Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode
In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO₂) and liquid electrode. Carbon dioxide was...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/109214 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode / O.A. Nedybaliuk, Ol.V. Solomenko, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, L.V. Simonchik,V.I. Arkhipenko, A.A. Kirillov, A.I. Liptuga, N.V. Belenok // Вопросы атомной науки и техники. — 2012. — № 6. — С. 178-180. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109214 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092142016-11-22T03:02:24Z Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode Nedybaliuk, O.A. Solomenko, Ol.V. Chernyak, V.Ya. Martysh, E.V. Lisitchenko, T.E. Simonchik, L.V. Arkhipenko, V.I. Kirillov, A.A. Liptuga, A.I. Belenok, N.V. Низкотемпературная плазма и плазменные технологии In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO₂) and liquid electrode. Carbon dioxide was added in reforming the system to influence the plasma-chemical processes in the conversion of hydrocarbons. As the working fluid was used ethanol solution in distilled water (ratio C₂H₅OH/H₂O = 1/9,5). The system was investigated by emission spectroscopy, current-voltage characteristics, gas chromatography. Изучено реформирование биоэтанола с использованием комбинированной системы, которая включает плазменную обработку и обработку в пиролитической камере. В качестве источника плазмы была использована плазменно-жидкостная система с обратновихревым потоком газа (смесь воздуха и СО₂) и жидким электродом. Углекислый газ добавлялся в систему при реформировании для того, чтобы влиять на плазмохимические процессы конверсии углеводородов. В качестве рабочей жидкости использовался раствор этилового спирта в дистиллированной воде (соотношение C₂H₅OH/H₂O = 1/9, 5).Система была исследована с помощью эмиссионной спектроскопии, вольт-амперных характеристик, газовой хроматографии. Вивчено реформування біоетанолу з використанням комбінованої системи, яка включає плазмову обробку і обробку в піролітичній камері. В якості джерела плазми було використано плазмово-рідинну систему зі зворотновихровим потоком газу (суміш повітря і СО₂) з рідким електродом. Вуглекислий газ додавався в систему під час реформування для того, щоб впливати на плазмохімічні процеси конверсії вуглеводнів. В якості робочої рідини використовувався розчин етилового спирту в дистильованій воді (співвідношення C₂H₅OH/H₂O = 1/9, 5). Система була досліджена за допомогою емісійної спектроскопії, вольт-амперних характеристик, газової хроматографії. 2012 Article Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode / O.A. Nedybaliuk, Ol.V. Solomenko, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, L.V. Simonchik,V.I. Arkhipenko, A.A. Kirillov, A.I. Liptuga, N.V. Belenok // Вопросы атомной науки и техники. — 2012. — № 6. — С. 178-180. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 50., 52., 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/109214 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Nedybaliuk, O.A. Solomenko, Ol.V. Chernyak, V.Ya. Martysh, E.V. Lisitchenko, T.E. Simonchik, L.V. Arkhipenko, V.I. Kirillov, A.A. Liptuga, A.I. Belenok, N.V. Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode Вопросы атомной науки и техники |
description |
In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of gas (a mixture of air and CO₂) and liquid electrode. Carbon dioxide was added in reforming the system to influence the plasma-chemical processes in the conversion of hydrocarbons. As the working fluid was used ethanol solution in distilled water (ratio C₂H₅OH/H₂O = 1/9,5). The system was investigated by emission spectroscopy, current-voltage characteristics, gas chromatography. |
format |
Article |
author |
Nedybaliuk, O.A. Solomenko, Ol.V. Chernyak, V.Ya. Martysh, E.V. Lisitchenko, T.E. Simonchik, L.V. Arkhipenko, V.I. Kirillov, A.A. Liptuga, A.I. Belenok, N.V. |
author_facet |
Nedybaliuk, O.A. Solomenko, Ol.V. Chernyak, V.Ya. Martysh, E.V. Lisitchenko, T.E. Simonchik, L.V. Arkhipenko, V.I. Kirillov, A.A. Liptuga, A.I. Belenok, N.V. |
author_sort |
Nedybaliuk, O.A. |
title |
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode |
title_short |
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode |
title_full |
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode |
title_fullStr |
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode |
title_full_unstemmed |
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode |
title_sort |
reforming of bioethanol in the system with reverse vortex air/сo₂ flow of “tornado” type with liquid electrode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109214 |
citation_txt |
Reforming of bioethanol in the system with reverse vortex air/Сo₂ flow of “Tornado” type with liquid electrode / O.A. Nedybaliuk, Ol.V. Solomenko, V.Ya. Chernyak, E.V. Martysh, T.E. Lisitchenko, L.V. Simonchik,V.I. Arkhipenko, A.A. Kirillov, A.I. Liptuga, N.V. Belenok // Вопросы атомной науки и техники. — 2012. — № 6. — С. 178-180. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT nedybaliukoa reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT solomenkoolv reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT chernyakvya reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT martyshev reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT lisitchenkote reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT simonchiklv reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT arkhipenkovi reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT kirillovaa reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT liptugaai reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode AT belenoknv reformingofbioethanolinthesystemwithreversevortexairso2flowoftornadotypewithliquidelectrode |
first_indexed |
2025-07-07T22:42:57Z |
last_indexed |
2025-07-07T22:42:57Z |
_version_ |
1837029841526849536 |
fulltext |
178 ISSN 1562-6016. ВАНТ. 2012. №6(82)
REFORMING OF BIOETHANOL IN THE SYSTEM WITH REVERSE
VORTEX AIR/CO2 FLOW OF “TORNADO” TYPE WITH LIQUID
ELECTRODE
O.A. Nedybaliuk1, Ol.V. Solomenko1, V.Ya. Chernyak1, E.V. Martysh1, T.E. Lisitchenko1,
L.V. Simonchik2,V.I. Arkhipenko, A.A. Kirillov2, A.I. Liptuga3, N.V. Belenok4
1Taras Shevchenko National University, Faculty of Radio Physics,
Kiev, Ukraine;
2B.I. Stepanov Institute of Physics, National Academy of Sciences, Minsk, Belorusssia;
3V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Science of
Ukraine, Kiev, Ukraine;
4National Technical University of Ukraine “Kiev Polytechnic Institute”, Kiev, Ukraine
E-mail: oanedybaliuk@gmail.com
In this paper we studied the reforming of bioethanol using the combined system that includes a plasma processing
and handling in the pyrolysis chamber. As the plasma source was used plasma-liquid system with back-vortex flow of
gas (a mixture of air and CO2) and liquid electrode. Carbon dioxide was added in reforming the system to influence the
plasma-chemical processes in the conversion of hydrocarbons. As the working fluid was used ethanol solution in
distilled water (ratio C2H5OH/H2O = 1/9,5). The system was investigated by emission spectroscopy, current-voltage
characteristics, gas chromatography.
PACS: 50., 52., 52.50.Dg
INTRODUCTION
It is well known [1] that hydrogen (H2) as the
environmentally friendly fuel is considered to be one of
the future most promising energy sources. Recently,
interest in hydrogen energy has increased significantly,
mainly due to the energy consumption increase in the
world, and recent advances in the fuel cell technology.
Because of the traditional fossil fuels depletion, today
there's a growing interest in renewable energy sources
(f.e. – bioethanol, biodiesel). Bioethanol can be produced
from the renewable biomass, also it can be easily and
safely transported due to its low toxicity, but it's not a
very good fuel. It is common knowledge that [2] addition
of the syngas to the fuel (H2 and CO) improves the
combustion efficiency: less burning time, rapid
propagation of the combustion wave, burning
stabilization, more complete mixture combustion and
reduction of dangerous emissions (NOx). As well, it
should be taken into consideration that for efficient
combustion (in terms of energy) of the synthesis gas it
should contain more hydrogen, and in the case of the
synthesis materials – they should contain more CO.
The main advantages of plasma-liquid systems are –
high chemical plasma activity and good plasma-chemical
conversions selectivity. Moreover, those are systems of
atmospheric pressure and above, and this increases their
technological advantages. Many modern energy projects
have difficulties with the large amount of CO2 storing and
disposing. And it is also known that the addition of CO2
to plasma during the hydrocarbons reforming may help to
control plasma-chemical processes [3]. That is why the
objective of the research is to study the influence of
different amounts of CO2 in the working gas on the
plasma-chemical processes during the hydrocarbons
conversion.
1. EXPERIMENTAL SETUP
The experimental setting is shown in Fig. 1. Its base is
a cylindrical quartz chamber (1) with diameter of 90 mm
and height of 50 mm. Top (2) and bottom (3) it is
hermetically closed with metal flanges. Camera is filled
with fluid (4), the level of which has been maintained by
the injection pump through the hole (5). Bottom flange is
made of stainless steel. The stainless steel T-shaped
cylindrical electrode (6), cooled with water, immerses in
the liquid through the central hole in the bottom flange.
There is a 5 mm thick metal washer on its surface (7) in
the middle of which there is a hole in diameter of 10 mm.
Sharp corners are rounded. This washer is used for
reducing the waves (which have been moving to the
quartz wall) amplitude on the liquid surface.
The top flange, made from duralumin, contains copper
sleeve (13) with a diameter of 20 mm is placed in the
center (2), and plays the role of the second electrode. The
nozzle with diameter of 4 mm and length of 6 mm is
located in the center of the copper sleeve (8). Gas is
introduced into the flange (2) through the aperture (9).
Gas flow changes the direction at 90 degrees inside the
flange and injects tangentially into the channel (10). The
gas is rotated in the circular channel. Rotating gas (11)
lands on the surface liquid and moves to the central axis
of the system, where fells into the quartz cell (14) through
the nozzle, forming a plasma torch (12). Camera (14), in
its turn, plays a role of pyrolytic chamber. Flow rate
reaches the maximum value near the nozzle. Due to this,
the zone of lower pressure is formed in the center of the
gas layer, compared to the periphery. The conical
structure appears over the liquid’s surface near the system
axis (Fig. 1). External static pressure is 1 atm. and internal
– 1,2 atm (during discharge burning). Gas from quartz
ISSN 1562-6016. ВАНТ. 2012. №6(82) 179
chamber (14) gets into the refrigerator (15), which is
cooled with water at room temperature. Condensed matter
(16) together with the gas from the refrigerator gets to the
chamber (17). At the chamber exit (17) there's a flask
(18), where gas is gathered for its composition diagnostics
by means of mass spectrometry and gas chromatography.
Study of plasma parameters is performed by emission
spectrometry. The emission spectra registration procedure
uses the system which consists of optical fiber (19), the
spectral unit S-150-2-3648 USB (20), and the computer
(21). Fiber is focusing on the sight line in the middle
between the top flange (2) and the surface of the liquid
(4). The spectrometer works in the wavelength range from
200 to 1100 nm. The computer is used in both control
measurements process and data processing, received from
the spectrometer. The voltage between the top flange and
electrode, immersed in the liquid, is supplied by the
power unit "PU". DC voltage provided is up to 7 kV. Two
modes of operation have been considered: "liquid"
cathode (LC) – electrode immersed in the liquid has
"minus" and the top flange has "plus"; "solid" cathode
(SC) - with the opposite polarity.
Liquid Water
Input
Gas
Output Gas
V
A
PU
12
14
8 13
9
2
3
1 11
5
6
4
19
20
21
15
16 17
18
10
10
7
B
B: 9
Fig. 1. Scheme of the TORNADO-LE plasma-liquid
system with the vortex gas flow
For the analysis of the plasma-chemical processes
kinetics the ethanol (ethyl alcohol solution in distilled
water with a molar ratio C2H5OH/H2O = 1/9,5), as a
hydrocarbon model have been used. As the working gas
mixture of air with CO2, in a wide range of air flow and
CO2 ratios has been used. The ratio between air and CO2
in the working gas changes in the ranges: CO2/Air = 1/20
÷ 1/3 for the working fluid C2H5OH/H2O (1/9,5).
2. RESULTS AND DISCUSSIONS
The process of discharge ignition occurred as follows:
the chamber is filled with liquid to a fixed level (5 mm
above the washer). Liquid layer thickness of 5 mm has
been chosen because that is the minimum liquid thickness
in which the discharge burns between the liquid surface
and the top flange. If the thickness is smaller plasma
pushes the water toward the electrode immersed in the
liquid and the discharge starts burning between two metal
electrodes. Discharge goes into the arc regime. When the
thickness of the distilled water layer above the washer is 5
mm (in the case of air flow only) break voltage reaches
4,5 kV and for a CO2 flow - 6 kV. It is known [7], this
increase in break-out voltage derives from the appearance
of an additional loss channel of electrons – due to their
sticking onto CO2 molecules. This sticking has
dissociative character and it is accompanied by the energy
expense. For example, the threshold reaction with CO2 is
3,85 eV. When the thickness of the С2Н5ОН/H2O (1/9,5)
solution layer above the washer is 5 mm (in the case of air
flow only) the break voltage is 5.5 kV, and for the air
flow mixture with CO2 (CO2/Air = 1/3) - 6, 5 kV. Adding
CO2 to the air leads to the increase in the break-out
voltage value. Adding ethanol to distilled water
(С2Н5ОН/H2O = 1/9,5) results in the increase of break
voltage on 1 kV. Power supply unit provides maximum
voltage of 7 kV. Increasing the thickness of the fluid layer
above the washer (> 5 mm) leads to the increase of the
break-out voltage value. There is no discharge ignition
with a break-out voltage value of more than 7 kV.
Therefore, 5 mm thickness of the liquid layer above the
surface immersed in a liquid metal electrode (washer) has
been chosen as the optimum one.
The current-voltage characteristics show that adding a
small amount of СО2 (near 20%) of the working gas has
no effect on the discharge type. In the range of flow ratios
CO2/Air from 1/20 to 1/5 characteristics are straight lines.
It was observed that the increasing of СО2 share in
working gas causes discharge voltage supply rise.
The emission spectra show that when the working
liquid is С2Н5ОН/H2O solution (1/9,5), plasma contains
the following components: atoms H, O, C, and hydroxyl
OH. During the study, it turned out that the addition of
CO2 weakly affects the population temperature of excited
electron, vibration and rotational levels of plasma
components (Fig. 2) (I = 300 mA, U = 1,9…2,4 kV, air
flow – 55 and 82,5 cm3/s, the flow of CO2 – 0; 4.25; 8.5;
17). Weak tendency to temperature decrease has been
observed, but these changes do not exceed the error.
Fig. 2. Population temperatures of excited electron,
vibration and rotational levels of plasma components at
different ratio of CO2/Air in the working gas
Fig. 3 shows the gas chromatography comparison of
bioethanol conversion output products with and without
the addition of CO2. The air flow is constant – 55 cm3/s,
in case of CO2/Air = 1/3 – 17 cm3/s of CO2 has been
added to the air (the total flow has been increased, which
may explain the decrease in the percentage of nitrogen at
a constant air flow; I = 300 mA, U = 2…2,2 kV). This
histogram shows that adding of carbon dioxide leads to a
180 ISSN 1562-6016. ВАНТ. 2012. №6(82)
significant increase of the H2 component percentage, CO
(syngas) and CH4 in the output gas. This may indicate that
the addition of CO2 during the ethanol reforming
increases the conversion efficiency, because CO2 plays a
burning retarder role.
Fig. 3. Gas chromatography comparison of bioethanol
conversion output products with and without the addition
of CO2
According to the gas chromatography, in the studied
correlations range of CO2/Air, syngas ratio ([H2]/[CO]),
changes slightly. Measurements were made by two air
streams of 55 and 82.5 cm3/s and three CO2 streams of –
4.25, 8.5 and 17 cm3/s; I = 300 mA, U = 2…2.2 kV.
Electrical energy transformation coefficient α has
value of 0.81 for the "TORNADO-LE" type plasma-liquid
system with an ethanol solution and pure air flow 55
cm3/s. And the CO2 addition (the ratio of CO2/air = 1/3)
gives the value of α = 1,01. System electrical parameters
are as follows: I = 300 mA, U = 2…2.2 kV.
CONCLUSIONS
Carbon dioxide adding leads to a significant increase
the percentage of H2 + CO (syngas) and CH4 components
in the exhaust. This may indicate that the CO2 addition
under the ethanol reforming increases the conversion
efficiency, because CO2 plays a role of the retarder in the
system by reducing the intensity of the conversion
components combustion.
All the diagnostic methods, used in the "TORNADO-
LE" PLS indicate that there're no NOx compounds in the
bioethanol and bioglycerol reforming products.
ACNOWLEDGEMENTS
This work was partially supported by the State fund
for fundamental researches (Grant F41.1/014), Ministry
of Education and Science of Ukraine, National Academy
of Sciences of Ukraine.
REFERENCES
1. AEO2011 Early Release Overview, available on the
sight:
http://www.eia.gov/forecast/aeo/pdf/0383er(2011).pdf.
2. E.A. Sharvin, Ye.Yu. Aristova. Syn-gas generator for
internal combustion engines // "Alternative energy and
ecology". 2010, v. 8, № 88, p. 31-37 (in Russain).
3. Xumei Tao Meigui Bai, Xiang Li, Huali Long et al.
CH4-CO2 reforming by plasma – challenges and
opportunities // Progress in Energy and Combustion
Science. 2011, v. 37, № 2, p. 113-124.
4. Yu.P. Raizer. Gas discharge physics // Springer. 1991,
450 p.
Article received 20.09.12
РЕФОРМИРОВАНИЕ БИОЭТАНОЛА В СИСТЕМЕ С ОБРАТНОВИХРЕВЫМ ПОТОКОМ
ВОЗДУХ/СО2 ТИПА „ТОРНАДО” С ЖИДКИМ ЭЛЕКТРОДОМ
О.А. Недыбалюк, Е.В. Соломенко, В.Я. Черняк, Е.В. Мартыш, Т.Е. Лиситченко, Л.В. Симончик,
В.И. Архипенко, A.A. Кириллов, А.И. Липтуга, Н.В. Беленок
Изучено реформирование биоэтанола с использованием комбинированной системы, которая включает
плазменную обработку и обработку в пиролитической камере. В качестве источника плазмы была использована
плазменно-жидкостная система с обратновихревым потоком газа (смесь воздуха и СО2) и жидким электродом.
Углекислый газ добавлялся в систему при реформировании для того, чтобы влиять на плазмохимические
процессы конверсии углеводородов. В качестве рабочей жидкости использовался раствор этилового спирта в
дистиллированной воде (соотношение C2H5OH/H2O = 1/9, 5).Система была исследована с помощью
эмиссионной спектроскопии, вольт-амперных характеристик, газовой хроматографии.
РЕФОРМУВАННЯ БІОЕТАНОЛУ В СИСТЕМІ ЗІ ЗВОРОТНОВИХРОВИМ ПОТОКОМ
ПОВІТРЯ/CO2 ТИПУ „ТОРНАДО” З РІДКИМ ЕЛЕКТРОДОМ
О.А. Недибалюк, О.В. Соломенко, В.Я. Черняк, Є.В. Мартиш, Т.Є. Лиситченко, Л.В. Симончик,
В.І. Архипенко, A.A. Кириллов, А.І. Ліптуга, Н.В. Белєнок
Вивчено реформування біоетанолу з використанням комбінованої системи, яка включає плазмову обробку і
обробку в піролітичній камері. В якості джерела плазми було використано плазмово-рідинну систему зі
зворотновихровим потоком газу (суміш повітря і СО2) з рідким електродом. Вуглекислий газ додавався в
систему під час реформування для того, щоб впливати на плазмохімічні процеси конверсії вуглеводнів. В якості
робочої рідини використовувався розчин етилового спирту в дистильованій воді (співвідношення C2H5OH/H2O
= 1/9, 5). Система була досліджена за допомогою емісійної спектроскопії, вольт-амперних характеристик,
газової хроматографії.
|