Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator

A nonlinear self-consistent theory of excitation of millimeter wave lengths electromagnetic fields by high current relativistic azimuthally-modulated electron beam in cylindrical resonator with a dielectric rod is constructed. For generation of high frequency waves is used an electron beam. Nonlinea...

Full description

Saved in:
Bibliographic Details
Date:2012
Main Authors: Galaydych, K.V., Lonin, Yu.F., Ponomarev, A.G., Prokopenko, Yu.V., Sotnikov, G.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/109220
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator / K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, Yu.V. Prokopenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 158-160. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109220
record_format dspace
spelling irk-123456789-1092202016-11-22T03:03:21Z Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator Galaydych, K.V. Lonin, Yu.F. Ponomarev, A.G. Prokopenko, Yu.V. Sotnikov, G.V. Плазменная электроника A nonlinear self-consistent theory of excitation of millimeter wave lengths electromagnetic fields by high current relativistic azimuthally-modulated electron beam in cylindrical resonator with a dielectric rod is constructed. For generation of high frequency waves is used an electron beam. Nonlinear numerical analysis is carried out. Построена нелинейная самосогласованная теория возбуждения электромагнитного излучения миллиметрового диапазона длин волн сильноточным релятивистским азимутально-модулированным электронным пучком в цилиндрическом резонаторе с диэлектрическим стержнем. Проведен нелинейный численный анализ. Побудовано нелінійну самоузгоджену теорію збудження електромагнітного випромінювання міліметрового діапазону довжин хвиль сильнострумовим релятивістським азимутально-модульованим електронним пучком у циліндричному резонаторі із діелектричним стрижнем. Проведено нелінійний чисельний аналіз. 2012 Article Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator / K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, Yu.V. Prokopenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 158-160. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 07.57.–c; 41.60 Bq; 94.05.Pt http://dspace.nbuv.gov.ua/handle/123456789/109220 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменная электроника
Плазменная электроника
spellingShingle Плазменная электроника
Плазменная электроника
Galaydych, K.V.
Lonin, Yu.F.
Ponomarev, A.G.
Prokopenko, Yu.V.
Sotnikov, G.V.
Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator
Вопросы атомной науки и техники
description A nonlinear self-consistent theory of excitation of millimeter wave lengths electromagnetic fields by high current relativistic azimuthally-modulated electron beam in cylindrical resonator with a dielectric rod is constructed. For generation of high frequency waves is used an electron beam. Nonlinear numerical analysis is carried out.
format Article
author Galaydych, K.V.
Lonin, Yu.F.
Ponomarev, A.G.
Prokopenko, Yu.V.
Sotnikov, G.V.
author_facet Galaydych, K.V.
Lonin, Yu.F.
Ponomarev, A.G.
Prokopenko, Yu.V.
Sotnikov, G.V.
author_sort Galaydych, K.V.
title Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator
title_short Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator
title_full Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator
title_fullStr Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator
title_full_unstemmed Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator
title_sort nonlinear analysis of mm waves excitation by high–current reв in dielectric resonator
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Плазменная электроника
url http://dspace.nbuv.gov.ua/handle/123456789/109220
citation_txt Nonlinear analysis of mm waves excitation by high–current REВ in dielectric resonator / K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, Yu.V. Prokopenko, G.V. Sotnikov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 158-160. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT galaydychkv nonlinearanalysisofmmwavesexcitationbyhighcurrentrevindielectricresonator
AT loninyuf nonlinearanalysisofmmwavesexcitationbyhighcurrentrevindielectricresonator
AT ponomarevag nonlinearanalysisofmmwavesexcitationbyhighcurrentrevindielectricresonator
AT prokopenkoyuv nonlinearanalysisofmmwavesexcitationbyhighcurrentrevindielectricresonator
AT sotnikovgv nonlinearanalysisofmmwavesexcitationbyhighcurrentrevindielectricresonator
first_indexed 2025-07-07T22:43:25Z
last_indexed 2025-07-07T22:43:25Z
_version_ 1837029871197356032
fulltext 158 ISSN 1562-6016. ВАНТ. 2012. №6(82) NONLINEAR ANALYSIS OF MM WAVES EXCITATION BY HIGH–CURRENT REВ IN DIELECTRIC RESONATOR K.V. Galaydych1, Yu.F. Lonin1, A.G. Ponomarev1, Yu.V. Prokopenko2, G.V. Sotnikov1 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2Usikov Institute of Radiophysics and Electronics, Kharkov, Ukraine A nonlinear self-consistent theory of excitation of millimeter wave lengths electromagnetic fields by high current relativistic azimuthally-modulated electron beam in cylindrical resonator with a dielectric rod is constructed. For generation of high frequency waves is used an electron beam. Nonlinear numerical analysis is carried out. PACS: 07.57.–c; 41.60 Bq; 94.05.Pt INTRODUCTION The problem of increasing the frequency of an excited electromagnetic waves is a current and active development task due to the fact that different physical and technological applications require the availability of resources millimeter and submillimeter diagnostics. For example, using of these radiation sources allow diagnostics of plasma with a density of the order of 11 1310 ...10 cm-3. Effective use of such sources as the dielectric waveguide structures, excited by relativistic electron bunches, demonstrated experimentally in [1]. In similar structures the main mechanism of generation is transition radiation and Cherenkov radiation. Excitation of high frequency in [1] was achieved by using structures with the transverse dimensions of the order of a few hundreds microns. In [2] it was suggested that the azimuthally modulated electron beam to excite oscillation modes with a high index number. It is possible to use the structure with the transverse dimensions of the order of a few centimeters. In the present paper self-consistent theory of the electromagnetic field excitation by azimuthally modulated electron beam in a dielectric resonator is constructed. We have demonstrated the possibility of the mode selection by the special choice of the geometry of the electron beam. In contrast to earlier papers on this subject [3], in this theory an analytical expression for the potential field, which is not taken into account previously, is obtained. STATEMENT OF THE PROBLEM AND BASIC EQUATIONS The structure under investigation is a cylindrical metal resonator with dielectric rod placed inside. An excitation source of the resonator is a multi-stream electron beam, which is a set of cylindrical beams, located equidistant in azimuth, and extending along the axis of the resonator near the surface of a dielectric rod. The side walls of the resonator are assumed to be a closed with metal grids, transparent for the charged particles and nontransparent for the excited electromagnetic fields. For the construction of the analytical theory of the excitation of oscillation modes with high azimuthal number, we start from the technique developed in [4], where the general nonlinear theory of the excitation of the dielectric resonators is built. We represent the excited electric and magnetic field as a sum of solenoidal and potential parts , ,= + =t l tE E E H H (1) where tE and tH are the solenoidal components of electromagnetic field, and lE is the potential electric field. Solenoidal components of an excited electromagnetic field will seek in the form of decomposition by eigen solenoidal fields of empty dielectric resonator: s s s s s s A (t) ( ), i B (t) ( )= = −∑ ∑t tE E r H H r , (2) where sE , sH are eigen solenoidal fields of resonator without an electron beam, which satisfy the equations: rot ( / ) , rot ( / ) ,s s s s s si c i cω ε ω μ= − =H E E H (3) where s mnlω ω≡ are the eigenfrequencies of resonator; , ,s n m≡ l numerate, respectively, radial, azimuthal and axial indexes. The current density of multi-stream electron beam, with taking into account the geometry of the problem, can be written as: R N e p p p p k 1 p V p 1 q (r r (t)) (z z (t)) r ( (t) (k 1)2 / N), = ∈ = δ − δ − × ×δ ϕ−ϕ − − π ∑ ∑j v (4) where pq is the charge of the macroparticle; pr , pϕ , pz and pv are its time-dependent coordinates and velocity. The summation in (4) is carried out over the particles of N beams, being in the resonator volume RV . By using the orthonormality conditions of the functions sE and sH [4]: 4 , R R s s s s s ss V V dV dV Pε μ π δ∗ ∗ ′ ′ ′= =∫ ∫E E H H (5) for calculation the expansion coefficients ( )sA t and ( )sB t one can obtain the second–order differential equations: ISSN 1562-6016. ВАНТ. 2012. №6(82) 159 2 2 2 2 2 2, ,s s s s s s s s s d A dR d BA B R dt dt dt ω ω ω+ = − + = − (6) where * s s p s 1R ( )dV P = ⋅∫ ej E r . Having solved Maxwell equations together with the boundary conditions, for the axial components of the electric and magnetic solenoidal fields we obtain: im im sz zm sz zmE e (r) cos k ze ,H h (r)sin k ze ,ϕ ϕ= =l l (7) where zme (r) and zmh (r) are the functions, which describes the radial structure of the electromagnetic fields, in the dielectric – I ( r a≤ ) and in the vacuum – II ( a r b≤ < ). In present paper expressions for this functions are omitted, and presented in full view in [4]. Substituting the expression for the current density of the beam (4) to (6), and using found eigenfunctions of electric field components (7), we obtain the expression for s s sR Re R i Im R= + , which are in the right-hand sides of the equations (6) ( ) R n, jN, p pz z, jN p p n, jN, p V pr r, jN p p p p , jN p p p NRe R q v e (r ) cos k z P v e (r )sin k z cos jN v e (r )sin k z sin jN , ∈ ϕ ϕ ⎡= +⎣ ⎤ ϕ −⎦ ϕ ∑l l l l l (8) ( ) R n, jN, p pz z, jN p p n, jN, p V pr r, jN p p p p , jN p p p NIm R q v e (r )cos k z P v e (r )sin k z sin jN v e (r )sin k z cos jN , ∈ ϕ ϕ − ⎡= +⎣ ⎤ ϕ +⎦ ϕ ∑l l l l l (9) here 0, 1,...j = ± And besides, n,m,R 0=l for m jN≠ . Finally, for the solenoidal components of electromagnetic field we obtain t z j n, jN, z, jN s j,n, t z j n, jN, z, jN s j,n, E 2 A e (r)cos k z cos( jN ), H 2 B h (r)sin k zsin( jN ); = ε ϕ+α = ε ϕ+β ∑ ∑ l l l l l l (10) n, jN, n, jN, n, jN, n, jN, n, jN, n, jN, Im A Im B t g , t g . Re A Re B α = β =l l l l l l (11) The potential electric field, which can be presented in the form = −∇ΦlE , satisfy the Poisson equation: 2 2 2 2 2 1 1 4+ +r r r r r z πε ρ ε ϕ ε ∂ ∂Φ ∂ Φ ∂ Φ⎛ ⎞ = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ (12) with the boundary conditions consisting in that the potential Φ on the resonator metal walls becomes zero and continuity of the potential and radial component electric induction vector. Eq. (12) is solved by the method of eigenfunction expansion. The eigenvalues and eigenfunctions are solutions of the corresponding Sturm-Liouville problem. The final expression for the potential Φ can be written as: ,22 2 0 , , , 8 ( )sin ( ) ( )sin cos ( ). j p n n jN l j n l p n jN l n n n jN p l p p N q R r k z k L R R r k z jN ε κ κ κ ϕ ϕ = Φ = × + × − ∑∑∑ (13) Eigenvalues κ are determined from the equation ' '( ) ( ) ( ) ( ).m m m mJ a Z a Z a J aκ κ ε κ κ= (14) The orthogonality of the eigenfunctions ( )mR r , which define dependence of the potential versus radius, and their norms 2 mR defines as follows: 2 0 ( ) ( ) ( ) , b m m m mmrdr r R r R r Rε δ′ ′=∫ (15) where ( )( ) ( ) , ( ) ( ) , ( ) I IIm m m m Z rR r J a R r J a Z a κκ κ κ = = and ( ) ( ) ( ) ( ) / ( ).m m m m mZ r J r J b Y r Y bκ κ κ κ κ≡ − NUMERICAL INVESTIGATION The main goal of numerical investigation of excitation by multistream electron beam in a dielectric resonator was to analyze the possibility of excitation oscillations in the millimeter wavelength structure with transverse dimensions on the order more of the excited oscillations.The parameters of the resonator under study were: radius of the dielectric rod 4.0 cma = , radius of the resonator 7.5cmb = , resonator length 0.83 cmL = , permittivity of the rod 2.04ε = . The beam parameters are: quantity of the beams 36N = , beam current and energy was, respectively, 1.5kA and 300kV . Analysis of an excited field in the resonator has shown that the main mechanism of generation is monotron mechanism [5]. The main contribution to the energy make eigenmode with the frequency 34.117 GHz for which the monotron mechanism efficiency is the best, under the chosen parameters, and also the greatest coefficient of coupling of mode with the beam (demonstrated on Fig. 1). Fig. 1. Radial distribution of "whispering gallery" mode Fig. 2 shows dependence of the electromagnetic field energy, stored in the resonator, on time. 160 ISSN 1562-6016. ВАНТ. 2012. №6(82) Fig. 2. Energy of electromagnetic field stored in the resonator For a stationary regime of excitation is characterized essentially nonlinear dynamics of the beam. Fig. 3 hows the phase planes of the beam particles during the one oscillation period. Fig.3. Phase planes for different moments of time corresponding to the energy saturation Due to beam-excited field the modulation of the beam by density and the bunching of the beam is take place. Fig. 3 shows the formation of multystream flow and overturning of the forward front of the perturbed beam. CONCLUSIONS Analytical investigations and nonlinear numerical analysis of an excitation of the dielectric resonator by the high current relativistic azimuthally–modulated electron beam are carried out. Demonstrated the possibility of the mode selection and increasing the frequency of an excited oscillations through the modulation of the electron beam in azimuth. REFERENCES 1. M.C. Tompson, H. Badakov, A.M. Cook, et al. Breakdown Limits on Gigavolt-per-Meter Electron- Beam-Driven Wakefields in Dielectric Structures // Phys. Rev. Lett. 2008, v. 100, №21, p. 214801. 2. A.Ya. Kirichenko, Yu.F. Lonin, V.G. Papkovich, et al. Microwave oscillator with "whispering gallery" resonator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations” (53). 2010, №2, p. 135-139. 3. L.A. Vainstein. Electromagnetic waves. 2nd ed. M.: “Radio i svyaz”, 1988. 4. K.V. Galaydych, Yu.F. Lonin, A.G. Ponomarev, et al. Mathematical model of an excitation by electron beam of “whispering gallery” modes in cylindrical dielectric resonator // Problems of Atomic Science and Technology. Series: Plasma Physics (16). 2010, №6, p. 123-125. 5. V.A. Balakirev, V.O. Podobinsky. The theory of a relativistic monotron // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations” (53). 2010. №2, p. 86-88. Article received 13.09.12 НЕЛИНЕЙНЫЙ АНАЛИЗ ВОЗБУЖДЕНИЯ МИЛЛИМЕТРОВЫХ ВОЛН СИЛЬНОТОЧНЫМ РЕЛЯТИВИСТСКИМ ЭЛЕКТРОННЫМ ПУЧКОМ В ДИЭЛЕКТРИЧЕСКОМ РЕЗОНАТОРЕ К.В. Галайдыч, Ю.Ф. Лонин, А.Г. Пономарев, Ю.В. Прокопенко, Г.В. Сотников Построена нелинейная самосогласованная теория возбуждения электромагнитного излучения миллиметрового диапазона длин волн сильноточным релятивистским азимутально-модулированным электронным пучком в цилиндрическом резонаторе с диэлектрическим стержнем. Проведен нелинейный численный анализ. НЕЛІНІЙНИЙ АНАЛІЗ ЗБУДЖЕННЯ МІЛІМЕТРОВИХ ХВИЛЬ СИЛЬНОСТРУМОВИМ РЕЛЯТИВІСТСЬКИМ ЕЛЕКТРОННИМ ПУЧКОМ У ДІЕЛЕКТРИЧНОМУ РЕЗОНАТОРІ К.В. Галайдич, Ю.Ф. Лонін, А.Г. Пономарьов, Ю.В. Прокопенко, Г.В. Сотніков Побудовано нелінійну самоузгоджену теорію збудження електромагнітного випромінювання міліметрового діапазону довжин хвиль сильнострумовим релятивістським азимутально-модульованим електронним пучком у циліндричному резонаторі із діелектричним стрижнем. Проведено нелінійний чисельний аналіз.