Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions

The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclotron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azimuthal current, modeling the current of solenoidal antenna, which use is considere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Yeliseyev, Yu.N., Stepanov, K.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/109233
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions / Yu.N. Yeliseyev, K.N. Stepanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 84-86. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109233
record_format dspace
spelling irk-123456789-1092332016-11-22T03:03:25Z Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions Yeliseyev, Yu.N. Stepanov, K.N. Фундаментальная физика плазмы The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclotron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azimuthal current, modeling the current of solenoidal antenna, which use is considered within the frames of a developed ICR-method of isotope separation. The drift motion equations are derived and their three first integrals are found at arbitrary values of Larmor radius. It is shown that the increasing of a particle Larmor radius involves the increasing of radius of the Larmor center, i.e. involves drift of heated particles to plasma edge. During Larmor gyration these ions transit near to a system axis. В дрейфовом приближении решена задача о движении заряженной частицы в поле волны магнитной накачки в условиях черенковского и циклотронного резонансов. Поле волны создается поверхностным переменным азимутальным током, моделирующим ток соленоидальной антенны, использование которой рассматривается в рамках разрабатываемого ИЦР-метода разделения элементов и изотопов. Выведены уравнения дрейфового движения, справедливые при произвольной величине ларморовского радиуса, и найдены три их первых интеграла. Показано, что увеличение ларморовского радиуса частицы под действием волны накачки сопровождается увеличением радиуса ее ларморовского центра, т.е. дрейфом нагретых частиц на периферию плазмы. При ларморовском вращении эти ионы проходят вблизи оси системы. У дрейфовому наближенні вирішено задачу про рух зарядженої частки в полі хвилі магнітного накачування в умовах черенковського й циклотронного резонансів. Поле хвилі створюється поверхневим змінним азимутальним струмом, що моделює струм соленоїдальної антени, використання якої розглядається в рамках розроблюваного ІЦР-методу розділення елементів і ізотопів. Виведені рівняння дрейфового руху справедливі при довільній величині ларморовського радіуса, і знайдено три їх перших інтеграла. Показано, що збільшення ларморовського радіуса частки під дією хвилі накачування супроводжується збільшенням радіуса її ларморовського центра, тобто дрейфом нагрітих часток на периферію плазми. При ларморовському обертанні ці іони проходять поблизу осі системи. 2013 2013 Article Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions / Yu.N. Yeliseyev, K.N. Stepanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 84-86. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.40.Fd; 52.50.Qt http://dspace.nbuv.gov.ua/handle/123456789/109233 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Фундаментальная физика плазмы
Фундаментальная физика плазмы
spellingShingle Фундаментальная физика плазмы
Фундаментальная физика плазмы
Yeliseyev, Yu.N.
Stepanov, K.N.
Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions
Вопросы атомной науки и техники
description The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclotron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azimuthal current, modeling the current of solenoidal antenna, which use is considered within the frames of a developed ICR-method of isotope separation. The drift motion equations are derived and their three first integrals are found at arbitrary values of Larmor radius. It is shown that the increasing of a particle Larmor radius involves the increasing of radius of the Larmor center, i.e. involves drift of heated particles to plasma edge. During Larmor gyration these ions transit near to a system axis.
format Article
author Yeliseyev, Yu.N.
Stepanov, K.N.
author_facet Yeliseyev, Yu.N.
Stepanov, K.N.
author_sort Yeliseyev, Yu.N.
title Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions
title_short Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions
title_full Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions
title_fullStr Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions
title_full_unstemmed Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions
title_sort drift motion of charged particle in wave field of magnetic pumping under сherenkov and cyclotron resonance conditions
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Фундаментальная физика плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/109233
citation_txt Drift motion of charged particle in wave field of magnetic pumping under Сherenkov and cyclotron resonance conditions / Yu.N. Yeliseyev, K.N. Stepanov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 84-86. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT yeliseyevyun driftmotionofchargedparticleinwavefieldofmagneticpumpingundersherenkovandcyclotronresonanceconditions
AT stepanovkn driftmotionofchargedparticleinwavefieldofmagneticpumpingundersherenkovandcyclotronresonanceconditions
first_indexed 2025-07-07T22:44:22Z
last_indexed 2025-07-07T22:44:22Z
_version_ 1837029930158784512
fulltext 84 ISSN 1562-6016. ВАНТ. 2013. №1(83) DRIFT MOTION OF CHARGED PARTICLE IN WAVE FIELD OF MAGNETIC PUMPING UNDER CHERENKOV AND CYCLOTRON RESONANCE CONDITIONS Yu.N. Yeliseyev, K.N. Stepanov Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: eliseev2004@rambler.ru The charged particle motion problem in electromagnetic field of magnetic pumping under Chrenkov and cyclo- tron resonance conditions is solved in drift approximation. The wave field is produced by alternating surface azi- muthal current, modeling the current of solenoidal antenna, which use is considered within the frames of a devel- oped ICR-method of isotope separation. The drift motion equations are derived and their three first integrals are found at arbitrary values of Larmor radius. It is shown that the increasing of a particle Larmor radius involves the increasing of radius of the Larmor center, i.e. involves drift of heated particles to plasma edge. During Larmor gyra- tion these ions transit near to a system axis. PACS: 52.40.Fd; 52.50.Qt Interaction of particles with a wave is a basis for calculation of effect of a selective heating of ions in a developed ICR-method of isotope separation [1]. In this paper the solution of a problem about a charged particle motion in the homogeneous magnetic field and in the vortex electromagnetic field of a wave of magnetic pumping of small amplitude under Cherenkov and cy- clotron resonance conditions is presented in the drift approximation. 1. WAVE OF MAGNETIC PUMPING The wave is produced by the azimuthal surface cur- rent 0 ( ) cos( )zj j r a k z tϕ = δ − −ω modeling the current in solenoidal antenna. Its usage is considered within the method of ICR-separation [1]. The wave field inside the solenoid ( r a< ) has components , ,r zE H Hϕ [2]: 1 0 1 ( )sin( ), ( ) cos( ), ( )sin( ) . z z z z z z r z E CI r k z t k c H C I r k z t k k c H C I r k z t ϕ = − Λ −ω Λ = Λ −ω ω = Λ −ω ω (1) Here 0 0 0 1 12 1 4, ( ) ( ) ( ) E C E j aK a I a I a c πω = = Λ Λ Λ – is the amplitude of azimuthal electric field near the solenoid ( r a= ), 2 2 2 2 0, 1.z z k ck N c ω Λ = − > = >> ω 2. DERIVATION OF DRIFT EQUATIONS We derive the equations of particle drift motion in the field (1) using the method [3]. Introducing a com- plex variable exp( )u x iy r i= + = ϕ we write equations of motion in this variable: 0 0 exp( ) exp( ) , (2) . ci z r ci ci r u i u H Hei E i u z i M B B vez H M c ϕ ϕ + ω = ⎛ ⎞ = ⋅ ϕ −ω +ω ⋅ ϕ⎜ ⎟ ⎝ ⎠ = − && & & & && Here 0 / 0ci eB Mcω = > – is the cyclotron frequency of a particle. We search he solution of equations (2) in the form exp( ) exp( ) exp( )u r i R i i= ϕ = ⋅ θ + ρ⋅ ϑ (3) Particle motion is described by cylindrical coordinates of the Larmor center R , θ , coordinates of a particle on the Larmor circle ρ , 0 сtϑ = ϑ −ω ( 0ϑ - initial phase of Larmor rotation) and longitudinal variables 0 0 t zz z v dt= + ∫ , zv . According to (3) vectors exp( )r iϕ , ( )R exp i⋅ θ , 0exp[ ( )]cii tρ⋅ ϑ −ω form a triangle. Taking this fact into account we apply the Graf summation theorem for Bes- sel functions [4], having in our case the form 1 1 0 ( )exp( ) ( ) ( )exp{ [ ( ) ]}, (4) p p p ci p I r i I R I i p p t =+∞ + =−∞ Λ ϕ = = Λ Λρ θ− ϑ −θ + ω∑ to the terms in the right-hand sides of equations (2) and express them in variables 0, , , , , zR z vθ ρ ϑ . We find the approximate solution of equations (2) supposing that a wave amplitude is small ( 0 / ( )ci cieE M rω << ω ) and a particle moves under Che- renkov or cyclotron resonance conditions with a pump- ing wave 1, 2, 3,...,, .ciz z ci nk v n = ± ± ± Δω << ωω = + + ω + Δω (5) In the absence of wave the coordinates 0 0, , , , , zR z vθ ρ ϑ are the integrals of motion. In the pres- ence of wave of small amplitude the right-hand sides of equations (2) contain small fast and slow oscillating summands. Neglecting the fast oscillating summands and taking into account only the slow oscillating ones (i.e. using the method of averaging), we obtain the equa- tions of particle drift motion: ISSN 1562-6016. ВАНТ. 2013. №1(83) 85 ( ) ( ) ( ) 0 ( ) ( ) sin , ( ) ( ) ( ) cos , (6) ( ) ( ) ( ) ( ) sin , ( ) ( ) ( ) cos , , ci n n n ci ci n n n ci ci n n n ci ci n n n ci z z z n dIeR C I R M R d dI R dIeR C M d R d n dIe C I R M d dIe dC I R M d d z v k cev C Mc ω Λρρ =− Λ Ψ ω ω Λρ ω Λ Λρ θ = Λρ Ψ ω ω Λ Λρ ω Λρ ρ = − Λ Ψ ω ω Λρ ρϑ = ⎡ ⎤ω Λρ − Λ Λρ Ψ⎢ ⎥ ω ω Λρ Λρ⎢ ⎥⎣ ⎦ = = − ω & & & & & & ( ) ( ) sin . ( ) n ci n n dI I R d Λρ ω ρ Λ Ψ Λρ Here 0( ) ( )n ci zn n t k zΨ ≡ ϑ −θ + ω− ω − – is a resonance phase slowly changing under conditions (5). Using the equations for θ and ϑ in (6) we obtain the equation for nΨ in the form ( ) ( ) ( ) ( ) ( ) ( )1 ( ) ( ) ( ) cos . (7) ( ) ( ) ci n n ci n ci z z n n n n dIe d C I R M d d n k v dI R dI R d R d ω Λρ − Λ Λ Λρ + ω ω Λρ Λρ Λρ Ψ = ω− ω − − ⎧ ⎡ ⎤ ⎨ ⎢ ⎥ ⎣ ⎦⎩ Λ Λρ ⎫ρ + Ψ⎬ Λ Λρ ⎭ & The equations for R , ρ , nΨ , zv (6), (7) form the closed set of equations. The phases θ and ϑ are deter- mined by the solution of this closed set. 3. INTEGRALS OF DRIFT MOTION Combining the equations for ρ& and R& we find one first integral of the equations set (6): 2 2 1 2 ci P R C M ϕ−ρ = = ω . (8) It determines the form of drift trajectories in Rρ plane. Fig. 1. Drift trajectories in Rρ plane. Line R a+ ρ = corresponds to a radius of solenoid, line R = ρ is the asymplote of hyperbolas The trajectories have the form of hyperbola (Fig. 1) along which the ions drift under action of the wave field of magnetic pumping (1) under cyclotron resonance conditions (5). As it is seen from integral (8), the form of drift trajectories does not depend on the number of cyclotron harmonic n on which the resonance is real- ized. This is a consequence of axial symmetry of a wave field (1) and conservation of the generalized angular momentum Pϕ . If the values of radius of Larmor center R and Lar- mor radius ρ satisfy the condition R a+ρ < , then the particle, moving on Larmor trajectory, remains inside the cylinder r a= , on which the solenoidal antenna is placed, and interacts with a wave of magnetic pumping. If coordinates of a particle satisfy the condition R a+ ρ ≥ , then particle falls on the antenna during Larmor rotation and stop the interaction with a wave. Combining the equations for R& and zv& we find one more first integral of the equations set (6), determining drift trajectories in zRv plane: ( ) 2 2/ 2z c zv k n R C− ω = . (9) Fig. 2. Drift trajectories in 2 zR v plane. Along y axis the value 2R varies. Along x axis the longitudinal velocity varies in frame of reference, moving with a wave ( )/z zv k−ω . The cyclotron resonances (5) take place only if the approximate equality is fulfilled ( )/ /z z ci zv k n k−ω ≈ − ⋅ω . Integer numbers n along x axis specify the number of resonance cyclotron har- monic. Positive n correspond to a normal Doppler ef- fect, negative n – to anomalous Doppler effect At 0zk ≠ the trajectory has the form of parabola in zRv plane. More accurately, they are the segments of parabola placed near velocity values, where the reso- nance condition (5) is fulfilled. In Fig. 2 the trajectories are presented in axes 2 zR v . In these axes the trajectories are the straight line segments. At 0zk = the trajectories degenerate into the lines zv const= . In this case drift equations for R , ρ and nΨ form the closed set. The third first integral is a Hamiltonian of a particle in the magnetic field and in the field of a pumping 0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,2 0,4 0,6 0,8 1,0 R a a ρ R a+ ρ = Radius of solenoid R = ρ 86 ISSN 1562-6016. ВАНТ. 2013. №1(83) wave. Its form can be determined by combining the equations (6) or by averaging the exact expression of Hamiltonian. Finally, we obtain its form: 0 1 3H H H C≡ + = . (10) Here 2 2 2 0 2 2 ci zM p H M ω ρ = + (11) is the well-known unperturbed (without pumping wave) Hamiltonian of a particle and ( ) ( )1 cosci n n nH e CI R I ω ′= Λ ρ Λρ Ψ ω (12) is the addition describing the interaction of a particle with a pumping wave. It should be noted, that expres- sions (10) – (12) determine Hamiltonian function rela- tive to canonically conjugated variables ( ),RJ θ , ( ),Jρ −ϑ , ( ),zp z , where ( ) 21 2R ciJ M R= ω , ( ) 21 2 ciJ Mρ = ω ρ are the known adiabatic invariants of a particle in magnetic field. CONCLUSIONS The drift equations are derived and its integrals are found for particle moving in a homogeneous magnetic field and in a vortex wave field of magnetic pumping under Cherenkov and cyclotron resonance conditions. The drift equations (6), (7) and integrals (8)-(12) are obtained at arbitrary value of particle Larmor radius ρ . The found integrals (8)-(12) make it possible to inte- grate on time the equations of drift motion (6), (7), to build trajectories in a phase space , , ,z nR vρ Ψ and thus to solve the motion problem completely. As it is seen from integrals (8), (9) the form of drift trajectories does not depend on amplitude and the distri- bution of the wave field on radius. The drift velocities, of course, depend on these factors. The integrals (8), (9) coincide with correspondent integrals of the drift motion of a particle in the field of a running along magnetic field potential wave having azimuthal number 0m = [3]. As results from the integral (8), the increasing of a particle Larmor radius ρ involves the increasing of radius of the Larmor centre R , i.e. pumping wave in- volves drift of heated particles outside, to plasma edge. This peculiarity explains the observed radial drift of particles interacting with a pumping wave in numerical calculations [4, 5]. REFERENCES 1. D.A. Dolgolenko, Yu.A. Muromkin // Uspekhi Fizi- cheskikh Nauk. 2009, v. 179, p. 369-382. 2. M.P. Vasil’yev, L.I. Grigor’yeva, et. al. // Journal of Technical Physics. 1964, v. 34. p. 1231. 3. Yu.N. Yeliseyev, K.N. Stepanov // Ukrainian Journal of Physics. 1983, v. 28, p. 683-692. 4. H. Bateman, A. Erdelyi. Higher transcendental func- tions, v. 2. M.: «Nauka», 1974, 295 p. 5. V.I. Volosov, V.V. Demenev, et. al. // Plasma Phys. Rep. 2002, v. 8, p. 559-564. 6. K.P. Shamrai, E.N. Kudryavchenko // Problems of Atomic Science and Technology. 2008, v. 14, № 6, p. 183-185. Article received 10.10.12 ДРЕЙФОВОЕ ДВИЖЕНИЕ ЗАРЯЖЕННОЙ ЧАСТИЦЫ В ПОЛЕ ВОЛНЫ МАГНИТНОЙ НАКАЧКИ В УСЛОВИЯХ ЧЕРЕНКОВСКОГО И ЦИКЛОТРОННОГО РЕЗОНАНСОВ Ю.Н. Елисеев, К.Н. Степанов В дрейфовом приближении решена задача о движении заряженной частицы в поле волны магнитной на- качки в условиях черенковского и циклотронного резонансов. Поле волны создается поверхностным пере- менным азимутальным током, моделирующим ток соленоидальной антенны, использование которой рас- сматривается в рамках разрабатываемого ИЦР-метода разделения элементов и изотопов. Выведены уравне- ния дрейфового движения, справедливые при произвольной величине ларморовского радиуса, и найдены три их первых интеграла. Показано, что увеличение ларморовского радиуса частицы под действием волны накачки сопровождается увеличением радиуса ее ларморовского центра, т.е. дрейфом нагретых частиц на периферию плазмы. При ларморовском вращении эти ионы проходят вблизи оси системы. ДРЕЙФОВИЙ РУХ ЗАРЯДЖЕНОЇ ЧАСТКИ В ПОЛІ ХВИЛІ МАГНІТНОГО НАКАЧУВАННЯ В УМОВАХ ЧЕРЕНКОВСЬКОГО Й ЦИКЛОТРОННОГО РЕЗОНАНСІВ Ю.М. Єлісеєв, К.М. Степанов У дрейфовому наближенні вирішено задачу про рух зарядженої частки в полі хвилі магнітного накачу- вання в умовах черенковського й циклотронного резонансів. Поле хвилі створюється поверхневим змінним азимутальним струмом, що моделює струм соленоїдальної антени, використання якої розглядається в рам- ках розроблюваного ІЦР-методу розділення елементів і ізотопів. Виведені рівняння дрейфового руху спра- ведливі при довільній величині ларморовського радіуса, і знайдено три їх перших інтеграла. Показано, що збільшення ларморовського радіуса частки під дією хвилі накачування супроводжується збільшенням раді- уса її ларморовського центра, тобто дрейфом нагрітих часток на периферію плазми. При ларморовському обертанні ці іони проходять поблизу осі системи.