (in Russain). 3. Xumei Tao Meigui Bai, Xiang Li, Huali Long et al. CH4-CO2 reforming by plasma – challenges and opportunities // Progress in Energy and Combustion Science. 2011, v. 37, № 2, p. 113-124. 4. Yu.P. Raizer. Gas discharge physics // Springer. 1991, 450 p. Article received 20.09.12 РЕФОРМИРОВАНИЕ БИОЭТАНОЛА В СИСТЕМЕ С ОБРАТНОВИХРЕВЫМ ПОТОКОМ ВОЗДУХ/СО2 ТИПА „ТОРНАДО” С ЖИДКИМ ЭЛЕКТРОДОМ О.А. Недыбалюк, Е.В. Соломенко, В.Я. Черняк, Е.В. Мартыш, Т.Е. Лиситченко, Л.В. Симончик, В.И. Архипенко, A.A. Кириллов, А.И. Липтуга, Н.В. Беленок Изучено реформирование биоэтанола с использованием комбинированной системы, которая включает плазменную обработку и обработку в пиролитической камере. В качестве источника плазмы была использована плазменно-жидкостная система с обратновихревым потоком газа (смесь воздуха и СО2) и жидким электродом. Углекислый газ добавлялся в систему при реформировании для того, чтобы влиять на плазмохимические процессы конверсии углеводородов. В качестве рабочей жидкости использовался раствор этилового спирта в дистиллированной воде (соотношение C2H5OH/H2O = 1/9, 5).Система была исследована с помощью эмиссионной спектроскопии, вольт-амперных характеристик, газовой хроматографии. РЕФОРМУВАННЯ БІОЕТАНОЛУ В СИСТЕМІ ЗІ ЗВОРОТНОВИХРОВИМ ПОТОКОМ ПОВІТРЯ/CO2 ТИПУ „ТОРНАДО” З РІДКИМ ЕЛЕКТРОДОМ О.А. Недибалюк, О.В. Соломенко, В.Я. Черняк, Є.В. Мартиш, Т.Є. Лиситченко, Л.В. Симончик, В.І. Архипенко, A.A. Кириллов, А.І. Ліптуга, Н.В. Белєнок Вивчено реформування біоетанолу з використанням комбінованої системи, яка включає плазмову обробку і обробку в піролітичній камері. В якості джерела плазми було використано плазмово-рідинну систему зі зворотновихровим потоком газу (суміш повітря і СО2) з рідким електродом. Вуглекислий газ додавався в систему під час реформування для того, щоб впливати на плазмохімічні процеси конверсії вуглеводнів. В якості робочої рідини використовувався розчин етилового спирту в дистильованій воді (співвідношення C2H5OH/H2O = 1/9, 5). Система була досліджена за допомогою емісійної спектроскопії, вольт-амперних характеристик, газової хроматографії.