Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets
Magneto-inertial fusion (MIF) including magnetized target compression by high energy laser pulses is fastgrowing area of research. Distinctive feature of this problem is presence of initial seed fields (the imposed external pulse magnetic field) and compression of a magnetic flux by laser beams (las...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109256 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets / V.V. Kuzenov, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 12-14. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109256 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092562016-11-22T03:03:51Z Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets Kuzenov, V.V. Ryzhkov, S.V. Магнитное удержание Magneto-inertial fusion (MIF) including magnetized target compression by high energy laser pulses is fastgrowing area of research. Distinctive feature of this problem is presence of initial seed fields (the imposed external pulse magnetic field) and compression of a magnetic flux by laser beams (laser driver) and plasma jets (plasma liner). High-convergence uniform implosion and properly synchronized laser beams (laser intensity > 10²⁰ W/m²) are considered. Influence of external magnetic field on driver-fuel target interaction is discussed. Preliminary test results of magnetized plasma target compression by high energy laser pulses are shown. It can be argued that the magnetic field in terms of vortices plays a stabilizing role, which is manifested in the fact that the vortex structures dissipate in the presence of an externally applied magnetic field. Магнитно-инерциальный термоядерный синтез, включая сжатие замагниченной мишени мощными лазерами – быстро развивающаяся область науки. Отличительная особенность данной задачи – наличие начального затравочного поля (наложенного внешнего импульсного магнитного поля) и сжатие магнитного потока лазерными пучками (лазерный драйвер) или плазменными струями (плазменный лайнер). Рассмотрен случай однородного и синхронного лазерного облучения (интенсивность излучения > 10²⁰ Вт/м²). Представлены результаты выполненных тестовых расчетов для стационарных струй плазмы с учетом магнитного поля. Можно утверждать, что магнитное поле, с точки зрения вихрей, играет стабилизирующую роль, которая проявляется в том, что вихревые структуры диссипируют при наличии магнитного поля. Магнітно-інерціальний термоядерний синтез, включаючи стиснення замагніченої мішені потужними лазерами, галузь науки, яка швидко розвивається. Відмітна особливість даної задачі – наявність початкового запалювального поля (накладеного зовнішнього імпульсного магнітного поля) і стиснення магнітного потоку лазерними пучками (лазерний драйвер) або плазмовими струменями (плазмовий лайнер). Розглянуто випадок однорідного і синхронного лазерного опромінення (інтенсивність випромінювання > 10²⁰ Вт/м²). Представлені результати виконаних тестових розрахунків для стаціонарних струменів плазми з урахуванням магнітного поля. Можна стверджувати, що магнітне поле з точки зору вихорів грає стабілізуючу роль, яка проявляється в тому, що вихрові структури дисипірують при наявності магнітного поля. 2013 2013 Article Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets / V.V. Kuzenov, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 12-14. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 52.38.-r, 52.55.Lf, 52.57.Fg http://dspace.nbuv.gov.ua/handle/123456789/109256 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Магнитное удержание Магнитное удержание |
spellingShingle |
Магнитное удержание Магнитное удержание Kuzenov, V.V. Ryzhkov, S.V. Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets Вопросы атомной науки и техники |
description |
Magneto-inertial fusion (MIF) including magnetized target compression by high energy laser pulses is fastgrowing area of research. Distinctive feature of this problem is presence of initial seed fields (the imposed external pulse magnetic field) and compression of a magnetic flux by laser beams (laser driver) and plasma jets (plasma liner). High-convergence uniform implosion and properly synchronized laser beams (laser intensity > 10²⁰ W/m²) are considered. Influence of external magnetic field on driver-fuel target interaction is discussed. Preliminary test results of magnetized plasma target compression by high energy laser pulses are shown. It can be argued that the magnetic field in terms of vortices plays a stabilizing role, which is manifested in the fact that the vortex structures dissipate in the presence of an externally applied magnetic field. |
format |
Article |
author |
Kuzenov, V.V. Ryzhkov, S.V. |
author_facet |
Kuzenov, V.V. Ryzhkov, S.V. |
author_sort |
Kuzenov, V.V. |
title |
Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets |
title_short |
Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets |
title_full |
Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets |
title_fullStr |
Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets |
title_full_unstemmed |
Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets |
title_sort |
numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Магнитное удержание |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109256 |
citation_txt |
Numerical мodeling of magnetized plasma compressed by the laser beams and plasma jets / V.V. Kuzenov, S.V. Ryzhkov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 12-14. — Бібліогр.: 13 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kuzenovvv numericalmodelingofmagnetizedplasmacompressedbythelaserbeamsandplasmajets AT ryzhkovsv numericalmodelingofmagnetizedplasmacompressedbythelaserbeamsandplasmajets |
first_indexed |
2025-07-07T22:49:01Z |
last_indexed |
2025-07-07T22:49:01Z |
_version_ |
1837030228732411904 |
fulltext |
12 ISSN 1562-6016. ВАНТ. 2013. №1(83)
NUMERICAL МODELING OF MAGNETIZED PLASMA COMPRESSED
BY THE LASER BEAMS AND PLASMA JETS
V.V. Kuzenov1,2, S.V. Ryzhkov1
1Bauman Moscow State Technical University, Moscow, Russia;
2A.Yu. Ishlinsky Institute for Problems in Mechanics RAS
E-mail: ryzhkov@power.bmstu.ru; kuzenov@ipmnet.ru
Magneto-inertial fusion (MIF) including magnetized target compression by high energy laser pulses is fast-
growing area of research. Distinctive feature of this problem is presence of initial seed fields (the imposed external
pulse magnetic field) and compression of a magnetic flux by laser beams (laser driver) and plasma jets (plasma
liner). High-convergence uniform implosion and properly synchronized laser beams (laser intensity > 1020 W/m2)
are considered. Influence of external magnetic field on driver-fuel target interaction is discussed. Preliminary test
results of magnetized plasma target compression by high energy laser pulses are shown. It can be argued that the
magnetic field in terms of vortices plays a stabilizing role, which is manifested in the fact that the vortex structures
dissipate in the presence of an externally applied magnetic field.
PACS: 52.38.-r, 52.55.Lf, 52.57.Fg
INTRODUCTION
At present time systems with dense plasma for
magneto-inertial fusion are of great interest. The aim of
this work is to describe the processes of target
compressing, heating and cooling under the conditions
of a thermonuclear system with a high-temperature
plasma, the development of a dense plasma device using
compression of magnetized target in an externally
applied magnetic field. We propose an innovative
scheme with spherical and cylindrical target,
compressed by a strong external source (laser with high
energy pulses) for heating and achievement
thermonuclear temperatures. In this case there is (a
significant increase of seed fields up to the intensity of
tens megagauss) a generation of ultra strong magnetic
fields with laser compression. A numerical method for
high resolution, developed in [1], has improved the
dissipative and dispersive properties (significantly the
modeling of turbulent flows) when the multidimensional
convective flux discretization is implemented. A
mathematical model of magnetized target radiation with
multiple laser beams were developed, it describes the
dynamics and kinetics of thermonuclear magnetized
plasma.
MIF [2-5], often called MTF (magnetized-target
fusion) is an alternate concept to magnetic confinement
fusion and inertial confinement fusion. Note, however,
that the proposed research is applicable to all versions
of MIF/MTF and any fusion fuel cycle. In traditional
schemes (direct and indirect drive) it is supposed to use
a large number (~ 100) of irradiating beams, but it is
extremely difficult to implement in a fusion reactor.
Implementation of spherical compression of magnetized
targets it can be possible to reduce significantly the
number of irradiating laser beams, it allows you to get a
clean and cheaper fusion not having the disadvantages
of magnetic and inertial confinement fusion.
MODEL AND TEST RESULTS
The model describes the compression of the target
with laser beams in a magnetic field of arbitrary
configuration and can be used for numerical study of the
formation of plasma in an external seed magnetic field
and its heating during compression using high-energy
external sources (drivers). The laser driven compression
of compact plasmoids [6, 7] to fusion conditions is
investigating. Interaction of a laser pulse with a plasma
target with an externally applied magnetic field - a
model of laser-driven implosion is presented.
Magnetohydrodynamic and radiation
magnetogasdynamics simulation with thermal transport,
laser deposition and target implosion in external
magnetic field in one and two dimensions is necessary
for high energy density physics, magneto-inertial fusion
and numerous applications [8-10]. Benchmarking the
simulation results against experiments is important for
researchers to improve the design of targets.
An improved one-dimensional radiation-
hydrodynamics code which simulates plasmas in
cylindrical or spherical geometries is created. It solves
single-fluid, two-temperature equations of motion with
contributions from diffusion, convection, heat
conduction. Electromagnetic processes are described by
the Maxwell-Ohm equations in plasma with final
conductivity. Radiation transport is considered within
the framework of multi-group diffusion approach. The
transport coefficients in the given system of the
equations taking into account magnetized laser plasma.
External and spontaneous magnetic fields are included
in the model.
Numerical simulation allows studying a number of
features of nonlinear plasma dynamics. It is marked,
that radial expansion of a laser plasma jet (two
dimensional effects) has significant influence on the
dynamics of plasma formation. First results of non-
linear effects modeling for different initial parameters
and edge conditions are discussed in the paper.
Mathematical method developed in [11] may be applied
ISSN 1562-6016. ВАНТ. 2013. №1(83) 13
for both impact fast ignition and uniform compression
calculations.
Thermal physical properties of particles and plasma
are derived using correct the Reynolds number and the
Prandtle number. The calculations of thermodynamic
and optical media parameters occur with the aid of
computer system Asteroid, developed by S. Surzhikov
[12]. The viscous forces in a flux represent the sum of
works of liquid friction, heat fluxes and plasma heating
by laser radiation. The electron and ion thermal
conductivity coefficients in the case of magnetized
plasma are calculated.
The developed mathematical model for laser-driven
magneto-inertial fusion (LD MIF) and plasma-jet driven
magneto-inertial fusion (PJ MIF) [6] has been tested on
problems related to axisymmetric pulsed plasma jets in
an external magnetic field, taking into account their own
broadband plasma radiation.
Figs. 1 and 2 show results of computer simulation
studies of heating and compressing a target in magnetic
field. Test calculations are performed without an
externally applied strong magnetic field of stationary
plasma jets and showed good agreement with well-
known literature data [13]. A change in the structure of
the flow pulse jet, which is accompanied by a decrease
in the intensity side (towards the axis of the system)
shock waves is observed for the simulation with
magnetic field (0.1…5 T).
The central band changes its position relative to the
output of the jet shear (behind or lost) compared to the
tests. The toroidal vortex systems are typically observed
out of boundary contact of triple configuration (point
where three shock waves converge). Applying an
external magnetic field suppresses vortexes (weaken
their intensity) and leads (increasing magnetic field) to
the disappearance.
-10 -5 0 5 10
0
5
10
15
T
1.80E+04
1.70E+04
1.60E+04
1.50E+04
1.40E+04
1.30E+04
1.20E+04
1.10E+04
1.00E+04
9.00E+03
8.00E+03
7.00E+03
6.00E+03
5.00E+03
4.00E+03
3.00E+03
2.00E+03
1.00E+03
-10 -5 0 5 10
0
5
10
15
T
2.00E+04
1.90E+04
1.80E+04
1.70E+04
1.60E+04
1.50E+04
1.40E+04
1.30E+04
1.20E+04
1.10E+04
1.00E+04
9.00E+03
8.00E+03
7.00E+03
6.00E+03
5.00E+03
4.00E+03
3.00E+03
2.00E+03
1.00E+03
a b
-10 -5 0 5 10
0
5
10
15
T
2.80E+04
2.66E+04
2.52E+04
2.37E+04
2.23E+04
2.09E+04
1.95E+04
1.81E+04
1.66E+04
1.52E+04
1.38E+04
1.24E+04
1.09E+04
9.53E+03
8.11E+03
6.68E+03
5.26E+03
3.84E+03
2.42E+03
1.00E+03
c
Fig. 1. The spatial distribution of temperature T [K] in
a pulsed plasma jet: (a) without external magnetic field
at time t=49.3 μs, (b) in the presence of an external
magnetic field B=1.58 T at time t=46.6 μs,
and (c) B=2.5 T at t=46.9 μs
It can be argued that the magnetic field in terms of
vortices plays a stabilizing role, which is manifested in
the fact that the vortex structures dissipate in the
presence of magnetic field. We also note that the
attenuation of the jet along the axis of the system is
observed much later (approximately 2-fold), that is
subject to an externally applied magnetic field.
-10 -5 0 5 10
0
5
10
15
T
3.40E+04
3.19E+04
2.99E+04
2.78E+04
2.58E+04
2.37E+04
2.16E+04
1.96E+04
1.75E+04
1.54E+04
1.34E+04
1.13E+04
9.25E+03
7.19E+03
5.13E+03
3.06E+03
1.00E+03
-10 -5 0 5 10
0
5
10
15
Pmag
4.80E+01
4.56E+01
4.32E+01
4.07E+01
3.83E+01
3.59E+01
3.35E+01
3.11E+01
2.86E+01
2.62E+01
2.38E+01
2.14E+01
1.89E+01
1.65E+01
1.41E+01
1.17E+01
9.26E+00
6.84E+00
4.42E+00
2.00E+00
a b
Fig. 2. The spatial distribution of (a) temperature T [K]
and (b) magnetic pressure Pmag [bar] in a pulsed
plasma jet with B=3.5 T at time t=37.6 μs
CONCLUSIONS
Magneto-inertial fusion (MIF) is an
alternate fusion concept, represents evolution of
traditional inertial confinement fusion with elements of
magnetic confinement fusion, i.e. the concept with
plasma of high density (n > 1027 m-3) in ultrahigh
magnetic fields (B > 500 T).
Non-stationary two dimensional radiation magneto-
gas dynamic model is developed by authors [4]. The
model is based on splitting method in terms of physical
processes and spatial directions, that in spatially smooth
solution allows to get seventh order of accuracy.
Modified alternatively triangular three-layered iterative
scheme is applied for the solution of radiation transport
equations, where the time step selected via conjugate
directions method.
Fig. 3. Scheme of PULSAR – PUlsed Liner/Laser-driven
System and Alternative Reactor
Thermal physical properties of particles and plasma
are derived using correct the Reynolds number and the
Prandtle number. Magnetohydrodynamic and radiation
magnetogasdynamics simulation with thermal transport,
laser deposition and target implosion in external
magnetic field in one and two dimensions is necessary.
Benchmarking the simulation results against
experiments is important for researchers to improve the
design of targets.
Burning
chamber
Plasma jet
Target
Injector
Plasma gun
Formation
chamber
14 ISSN 1562-6016. ВАНТ. 2013. №1(83)
The mathematical model of magnetized plasma -
laser beams of high energy pulses has been developed
and scheme of a magnetized target fusion power plant is
presented (Fig. 3). Mathematical method developed here
may be applied for both LD and PJ MIF as well as for
impact fast ignition and uniform compression
calculations.
This study was supported by the Russian MES
(Ministry of Education and Science) – in the framework
of Priority development PNR-4 «Energy and Energy
Efficiency» of National Research University (NIU) on
engineering and technology.
REFERENCES
1. V.V. Kuzenov, S.V. Ryzhkov. Developing the
numerical model for studying laser-compression of
magnetized plasmas // Acta Technica. 2011, v. 56,
p. T454-467.
2. Y.C.F. Thio, E. Panarella, R.C. Kirkpatrick,
C.E. Knapp, F. Wysocki, P. Parks, and G. Schmidt.
Magnetized target fusion in a spheroidal geometry with
standoff drivers // Current Trends in Int. Fusion
Research. 1999, p. 113-134.
3. I.Yu. Kostyukov, S.V. Ryzhkov. Magneto-inertial
fusion with laser compression of a magnetized spherical
target // Plasma Physics Reports. 2011, v. 37, №. 13,
p. 1092-1098.
4. A.Yu. Chirkov, S.V. Ryzhkov. The plasma jet/laser
driven compression of compact plasmoids to fusion
conditions // Journal of Fusion Energy. 2012, v. 31,
issue 1, p. 7-12.
5. S.V. Ryzhkov. The behavior of a magnetized plasma
under the action of laser with high pulse energy //
Problems of Аtomic Science and Technology. Series
«Plasma Electronics and New Methods of Acceleration»
(7). 2010, № 4, p. 105-110.
6. S.V. Ryzhkov. Features of formation, confinement
and stability of the field reversed configuration //
Problems of Atomic Science and Technology. Series
«Plasma Physics» (7). 2002, № 4, p. 73-75.
7. S.V. Ryzhkov. A field-reversed magnetic
configuration and applications of high-temperature FRC
plasma // Plasma Physics Reports. 2011, v. 37, № 13,
p. 1075–1081.
8. V.I. Khvesyuk, S.V. Ryzhkov, J.F. Santarius, et al.
D-3He Field-Reversed Configuration Fusion Power
Plants // Fusion Technol. 2001, v. 39 (1T), p. 410-413.
9. S.V. Ryzhkov. Modeling of thermophysics in
magnetic fusion rocket // Russian Thermal Processes in
Engineering. 2009, № 9, p. 397-400.
10. S.V. Ryzhkov. Thermal-physical analysis of low-
radioactive thermonuclear plasma in the magnetic
fusion device // Problems of Atomic Science and
Technology. Series «Plasma Physics» (13). 2007, № 1,
p. 9-11.
11. V.V. Kuzenov, S.V. Ryzhkov. A mathematical
model of the high pulse energy laser beams interaction
with the plasma target with initial seed magnetic field:
Preprint IPMech RAS. Moscow, 2010, № 942, p. 57.
12. S.T. Surzhikov. Optical properties of gases and
plasma. M.: «Bauman Moscow State Technical
University Press», 2004, p. 575.
13. G.A. Luk’yanov. Supersonic plasma jets. L.:
«Mashinostroenie», 1985, p. 265.
Article received 20.09.12
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАМАГНИЧЕННОЙ ПЛАЗМЫ, СЖИМАЕМОЙ ЛАЗЕРНЫМИ
ЛУЧАМИ И ПЛАЗМЕННЫМИ СТРУЯМИ
В.В. Кузенов, С.В. Рыжков
Магнитно-инерциальный термоядерный синтез, включая сжатие замагниченной мишени мощными
лазерами – быстро развивающаяся область науки. Отличительная особенность данной задачи – наличие
начального затравочного поля (наложенного внешнего импульсного магнитного поля) и сжатие магнитного
потока лазерными пучками (лазерный драйвер) или плазменными струями (плазменный лайнер).
Рассмотрен случай однородного и синхронного лазерного облучения (интенсивность излучения
> 1020 Вт/м2). Представлены результаты выполненных тестовых расчетов для стационарных струй плазмы с
учетом магнитного поля. Можно утверждать, что магнитное поле, с точки зрения вихрей, играет
стабилизирующую роль, которая проявляется в том, что вихревые структуры диссипируют при наличии
магнитного поля.
ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ЗАМАГНІЧЕНОЇ ПЛАЗМИ, ЩО СТИСНУТА ЛАЗЕРНИМИ
ПРОМЕНЯМИ І ПЛАЗМОВИМИ СТРУМЕНЯМИ
В.В. Кузєнов, С.В. Рижков
Магнітно-інерціальний термоядерний синтез, включаючи стиснення замагніченої мішені потужними
лазерами, галузь науки, яка швидко розвивається. Відмітна особливість даної задачі – наявність початкового
запалювального поля (накладеного зовнішнього імпульсного магнітного поля) і стиснення магнітного
потоку лазерними пучками (лазерний драйвер) або плазмовими струменями (плазмовий лайнер). Розглянуто
випадок однорідного і синхронного лазерного опромінення (інтенсивність випромінювання > 1020 Вт/м2).
Представлені результати виконаних тестових розрахунків для стаціонарних струменів плазми з урахуванням
магнітного поля. Можна стверджувати, що магнітне поле з точки зору вихорів грає стабілізуючу роль, яка
проявляється в тому, що вихрові структури дисипірують при наявності магнітного поля.
|