Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam

Laser wakefield acceleration has the possibility to generate an ultrashort electron beam of the order of femtoseconds or less. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A high stability electron bunch is generated by laser wakefi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Kotaki, H., Mori, M., Hayashi, Y., Kando, M., Daito, I., Fukuda, Y., Pirozhkov, A.S., Koga, J.K., Bulanov, S.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109227
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam / H. Kotaki, M. Mori, Y. Hayashi, M. Kando, I. Daito, Y. Fukuda, A.S. Pirozhkov, J.K. Koga, S.V. Bulanov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 134-138. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109227
record_format dspace
spelling irk-123456789-1092272016-11-22T03:03:23Z Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam Kotaki, H. Mori, M. Hayashi, Y. Kando, M. Daito, I. Fukuda, Y. Pirozhkov, A.S. Koga, J.K. Bulanov, S.V. Плазменная электроника Laser wakefield acceleration has the possibility to generate an ultrashort electron beam of the order of femtoseconds or less. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse (optical injection). Stable and monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration by using a Nitrogen gas jet target. The electron interaction with the laser field results in transverse oscillations of the electron beam. From the electron oscillation period dependence on the electron energy we find that the electron beam width is equal to 1.7 fs (rms). В процессе ускорения кильватерными волнами возможна генерация сверхкоротких электронных пучков фемтосекундной длительностью. Для приложений требуются электронные пучки с воспроизводимыми и котролируемыми параметрами. Оптическая инжекция, использующая сталкивающиеся лазерные импульсы, обеспечивает высокую воспроизводимость параметров пучков ускоренных электронов. Моноэнергетические пучки электронов с воспроизводимыми параметрами были получены при «самоинжекции» в кильватерную волну в экспериментах, использующих в качестве мишени струю азота. Взаимодействие электронов с излучением лазерного импульса приводит к поперечным осцилляциям электронного пучка. Анализ наблюдаемой в эксперименте зависимости периода осцилляций от энергии электронов позволяет найти длительность электронного пучка, равную 1.7 фс. В процесі прискорення кільватерними хвилями можлива генерація надкоротких електронних пучків фемтосекундної тривалості. Для додатків потрібні електронні пучки з відтворюючими і котролюючими параметрами. Оптична інжекція, що використовує зіштовхуючі лазерні імпульси, забезпечує високу відтворюваність параметрів пучків прискорених електронів. Моноенергетичні пучки електронів з відтворюваними параметрами були отримані при «самоінжекції» в кільватерну хвилю в експериментах, в яких в якості мішені використовувалася струмінь азоту. Взаємодія електронів з випромінюванням лазерного імпульсу призводить до поперечних осциляцій електронного пучка. Аналіз спостерігаючої в експерименті залежності періоду осциляцій від енергії електронів дозволяє знайти тривалість електронного пучка, яка дорівнює 1.7 фс. 2012 Article Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam / H. Kotaki, M. Mori, Y. Hayashi, M. Kando, I. Daito, Y. Fukuda, A.S. Pirozhkov, J.K. Koga, S.V. Bulanov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 134-138. — Бібліогр.: 32 назв. — англ. 1562-6016 PACS: 41.75.Jv, 52.38.-r, 52.38.Kd http://dspace.nbuv.gov.ua/handle/123456789/109227 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменная электроника
Плазменная электроника
spellingShingle Плазменная электроника
Плазменная электроника
Kotaki, H.
Mori, M.
Hayashi, Y.
Kando, M.
Daito, I.
Fukuda, Y.
Pirozhkov, A.S.
Koga, J.K.
Bulanov, S.V.
Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
Вопросы атомной науки и техники
description Laser wakefield acceleration has the possibility to generate an ultrashort electron beam of the order of femtoseconds or less. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse (optical injection). Stable and monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration by using a Nitrogen gas jet target. The electron interaction with the laser field results in transverse oscillations of the electron beam. From the electron oscillation period dependence on the electron energy we find that the electron beam width is equal to 1.7 fs (rms).
format Article
author Kotaki, H.
Mori, M.
Hayashi, Y.
Kando, M.
Daito, I.
Fukuda, Y.
Pirozhkov, A.S.
Koga, J.K.
Bulanov, S.V.
author_facet Kotaki, H.
Mori, M.
Hayashi, Y.
Kando, M.
Daito, I.
Fukuda, Y.
Pirozhkov, A.S.
Koga, J.K.
Bulanov, S.V.
author_sort Kotaki, H.
title Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
title_short Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
title_full Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
title_fullStr Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
title_full_unstemmed Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
title_sort stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Плазменная электроника
url http://dspace.nbuv.gov.ua/handle/123456789/109227
citation_txt Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam / H. Kotaki, M. Mori, Y. Hayashi, M. Kando, I. Daito, Y. Fukuda, A.S. Pirozhkov, J.K. Koga, S.V. Bulanov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 134-138. — Бібліогр.: 32 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kotakih stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT morim stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT hayashiy stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT kandom stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT daitoi stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT fukuday stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT pirozhkovas stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT kogajk stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
AT bulanovsv stabilityimprovementofalaseracceleratedelectronbeamandthepulsewidthmeasurementoftheelectronbeam
first_indexed 2025-07-07T22:43:55Z
last_indexed 2025-07-07T22:43:55Z
_version_ 1837029901463453696
fulltext 134 ISSN 1562-6016. ВАНТ. 2012. №6(82) STABILITY IMPROVEMENT OF A LASER-ACCELERATED ELECTRON BEAM AND THE PULSE WIDTH MEASUREMENT OF THE ELECTRON BEAM H. Kotaki1, M. Mori1, Y. Hayashi1, M. Kando1, I. Daito1, Y. Fukuda1, A.S. Pirozhkov1, J.K. Koga1, and S.V. Bulanov1,2 1Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215, Japan; 2A.M. Prokhorov Institute of General Physics RAS, Moscow, 119991, Russia E-mail: kotaki.hideyuki@jaea.go.jp Laser wakefield acceleration has the possibility to generate an ultrashort electron beam of the order of femtoseconds or less. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse (optical injection). Stable and monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration by using a Nitrogen gas jet target. The electron interaction with the laser field results in transverse oscillations of the electron beam. From the electron oscillation period dependence on the electron energy we find that the electron beam width is equal to 1.7 fs (rms). PACS: 41.75.Jv, 52.38.-r, 52.38.Kd INTRODUCTION Measurements and manipulation of ultrafast phenomena open up new science and applications. Femtosecond (1 fs=10-15 s) pulses can be used to initiate and control molecular dynamics on a few tens of femtoseconds timescale, and attosecond (1 as=10-18 s) pulses can be used to initiate and control quantum dynamics on attosecond timescales. Generation of ultrashort pulses is a key to exploring the dynamical behavior of matter on ever-shorter timescales. High-order harmonics of femtosecond laser pulses have been shown to be a source of a sub-femtosecond extreme-ultraviolet (XUV) pulse [1-4]. However, in order to observe several phenomena on ultrashort timescales, an ultrashort x-ray and an electron beam are necessary. Laser wakefield acceleration (LWFA) [5] based on the effect of plasma wave excitation in the wake of an intense laser pulse, has the possibility to generate an ultrashort electron beam of the order of femtoseconds or less. In experiments, it has been demonstrated that LWFA is capable of generating electron beams with high energy up to 1 GeV [6, 7] and high quality [8-11]: quasi-monoenergetic, low in emittance, and a very short duration [12]. In addition, the electron beam has a current density up to the kilo-amprere level. It has the possibility to be a source of a X-ray free-electron laser (XFEL) for a coherent X-ray source [13]. In order to generate a bunch with high quality, required for applications, the electrons should be duly injected into the wakefield and this injection should be controllable. Several schemes of electron injection were proposed in order to provide more controllable regimes including tailored plasma density profiles [14, 15] and optical injection [16-21]. Experimentally, stable and controllable electron beams have been generated in the self-injection [22] and optical injection scheme [19-21]. Within self-injection, a laser pulse excites a wake wave and injects electrons into the wake. Within optical injection, the electrons are injected into the wakefield by an additional laser pulse [16-21]. Optical injection has an advantage in using a regular pattern wakefield excited by a driver laser pulse. In applications of the electron beam, it is necessary to characterize the electron beam. The important parameters are energy, energy spread, emittance, and pulse width. Among these parameters it is difficult, in particular, to measure the pulse width due to the ultrashort bunch length. 100 fs electron beams have been measured by using Coherent Transition Radiation (CTR) [23,24] and an electro-optical (EO) crystal [25]. An electron generates radiation at the boundary of materials. The radiation is called transition radiation. When the pulse width of the electrons is shorter than the period of the radiation, the radiation should be coherent. From the boundary in wavelength between the coherent and incoherent emission, the pulse width of the electrons can be calculated. However, the laser-accelerated electrons have a quasi-monoenergetic part (electron beam) and a broad-spectrum part (thermal electrons). The pulse width measured by CTR includes the total width of the electrons not only the electron beam. In order to observe the pulse width of the electron beam, the effect of the thermal electrons should be separated from the electron beam. In order to measure the pulse width of the laser accelerated electron beam by using a EO crystal, the crystal should be placed on the electron and laser axis near the laser focus point to get on electron beam with high charge density. The measured pulse width should be the total width not only the monoenergetic part. The radiation from the interaction between the crystal and the laser pulse should be noise. In addition, the crystal could be damaged by the laser pulse. In order to observe the pulse width of the electron beam, the effects of the thermal electrons and the laser pulse should be separated from the electron beam. On the other hand, the electron beam oscillates in an electric field [26-29]. The electric field is caused by the laser pulse and/or a plasma wave. When the pulse length of the electron beam is shorter than the plasma wavelength and the electron beam is in the laser pulse, the energy spectrum is converted to the pulse width of the electron beam. ISSN 1562-6016. ВАНТ. 2012. №6(82) 135 The oscillation by the laser field is a reference for the conversion. In this paper we present the result of the optical injection to generate a stable electron beam, and the pulse width measurement of the laser accelerated electron beam. The electron beam is in the laser field and is oscillated by the field. From the oscillation, we measure the electron pulse width of 1.7 fs (rms). 1. OPTICAL INJECTION The experiments have been performed with a 3 TW linearly polarized Ti:sapphire laser [30]. The target is a supersonic helium gas jet flowing out of a rectangular nozzle with the size of 1.3 mm x 4 mm. The 70 fs driver pulse with 0.2 J energy is focused onto the helium gas jet. The peak irradiance, I0, is 6.8 x 1017 W/cm2 corresponding to a dimensionless amplitude of a0 = 8.5 x 10-10 λ0 [µm] (I0[W/cm2])1/2 = 0.6, where λ0 is the laser light wavelength of 800 nm. The 70 fs injecting pulse with 10 mJ energy is focused onto a region at the beginning of a channel formed by the driver pulse at the angle of 135 degrees with respect to the driver pulse propagation. Its peak irradiance, I1, is about 2.0 x 1016 W/cm2, corresponding to a dimensionless amplitude of a1 = 0.1. The self-injection ceases at lower plasma densities, when the wake wave becomes more regular. In order to demonstrate the counter-crossing injection, we must use plasma with a density below the self-injection threshold. The threshold parameters are found by changing the plasma density and measuring accelerated electrons with the driver pulse alone. When the plasma density decreases from 4.10 x 1019 cm-3 to ne = 4.00 x 1019 cm-3, the reproducibility abruptly drops. For our parameters, the self-injection ceases at the plasma density below the threshold of 4.00 x 1019 cm-3. Fig. 1. A typical image of an energy distribution of the electron bunch obtained by the counter-crossing injection at ne = 3.95 x 1019 cm-3 (a), and a projection of the image onto the energy axis (b) Fig. 1 shows the energy spectrum of the accelerated electron bunch optically injected with the help of the injecting pulse for ne = 3.95 x 1019 cm-3. This density is below the self-injection threshold. The collision of the two laser pulses produces a quasi-monoenergetic electron bunch with 15 MeV peak energy, 7.8 % (1.2 MeV) rms energy spread, 30 pC charge, and 15 mrad divergence. Fig. 2 compares the stability of the self-injection and the counter-crossing injection mechanism. The experiments of the counter-crossing injection were conducted for ne = 3.95 x 1019 cm-3. The self-injection has been seen for ne = 4.40 x 1019 cm-3, which is the optimum density for self-injection to generate quasi-monoenergetic electron beam. These results show that the counter-crossing injection has higher stability than the self-injection. Fig. 2 shows a wide scatter of the self-injection points, with several at large values, while the optical-injection points are clustered nearer to the lower left of each plot. Fig. 2. The stability of the self-injection and the countercrossing injection. The stability of the countercrossing injection is higher than that of the self-injection 2. PULSEWIDTH MEASUREMENT A quasi-monoenergetic electron beam is generated in the self-injection scheme by using a Nitrogen gas target around the plasma density, ne, of 4.0 x 1019 cm-3 assuming 5 ionizations of N2. The quality of the electron beam is stable [31], because the laser pulse is guided a long distance in a channel produced by cascade a b a b 136 ISSN 1562-6016. ВАНТ. 2012. №6(82) onization due to the low ionization threshold [22]. By using the electron beam, a pulse width is measured. Fig. 3. Typical image of an electron beam in energy space (a), and a projection of the image onto the energy axis (b) for the laser pulse of S-polarization at ne = 4.4 x 1019 cm-3. The electron beam has peak energy of 17 MeV and a charge of 17.0 pC Fig. 4. Typical image of an electron beam in energy space (a), and a projection of the image onto the energy axis (b) for the laser pulse of P-polarization at ne = 4.4 x 1019 cm-3. The electron beam has peak energy of 17 MeV and a charge of 19.3 pC The experiments have been performed with a Ti: sapphire laser system at the Japan Atomic Energy Agency (JAEA) named JLITE-X [30]. The laser pulse, which is linearly polarized, with 130 mJ energy is focused onto a 3-mm diameter Nitrogen gas jet by an off-axis parabolic mirror (OAP) with the focal length of 646 mm (f/22). The pulse width of the laser pulse, τ, is 40 fs. The peak irradiance, I0, is 7.3 x 1017 W/cm2 in vacuum corresponding to a dimensionless amplitude of the laser field a0 = 0.6. The electron beam oscillates in the electric field of the laser pulse. In phase space, we can see the electron oscillation by the electric field [32]. The oscillation is a reference in order to convert the energy spectrum to the pulse width. Fig. 3 shows the typical image of an energy distribution at ne = 4.4 x 1019 cm-3 when the laser pulse has S-polarization (vertical polarization). Using the sensitivity of the phosphor screen, calibrated with the help of a conventional electron accelerator, we estimate that the total charge of the monoenergetic electron beam is about 17 pC. Electron oscillations are observed in energy space. The oscillation has an angle of 16 mrad. The electric field of the laser pulse is parallel to the direction of the oscillation. The amplitude of the electron oscillation by the laser field, Ae-laser, is defined as Ae-laser = a0/γ, where γ is the Lorentz factor of the electron beam. From the experimental parameters, the estimated amplitude of the oscillation by the laser pulse is about 16 mrad. The maximum amplitude of the experimental data is 16 mrad. The result has good agreement with the calculated amplitude. When the laser pulse has P-polarization (horizontal polarization), no electron oscillation is observed as shown in Fig. 4. When the laser pulse has P-polarization, the image of the energy distribution has no oscillation, because the direction of the oscillation by the laser field is parallel to the energy axis. The oscillation depends on the laser polarization. The fact that the electric field of the laser pulse is parallel to the direction of the oscillation is one piece of evidence that the electron oscillation is caused by the laser field. The wave structure of the energy spectrum depends on the laser frequency. The pulse width (FWHM) of the electron is 1.5-cycles of the laser beam at a wavelength of 800 nm. The pulse width is 1.7 fs (rms) (12 % of the period of the plasma wave). CONCLUSIONS In order to improve the stability of laser-accelerated electron beam, optical injection experiments have been performed. The generated electron beam shows that the optical injection is one of techniques to generate a stable electron beam. Stable and monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration by using a Nitrogen gas jet target. In the image of the energy spectrum, the electron oscillation by the laser field is observed. The energy spectrum can be converted to the electron pulse width. The result of the 0.64-cycles oscillations indicates a 1.7 fs (rms) pulse width for the electron beam. The peak current is 10 kA. The technique of the measurement is the direct observation of the pulse width of the electron beam. a b b a ISSN 1562-6016. ВАНТ. 2012. №6(82) 137 ACKNOWLEDGEMENTS We thank T. Homma for his technical support during the experiment. This work was supported by the Japan Society for the Promotion of Science under a Grants-in-Aid for Scientic Research (Contract # 23600010). REFERENCES 1. P. M. Paul et al. Observation of a train of attosecond pulses from high harmonic generation // Science. 2001, v. 292, p.1689-1692. 2 M. Hentschel et al. Attosecond metrology // Nature. 2001, v. 414, p. 509-513. 3. A. Baltuska, et al. Attosecond control of electronic processes by intense light fields// Nature. 2003, vol.421, p.611-615. 4. P. Tzallas et al. Direct observation of attosecond light bunching // Nature. 2003, v. 426, p. 267-271. 5. T. Tajima and J.M. Dawson. Laser electron accelerator // Phys. Rev. Lett. 1979, v. 43, p. 267-270. 6. W.P. Leemans et al. GeV electron beams from a centimeter-scale accelerator // Nature Phys. 2006, v. 2, p. 696-699. 7. N. Hafz et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels // Nature Photonics. 2008, v. 2, p. 571-577. 8. S.P.D. Mangles et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions // Nature. 2004, v. 431, p. 535-538. 9. C.G.R. Geddes et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding // Nature. 2004, v. 431, p. 538-541. 10. J. Faure et al. A laser-plasma accelerator producing monoenergetic electron beams // Nature. 2004, v. 431, p. 541-544. 11. E. Miura et al. Demonstration of quasi-mono- energetic electron beam generation in laser-driven plasma acceleration // Appl. Phys. Lett. 2005, v. 86, p. 251501. 12. O. Lundh et al. Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator // Nature Phys. 2011, v. 7, p. 219-222. 13. K. Nakajima. Compact X-ray sources towowards a table-top free-electron laser // Nature Phys. 2008, v. 4, p. 92-93. 14. S.V. Bulanov et al. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking // Phys. Rev. E. 1998, v. 58, p. R5257-R5260. 15. C.G.R. Geddes et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches // Phys. Rev. Lett. 2008, v. 100, p. 215004. 16. E. Esarey et al. Electron injection into plasma wakefields by colliding laser pulses // Phys. Rev. Lett. 1997, v. 79, p. 2682-2685. 17. H. Kotaki et al. Head-on injection of a high quality electron beam by the interaction of two laser pulses // Phys. Plasmas. 2004, v. 11, p. 3296-3302. 18. G. Fubiani et al. Beat wave injection of electrons into plasma waves using two interfering laser pulses // Phys. Rev. E. 2004, v. 70, p. 016402. 19. J. Faure et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses // Nature. 2006, v. 444, p. 737-739. 20. H. Kotaki et al. Electron optical injection with head-on and countercrossing colliding laser pulses // Phys. Rev. Lett. 2009, v. 103, p. 194803. 21. C. Rechatin et al. Observation of beam loading in a laser-plasma accelerator // Phys. Rev. Lett. 2009, v. 103, p. 194804. 22. M. Mori et al. Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet // Phys. Rev. ST Accel. Beams. 2009, v. 12, p. 082801. 23. W.P. Leemans et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary // Phys. Rev. Lett. 2003, v. 91, p. 074802. 24. U. Happek, A.J. Sievers, and E.B. Blum. Observation of coherent transition radiation // Phys. Rev. Lett. 1991, v. 67, p. 2962-2965. 25. I. Wilke et al. Single-shot electron-beam bunch length measurements // Phys. Rev. Lett. 2002, v. 88, p. 124801. 26. S.P.D. Mangles, et al. Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period// Phys. Rev. Lett. 2006, vol.96, 215001. 27. S. Kiselev et al. X-ray Generation in Strongly Nonlinear Plasma Waves // Phys. Rev. Lett. 2004, v. 93, p. 135004. 28. A. Rousse et al. Production of a keV X-Ray Beam from Synchrotron Radiation in Relativistic Laser-Plasma Interaction // Phys. Rev. Lett. 2004, v. 93, p. 135005. 29. Y. Glinec et al. Direct observation of betatron oscillation in a laser-plasma electron accelerator // Europhys. Lett. 2008, v. 81, p. 64001. 30. M. Mori et al. Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research // Laser Phys. 2006, v. 16, p. 1092-1096. 31. M. Mori et al. Stabilization of laser accelerated electron bunch by the ionization-stage control // Proc. of the 1st International Particle Accelerator Conference (IPAC’10), Kyoto, Japan 23-28 May, 2010. Joint Accelerator Conference Website (JACoW), 2010, THPEC003. 32. K. Nemeth et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity // Phys. Rev. Lett. 2008, v. 100, p. 095002. Article received 22.09.2012 138 ISSN 1562-6016. ВАНТ. 2012. №6(82) ПОВЫШЕНИЕ ВОСПРОИЗВОДИМОСТИ ПАРАМЕТРОВ ПУЧКОВ ЭЛЕКТРОНОВ, УСКОРЯЕМЫХ В ЛАЗЕРНОЙ ПЛАЗМЕ, И ИЗМЕРЕНИЕ ДЛИТЕЛЬНОСТИ ЭЛЕКТРОННОГО ПУЧКА Х. Котаки, М. Мори, Ю. Хаяши, М. Кандо, И. Дайто, Ю. Фукуда, А.С. Пирожков, Д.К. Когa, С.В. Буланов В процессе ускорения кильватерными волнами возможна генерация сверхкоротких электронных пучков фемтосекундной длительностью. Для приложений требуются электронные пучки с воспроизводимыми и котролируемыми параметрами. Оптическая инжекция, использующая сталкивающиеся лазерные импульсы, обеспечивает высокую воспроизводимость параметров пучков ускоренных электронов. Моноэнергетические пучки электронов с воспроизводимыми параметрами были получены при «самоинжекции» в кильватерную волну в экспериментах, использующих в качестве мишени струю азота. Взаимодействие электронов с излучением лазерного импульса приводит к поперечным осцилляциям электронного пучка. Анализ наблюдаемой в эксперименте зависимости периода осцилляций от энергии электронов позволяет найти длительность электронного пучка, равную 1.7 фс. ПІДВИЩЕННЯ ВІДТВОРЮВАНОСТІ ПАРАМЕТРІВ ПУЧКА ЕЛЕКТРОНІВ, ЩО УСКОРЮЮТЬСЯ В ЛАЗЕРНІЙ ПЛАЗМІ, ТА ВИМІРЮВАННЯ ТРИВАЛОСТІ ЕЛЕКТРОННОГО ПУЧКА Х. Котакі, М. Морі, Ю. Хаяши, М. Кандо, І. Дайто, Ю. Фукуда, А.С. Пірожков, Д.К. Кога, С.В. Буланов В процесі прискорення кільватерними хвилями можлива генерація надкоротких електронних пучків фемтосекундної тривалості. Для додатків потрібні електронні пучки з відтворюючими і котролюючими параметрами. Оптична інжекція, що використовує зіштовхуючі лазерні імпульси, забезпечує високу відтворюваність параметрів пучків прискорених електронів. Моноенергетичні пучки електронів з відтворюваними параметрами були отримані при «самоінжекції» в кільватерну хвилю в експериментах, в яких в якості мішені використовувалася струмінь азоту. Взаємодія електронів з випромінюванням лазерного імпульсу призводить до поперечних осциляцій електронного пучка. Аналіз спостерігаючої в експерименті залежності періоду осциляцій від енергії електронів дозволяє знайти тривалість електронного пучка, яка дорівнює 1.7 фс.