On dispersion relation of slow circularly polarized electromagnetic waves in plasmas

In the present communication, Hamilton equations for electrons interacting with slow circular polarized electromagnetic wave are solved in a self-consistent way. Basing on these solutions the interaction between the fast electrons and propagating circular wave is described kinetically, and the non-l...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Gospodchikov, E.D., Suvorov, E.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109232
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On dispersion relation of slow circularly polarized electromagnetic waves in plasmas / E.D. Gospodchikov, E.V. Suvorov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 87-89. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109232
record_format dspace
spelling irk-123456789-1092322016-11-22T03:03:24Z On dispersion relation of slow circularly polarized electromagnetic waves in plasmas Gospodchikov, E.D. Suvorov, E.V. Фундаментальная физика плазмы In the present communication, Hamilton equations for electrons interacting with slow circular polarized electromagnetic wave are solved in a self-consistent way. Basing on these solutions the interaction between the fast electrons and propagating circular wave is described kinetically, and the non-linear dispersion relation is obtained. As a result, specific conditions for the slow wave propagation in a two component plasma are analyzed. Решаются уравнения Гамильтона для электронов, взаимодействующих с замедленной циркулярно поляризованной электромагнитной волной. На основе этих решений кинематически строится нелинейное дисперсионное соотношение. Обсуждаются специфические условия, при выполнении которых замедленная волна может распространяться в двухкомпонентной плазме. Розв’язується рівняння Гамільтона для електронів, що взаємодіють з уповільненою циркулярно поляризованою електромагнітною хвилею. На основі цих рішень кінематично будується нелінійне дисперсійне співвідношення. Обговорюються специфічні умови, при виконанні яких уповільнена хвиля може поширюватися в двокомпонентнiй плазмі. 2013 2013 Article On dispersion relation of slow circularly polarized electromagnetic waves in plasmas / E.D. Gospodchikov, E.V. Suvorov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 87-89. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 41.20.Jb http://dspace.nbuv.gov.ua/handle/123456789/109232 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фундаментальная физика плазмы
Фундаментальная физика плазмы
spellingShingle Фундаментальная физика плазмы
Фундаментальная физика плазмы
Gospodchikov, E.D.
Suvorov, E.V.
On dispersion relation of slow circularly polarized electromagnetic waves in plasmas
Вопросы атомной науки и техники
description In the present communication, Hamilton equations for electrons interacting with slow circular polarized electromagnetic wave are solved in a self-consistent way. Basing on these solutions the interaction between the fast electrons and propagating circular wave is described kinetically, and the non-linear dispersion relation is obtained. As a result, specific conditions for the slow wave propagation in a two component plasma are analyzed.
format Article
author Gospodchikov, E.D.
Suvorov, E.V.
author_facet Gospodchikov, E.D.
Suvorov, E.V.
author_sort Gospodchikov, E.D.
title On dispersion relation of slow circularly polarized electromagnetic waves in plasmas
title_short On dispersion relation of slow circularly polarized electromagnetic waves in plasmas
title_full On dispersion relation of slow circularly polarized electromagnetic waves in plasmas
title_fullStr On dispersion relation of slow circularly polarized electromagnetic waves in plasmas
title_full_unstemmed On dispersion relation of slow circularly polarized electromagnetic waves in plasmas
title_sort on dispersion relation of slow circularly polarized electromagnetic waves in plasmas
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Фундаментальная физика плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/109232
citation_txt On dispersion relation of slow circularly polarized electromagnetic waves in plasmas / E.D. Gospodchikov, E.V. Suvorov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 87-89. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gospodchikoved ondispersionrelationofslowcircularlypolarizedelectromagneticwavesinplasmas
AT suvorovev ondispersionrelationofslowcircularlypolarizedelectromagneticwavesinplasmas
first_indexed 2025-07-07T22:44:16Z
last_indexed 2025-07-07T22:44:16Z
_version_ 1837029924206018560
fulltext ISSN 1562-6016. ВАНТ. 2013. №1(83) 87 ON DISPERSION RELATION OF SLOW CIRCULARLY POLARIZED ELECTROMAGNETIC WAVES IN PLASMAS E.D. Gospodchikov, E.V. Suvorov Institute of Applied Physics of the Russian Academy of Sciences, N. Novgorod, Russia E-mail: egos@appl.sci-nnov.ru In the present communication, Hamilton equations for electrons interacting with slow circular polarized electromagnetic wave are solved in a self-consistent way. Basing on these solutions the interaction between the fast electrons and propagating circular wave is described kinetically, and the non-linear dispersion relation is obtained. As a result, specific conditions for the slow wave propagation in a two component plasma are analyzed. PACS: 41.20.Jb INTRODUCTION Finding the dispersion relation for electromagnetic waves in homogeneous media is basic fundamental problem of wave propagation. In cold isotropic plasma within a linear theory, the dispersion relation for transverse electromagnetic waves with frequency higher than electron plasma frequency results in the fact that only fast electromagnetic waves with cph >υ can propagate [1]. Some time ago the question was under discussion if there a possibility to arrange circularly polarized slow waves due to the trapping of some supra- thermal electron fraction into the wave field (see e.g. [2,3]). In such a situation slowing-down of waves is provided due to electron trapping by a finite amplitude electromagnetic wave. In the present communication we analyze specific conditions for the existence of circularly polarized slow waves in a plasma with two electron components. The nonlinear dispersion relation for such waves is obtained self-consistently with taking into account Maxwell equations and motion equations for electrons. The treatment is performed both in hydrodynamics approximation and kinetically basing on the solutions of Hamilton equations for electrons interacting with slow circular polarized electromagnetic wave. Problems of the formation of such waves and of electrons with two fractions are out of the scope of present communication. 1. SELF-CONSISTENT STATIC SHEARED MAGNETIC FIELD In the investigation of slow waves it may be convenient to shift to the reference frame moving with the phase velocity, where the plane wave is presented as purely static magnetic configuration. In particular, circularly polarized in the laboratory frame wave corresponds to sheared magnetic field kzBB kzBB y x sin cos = = . (1) To provide self-consistency of such magnetic configuration it is necessary to have corresponding electron current in which every electron perform the motion allowed by magnetic field (1). For the sake of simplicity we shall consider that the current is produced by electrons with constant longitudinal velocities constVz = (the ion motion is neglected). For the electron with constVz = it is necessary to satisfy the following set of equations: ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ −= = = tkVVV tkVVV BVBV zzBy zzBx xyyx cos sin ω ω & & , (2) where mceBB /=ω . From Eqs. (2) for 0≠zV it follows that mckBeV / rr −=⊥ , and this relation does not depend on the longitudinal velocity. Electrons with 0=zV (“trapped” electrons in the laboratory frame of reference), can have arbitrary 0⊥V r which is parallel to the magnetic field B r in the corresponding z =const plane. Transverse current of electrons with 0≠zV (“untrapped” electrons) is ( ) ( ) mckBNeVNej /11 2 rrr αα −=−−= ⊥⊥ , (3) where N is the electron density, α is a fraction of “trapped” electrons. From the static Maxwell equation j c Brot rr π4 = , we obtain following condition ( ) B PP kV cc k ω ωαωα 0 2 2 2 2 2 1 ⊥=−+ , (4) with mNeP /4 22 πω = . The condition that Eq.(4) possess real solutions for k is P B c V ω ω α α 2 1 0 > − ⊥ , which impose the following limitation toα ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −+> ⊥ ⊥ 1 4 12 2 2 2 2 0 22 0 22 B P P B c V V c ω ω ω ωα ; (5) in the case 1<<α this corresponds to the inequality 0 2 ⊥ > V c P B ω ωα . (6) Taking into account the evident inequality cV <⊥0 , one can obtain overestimated limitation to α ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −+> 1 4 12 2 2 2 2 B P P B ω ω ω ωα , (7) which does not contain 0⊥V . Eq. (4) for a fixed plasma density impose the relation between field amplitude, fraction of “trapped” electrons 88 ISSN 1562-6016. ВАНТ. 2013. №1(83) and their transverse velocity, which may be considered as nonlinear dispersion relation. This relation can be modified with taking into account that longitudinal current formed by ions with the density N moving with the velocity phυ− and by “untrapped” electrons with the density αN must be zero. This means that in the laboratory reference frame “untrapped” electrons must move also in z-direction relative to immovable ions to compensate z-component of “trapped” electron current. The mean velocity of “untrapped” electrons in z- direction >< zV is defined by the relation ><−=− zph V/1 υα . It should be noted that Eq. (4) has two real solutions for k, which means that in the laboratory reference frame there are two slow nonlinear circularly polarizes waves with the equal phase velocities. 2. ELECTRON MOTION IN CIRCULARLY POLARIZED ELECTROMAGNETIC WAVE Above we present the simplest demonstration of the existing of nonlinear slow circularly polarized waves in a plasma with two cold electron fractions (“trapped” and “untrapped”), in which every “trapped” electron is moving with constant velocity along its own rectilinear trajectory, while “untrapped electrons are moving with constant velocity along spiral trajectories. In such a wave the “trapped” fraction can possess arbitrary spread over transverse velocities, and “untrapped” fraction allows spread over longitudinal velocities. Now again having in mind investigation of slow nonlinear circularly polarized waves in a more general case, we consider arbitrary electron motion (non- relativistic) in the electromagnetic wave defined by vector-potential: ( ) ( ) tkz cEAcEA yx ωφ φ ω φ ω −= == sin;cos 00 , (8) From the translation symmetry transverse momentum conservation follows: constPA c eVm ==− ⊥⊥ rrr . (9) The longitudinal motion is governed by the equation: )cossin(0 φφ ω yx PPk m eEzm −=&& , (10) or ( )0 0 sin φφ ω −−= ⊥kP m eEzm && , (11) where P⊥ and φ0 are introduced by 00 sin;cos φφ ⊥⊥ −=−= PPPP yx . Note also the following condition 00 φφ ω = ⊥ ⊥ −= A cE PP rr . (12) By substitution 0 ~ φω −−= tkzzk one can obtain the first integral of equation (11): constWzkP m eEzm z ==− ⊥ ~cos 2 ~ 0 2 ω & , (13) from which it follows ( ) k t k EPtzz z 0,,~ φω τ −−−= ⊥ , (14) where z~ – takes the form of inverse elliptical function ∫ ⊥− =− zkP m eEW zdmt z ~cos ~ 2 0 ω τ , (15) with the constant τ characterizing the initial phase of electron oscillation. 3. DISPERSION RELATION The plane wave (8) can propagate in the plasma without support from external sources if the following equations are satisfied: ( ) ⎪⎩ ⎪ ⎨ ⎧ = =− ⊥ 0 42 0 2 zj j c Akk rr π . (16) The transverse current can be calculate as ( ) ( )( )∫ −−= ⊥⊥ ..., dtzzfVetzj δ rr , (17) where f is the – electron distribution function, )(tz is the solution of motion equation; integration is performed over the set of constants characterizing electron motion. In our case such these constants are τφ ,,, 0⊥PEz . Actually the electron motion must be characterized by 6 constant, but two constants arising from initial transverse coordinates can be omitted. When the distribution function depends on zE and ⊥P , Eq. (17) takes the form: ( ) ( ) ( )0 0 , , 1 , , 2 z z j z t e V z t z z t f W P d d dE dP k k ϕωδ ϕ τ π ⊥ ⊥ ⊥ ⊥ = − × ⎛ ⎞× − − −⎜ ⎟ ⎝ ⎠ ∫ rr % (18) where transverse velocity ⊥V r is also dependent on ⊥PEz , . From Eqs. (9) and (12) it follows: ( ) ( ) ( )0 0 1, φωφ A mcE PA cm eP m A cm etzV rrrrr ⊥−=+= . (19) Integrating over variable 0φ and using normalization condition ( )( ) ( ) 0 1 , ... ... , 2 2z kz z t f W P d d fd const Nδ ϕ π π⊥− = = =∫ ∫ one can obtain ( ) ( ) ( )( ) ( ) 2 0 , , , , . 2z z z ej z t NA mc e kA kz t W P P f W P d dE dP mcE ϕ ω ϕ τ τ π ⊥ ⊥ ⊥ ⊥ ⊥ =− + + − −∫ rr r % (20) Substituting (20) into (16) results in the nonlinear dispersion relation: ( ) ( )∫∫ ⊥⊥⊥⊥=+− dPdEPWFPPWФ mcE e cc kk zzz p ,,4 0 2 2 2 0 2 ωπω , (21) where F is the distribution function normalized as: NdPFdWz =∫ ⊥ , (22) ISSN 1562-6016. ВАНТ. 2013. №1(83) 89 and ∫ ∫ − ⊥ − ⊥ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ζζ ω ζζ ω ζ dP m eEW dP m eEW Ф z z 2/1 0 2/1 0 cos coscos (23) integration limits in (23) are determined by zero points of expression ωζ mPeEWz /cos0 ⊥+ . Electrons may be specified as belonging to three groups. The first group includes trapped electrons with Cz WWP m cE <<− ⊥ω 0 ( ⊥≈ P m cEWC ω 065.0 ), for these electrons 10 <Φ< and kVz /ω>=< ; the second group includes trapped electrons with ⊥<< P m cEWW zC ω 0 , for these electrons 01 <Φ<− and kVz /ω>=< ; the third group includes untrapped electrons with zWP m cE <⊥ω 0 for this electrons 01 <Φ<− and kVz /ω>≠< . In Figure the dependence of Φ on ⊥PcEmWz 0/ω is shown. For fast waves (with ck >/ω ) the expression (23) after some cumbersome calculations can be simplified and for waves of low enough amplitude the nonlinear dispersion relation (21) can be transformed into well known linear dispersion relation for transverse waves in the isotropic plasma. Weight function Ф dependence on normalized zW Condition for existence of self-consistent non-linear slow waves in plasma may be derived from Eqs. (21), (23) (see also Figure). Such waves can exist, if there is sufficiently large fraction of trapped electrons with high enough ⊥P . This condition may be written in the form: ( ) ( ) 0,, 0 >⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −∫∫ ⊥⊥⊥⊥ dPdWPWFeEPPWФ zzz ω . (24) So for existence of such a wave two necessary conditions must be satisfied: for the group of trapped particles the condition ω/0eEP >⊥ must be fulfilled; more strictly the trapped particle density should satisfy the condition ω/0NeEPN trtr >⊥ . (25) If one take into account the conservation of transverse momentum in the process of wave switch-on, and assume that before switching-on the wave field electrons had Maxwellian distribution, the condition of existence of nonlinear slow waves takes the form 03 E e m T > ωυ . (26) This is a rather strong limitation, and more simple realization of slow waves may be achieved in the plasma with two electron fractions, e.g., in the presence of electron beam in the direction of wave propagation with large enough transverse energy. In conclusion, we demonstrate the simple way of constructing nonlinear slow circularly polarized waves in the plasma, which allows evident modification to the relativistic case. REFERENCES 1. T. Stix. The Theory of Plasma Waves Mc Graw Hill. New York: 1962, M.: «Atomizdat», 1965, 2. Ya.N. Istomin,V.I. Karpman. // JETP Lett. 1972, № 15, p. 143. 3. A.I. Matveev // Plasma Physics Report. 2009, v. 35, № 4, p. 315 . Article received 14.09.12 О ДИСПЕРСИОННОМ СООТНОШЕНИИ ДЛЯ ЦИРКУЛЯРНО ПОЛЯРИЗОВАННЫХ ЗАМЕДЛЕННЫХ ВОЛН В ПЛАЗМЕ Е.Д. Господчиков, Е.В. Суворов Решаются уравнения Гамильтона для электронов, взаимодействующих с замедленной циркулярно поляризованной электромагнитной волной. На основе этих решений кинематически строится нелинейное дисперсионное соотношение. Обсуждаются специфические условия, при выполнении которых замедленная волна может распространяться в двухкомпонентной плазме. ПРО ДИСПЕРСІЙНІ СПІВВІДНОШЕННЯ ДЛЯ ЦИРКУЛЯРНО ПОЛЯРИЗОВАНОГО УПОВІЛЬНЕННЯ ХВИЛЬ У ПЛАЗМІ Є.Д. Господчиков, Є.В. Суворов Розв’язується рівняння Гамільтона для електронів, що взаємодіють з уповільненою циркулярно поляризованою електромагнітною хвилею. На основі цих рішень кінематично будується нелінійне дисперсійне співвідношення. Обговорюються специфічні умови, при виконанні яких уповільнена хвиля може поширюватися в двокомпонентнiй плазмі. - 1 1 2 3 4 - 0.4 - 0.2 0.2 0.4 0.6 0.8 1.0 Φ ⊥ePEWm z 0/ω