Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions

The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclotron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azimuthal current, modeling the current of solenoidal antenna, which use is considere...

Full description

Saved in:
Bibliographic Details
Date:2013
Main Authors: Yeliseyev, Yu.N., Stepanov, K.N.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/109233
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions / Yu.N. Yeliseyev, K.N. Stepanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 84-86. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclotron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azimuthal current, modeling the current of solenoidal antenna, which use is considered within the frames of a developed ICR-method of isotope separation. The drift motion equations are derived and their three first integrals are found at arbitrary values of Larmor radius. It is shown that the increasing of a particle Larmor radius involves the increasing of radius of the Larmor center, i.e. involves drift of heated particles to plasma edge. During Larmor gyration these ions transit near to a system axis.