Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range

In this work, we present the mid-infrared analysis of analogues of Titan's aerosols produced in a radio frequency capacitively coupled plasma (RF-CCP). The influence of the gas mixture on aerosols spectra is also studied through the analysis of the carbonaceous bands of the spectra, and its Gau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Gautier, T., Carrasco, N., Mahjoub, A., Stefanovic, I., Szopa, C., Cernogora, G., Hadamcik, E., Winter, J.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/109261
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range / T. Gautier, N. Carrasco, A. Mahjoub, I. Stefanovic, C. Szopa, G. Cernogora, E. Hadamcik, J. Winter // Вопросы атомной науки и техники. — 2013. — № 1. — С. 168-170. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109261
record_format dspace
spelling irk-123456789-1092612016-11-23T03:02:21Z Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range Gautier, T. Carrasco, N. Mahjoub, A. Stefanovic, I. Szopa, C. Cernogora, G. Hadamcik, E. Winter, J. Низкотемпературная плазма и плазменные технологии In this work, we present the mid-infrared analysis of analogues of Titan's aerosols produced in a radio frequency capacitively coupled plasma (RF-CCP). The influence of the gas mixture on aerosols spectra is also studied through the analysis of the carbonaceous bands of the spectra, and its Gaussian deconvolution. Представлен анализ в среднем инфракрасном диапазоне аналогов титановых аэрозолей, которые производятся в радиочастотных источниках плазмы с емкостной связью (РЧ-ЕСС). Также изучено влияние газовой смеси на спектры аэрозолей с помощью анализа углеродсодержащих полос спектра и ее гауссовой деконволюции (обратная свертка). Представлено аналіз у середньому інфрачервоному діапазоні аналогів титанових аерозолів, які проводяться в радіочастотних джерелах плазми з ємнісним зв'язком (РЧ-ЕСС). Також вивчено вплив газової суміші на спектри аерозолів за допомогою аналізу вуглецевмісних смуг спектра і її гауссової деконволюції (зворотня згортка). 2013 2013 Article Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range / T. Gautier, N. Carrasco, A. Mahjoub, I. Stefanovic, C. Szopa, G. Cernogora, E. Hadamcik, J. Winter // Вопросы атомной науки и техники. — 2013. — № 1. — С. 168-170. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52.25.-b http://dspace.nbuv.gov.ua/handle/123456789/109261 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Gautier, T.
Carrasco, N.
Mahjoub, A.
Stefanovic, I.
Szopa, C.
Cernogora, G.
Hadamcik, E.
Winter, J.
Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range
Вопросы атомной науки и техники
description In this work, we present the mid-infrared analysis of analogues of Titan's aerosols produced in a radio frequency capacitively coupled plasma (RF-CCP). The influence of the gas mixture on aerosols spectra is also studied through the analysis of the carbonaceous bands of the spectra, and its Gaussian deconvolution.
format Article
author Gautier, T.
Carrasco, N.
Mahjoub, A.
Stefanovic, I.
Szopa, C.
Cernogora, G.
Hadamcik, E.
Winter, J.
author_facet Gautier, T.
Carrasco, N.
Mahjoub, A.
Stefanovic, I.
Szopa, C.
Cernogora, G.
Hadamcik, E.
Winter, J.
author_sort Gautier, T.
title Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range
title_short Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range
title_full Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range
title_fullStr Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range
title_full_unstemmed Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range
title_sort use of the linear absorption coefficient for absolute comparison of plasma films in the mid-ir range
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/109261
citation_txt Use of the linear absorption coefficient for absolute comparison of plasma films in the mid-IR range / T. Gautier, N. Carrasco, A. Mahjoub, I. Stefanovic, C. Szopa, G. Cernogora, E. Hadamcik, J. Winter // Вопросы атомной науки и техники. — 2013. — № 1. — С. 168-170. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gautiert useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT carrascon useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT mahjouba useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT stefanovici useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT szopac useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT cernogorag useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT hadamcike useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
AT winterj useofthelinearabsorptioncoefficientforabsolutecomparisonofplasmafilmsinthemidirrange
first_indexed 2025-07-07T22:49:31Z
last_indexed 2025-07-07T22:49:31Z
_version_ 1837030254813642752
fulltext 168 ISSN 1562-6016. ВАНТ. 2013. №1(83) USE OF THE LINEAR ABSORPTION COEFFICIENT FOR ABSOLUTE COMPARISON OF PLASMA FILMS IN THE MID-IR RANGE T. Gautier1,2, N. Carrasco1, A. Mahjoub1, I. Stefanovic2, C. Szopa1, G. Cernogora1, E. Hadamcik1, J. Winter 2 1Université de Versailles St Quentin, CNRS, LATMOS 11bvd d'Alembert, Guyancourt, France ; 2Experimental Physik II, Ruhr Universität Bochum, Bochum, Germany In this work, we present the mid-infrared analysis of analogues of Titan's aerosols produced in a radio frequency capacitively coupled plasma (RF-CCP). The influence of the gas mixture on aerosols spectra is also studied through the analysis of the carbonaceous bands of the spectra, and its Gaussian deconvolution. PACS: 52.25.-b INTRODUCTION Titan’s atmosphere is the place of a complex organic chemistry initiated from dissociation of its main constituents, i.e. N2 and CH4. This chemistry leads to the formation of solid aerosols and can be simulated in laboratory using a RF-CCP setup [1]. In this work we propose a method for infrared analyses that allows direct comparison of different samples. This method is used for the analysis of the carbon-hydrogen bonding in the organic material produced with the plasma. 1. THE PAMPRE EXPERIMENT Fig. 1 present the experimental setup. The reaction chamber is a stainless-steel cylinder 30 cm in diameter and 40 cm in height. The plasma is confined in a metallic box 13.7 cm in diameter and with a 4…5 cm inter-electrode gap (Confining Box CB) . The bottom of the box is meshed to allow sweeping the dust out. On the side of the box, two 1 cm-wide apertures, covered with a thin grid, allow studying the plasma using optical emission spectroscopy (OES) using a -UV-VIS-NIR Monochromator (SP) fitted with a - Photomultiplier; (PM) and a Picoampmeter (PA) [2]. This configuration, already used in the GREMI laboratory [3] is known to produce dust in a reactive gas mixture [4]. Other available diagnosis are, FTIR, mass spectrometry [5], cryogenic trapping associated to gas chromatography- mass spectrometry [6], the electron density measurements using the confining box as a resonant microwave cavity and the self-bias voltage (Vdc). Fig. 1. Experimental setup of the PAMPRE experiment Before production of samples, the reactor is heated and pumped with a turbo molecular pump (TP) down to a secondary vacuum measured with a penning gauge (PG). Reactive gas (i.e. mixture of N2 and CH4) is injected through a shower head located above the top electrode using mass flow controllers (MFC) and pumped by a rotary vane pump (RVP). Pressure is measured with a capacitance gauge (BPG). Organic solid material are produced at room temperature, with a pressure of 90 Pa and a gas mixture varying from 1 to 10 % of CH4 in N2. Samples can be produced either as bulk dust or deposited as thin films on substrates placed on the confining box, directly inside the plasma. Tholins analyzed in this work were deposited as thin film on low-emissivity infrared mirror (MirrIR™). 2. SAMPLE ANALYSIS AND DISCUSSION Analyses of organic film absorption in the Infrared were performed at the SMIS beamline of SOLEIL synchrotron facility, France [7]. We used a NicPlan microscope coupled to a Nicolet Magna System 560 Fourier Transformed Infrared spectrometer. The Infrared source was the synchrotron radiation and the detector was a Mercury-Cadmium Telluride (MCT) detector. Infrared spectra were performed in double transmission mode. Spectra were recorded at a spectral resolution of 4 cm-1 after co-adding 512 scans at a Michelson mirror velocity of 1.26 cm·s-1. Spectra cover the full mid and far infrared range, from 50 cm-1 (200 µm) up to 4500 cm-1 (2.2 µm). This work will focus on the 2800...3000 cm-1 wavenumber range, corresponding to the aliphatic carbons bands. In order to compare several samples, it is needed to calibrate absorption spectra according to the thickness of the films. Indeed, after absorption in the sample, the intensity of the beam follows the Beer-Lambert law that can be established as: . Where d is the sample thickness, It the intensity of the transmitted beam, I0 the initial intensity and ε is the linear absorption coefficient of the material. ISSN 1562-6016. ВАНТ. 2013. №1(83) 169 As film thickness d (a few hundreds nanometers) varies with discharges conditions, d is measured for each sample by ellipsometry [8]. The full spectra in the mid-infrared of tholins is presented Fig. 2. The different curves correspond to spectra of tholins produced with different gas mixtures (respectively 1, 2, 5 and 10 % of CH4 in N2). These spectra present common tholins absorption features in the mid-infrared, widely described in literature [9-11]. 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 ν (cm-1) ε (c m -1 ) 1% 2% 5% 10% Fig. 2. Spectra of tholins produced with different gas mixture. Full black curve: 1 % CH4; Dashed black: 2 % CH4; Dashed grey: 5% CH4; Full grey: 10% CH4. Adapted from [11] Two broad bands coming from amine (-NH and – NH2) stretching modes are visible at high wavenumber (3200 and 3330 cm-1). Close to these bands is the pattern attributed to aliphatic carbons (-CH2 and –CH3) stretching modes, around 2900 cm-1. This pattern will be discussed in details lately. The three bands observed around 2200 cm-1 can be attributed to nitriles (-C=-N), isocyanides (-N=-C) and carbodiimide (-N=C=N-) stretching modes. Finally, the intense bands at 1560 and 1630 cm-1 cannot be unambiguously attributed since they could correspond to several functional groups bending modes such as –NH2, C=C, C=N or aromatics. To study the impact of methane percentage in the experiment on aliphatic carbon contain, we used a poly- Gaussian deconvolution (performed with fityk software) of the 2900 cm-1 pattern as proposed in [9]. In order to study this pattern, it was first necessary to remove the component due to the presence of amines bands at higher wavenumbers, considering this amine band as a baseline for the aliphatic carbons bands. This means that the pattern visible on Fig. 2 is only due to the contribution of aliphatic carbons (-CH2 and –CH3) bands. This 2800…2900 cm-1 pattern is fitted by a combination of Gaussian functions. In this spectral range, there are up to five possible stretching modes for C-H bonding, corresponding to –CH3 asymmetric (~2970 cm-1); -CH2 asymmetric (~2930 cm-1); -CH (~2900 cm-1); -CH3 symmetric (~2870 cm-1) and –CH2 symmetric (~2850 cm-1). The fitting process was thus initialized with five Gaussians at these positions. Figs. 3 and 4 present the fit for samples produced with 1 and 10 % CH4. Dots are the experimental spectra, dashed lined are the Gaussians used for the fit, and full line is the resulting model. 2800 2850 2900 2950 3000 3050 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 ν (cm-1) ε (c m -1 )- B as el in e su bs tra ct ed Experimental data (1% CH4) Gauss1 Gauss2 Gauss3 Gauss4 Fit Fig. 3. Deconvolution of films 1% CH4 -spectrum 2750 2800 2850 2900 2950 3000 3050 3100 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 ν (cm-1) ε (c m -1 )- B as el in e su bs tra ct ed Experimental data (10% CH4) Gauss1 Gauss2 Gauss3 Fit Fig. 4. Deconvolution of films 10 % CH4-spectrum The first information in this plot is the global intensity of this pattern, which regularly increases with the methane percentage in the experiment. Indeed, εmax is around 1.10-2 cm-1 for 1 % CH4, 4.10-2 cm-1 for 2 % CH4, 6.10-2 cm-1 for 5 % CH4 and 9.10-2 cm-1 for 10 % of CH4 in the experiment. This means that the global amount of aliphatic carbon in tholins increases with the percentage of methane in the mixture used to produce tholins. This is also consistent with the decrease of amines bands when CH4 increases in the experiment, visible on Fig. 2. Secondly, as visible on these figures, most part of the signal comes from only three of the Gaussians, corresponding to –CH2 asymmetric and –CH3 symmetric and asymmetric stretching. Looking to the respective weight of these three Gaussians in the fit, one can see that the –CH2 are the predominant bonding in tholins produced with 1 % of CH4. But when methane percentage increases, –CH3 become slightly more abundant than –CH2. This augmentation is consistent with elemental analysis performed previously on tholins [12] which showed that the H/C ratio in tholins increases with methane percentage. CONCLUSIONS In the present work, the proposed method for infrared analysis of organic thin film allows quantitative comparison of different samples. The comparison of spectra of thin film produced with different methane percentage shows the decreases of amine bands and increases of carbon bands, and also the evolution of the 2900 cm-1 pattern. REFERENCES 1. C. Szopa, G. Cernogora, L. Boufendi, J.J. Correia and P. Coll. PAMPRE: A dusty plasma experiment for Titan's tholins production and study // Planetary and Space Science. 2006, v. 54, p. 394-404. 170 ISSN 1562-6016. ВАНТ. 2013. №1(83) 2. G. Alcouffe, M. Cavarroc, G. Cernogora, F. Ouni, A. Jolly, L. Boufendi and C. Szopa. Capacitively coupled plasma used to simulate Titan's atmospheric chemistry // Plasma Sources Science and Technology. 2010, v. 19(1), p. 015008. 3. L. Boufendi and A. Bouchoule. Particle nucleation and growth in a low-pressure argon-silane discharge // Plasma Sources Sci. Technol. 1994, v. 3(3), p. 262. 4. A. Bouchoule. Dusty Plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing / Ed. Wiley, 1999, p. 418. 5. N. Carrasco, T. Gautier, E.-t. Es-sebbar, P. Pernot and G. Cernogora. Volatile products controlling Titan’s tholins production // Icarus. 2012, v. 219(1), p. 230-240. 6. T. Gautier, N. Carrasco, A. Buch, C. Szopa, E. Sciamma-O'Brien and G. Cernogora. Nitrile gas chemistry in Titan atmosphere // Icarus. 2011, v. 213(2), p. 625-635. 7. P. Dumas, F. Polack, B. Lagarde, O. Chubar, J.L. Giorgetta and S. Lefrançois. Synchrotron infrared microscopy at the French Synchrotron Facility SOLEIL // Infrared Physics & Technology. 2006, v. 49(1-2), p. 152-160. 8. A. Mahjoub, P.R. Dahoo, T. Gautier, N. Carrasco, C. Szopa and G. Cernogora. Influence of methane concentration on the optical indices of Titan's aerosols analogues // Icarus. 2012, v. 221(2), p. 670-677. 9 H. Imanaka, B.N. Khare, J.E. Elsila, E.L.O. Bakes, C.P. McKay, D.P. Cruikshank, S. Sugita, T. Matsui and R.N. Zare. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze // Icarus. 2004, v. 168, p. 344-366. 10. E. Quirico, G. Montagnac, V. Lees, P.F. McMillan, C. Szopa, G. Cernogora, J.-N. Rouzaud, P. Simon, J.-M. Bernard, P. Coll, N. Fray, R.D. Minard, F. Raulin, B. Reynard and B. Schmitt. New experimental constraints on the composition and structure of tholins // Icarus. 2008, v. 198(1), p. 218-231. 11. T. Gautier, N. Carrasco, A. Mahjoub, S. Vinatier, A. Giuliani, C. Szopa, C.M. Anderson, J.-J. Correia, P. Dumas and G. Cernogora. Mid- and far-infrared absorption spectroscopy of Titan’s aerosols analogues // Icarus. 2012, v. 221(1), p. 320-327. 12. E. Sciamma-O'Brien, N. Carrasco, C. Szopa, A. Buch and G. Cernogora. Titan's atmosphere: an optimal gas mixture for aerosol production? // Icarus. 2010, v. 209 (2), p. 704-714. Article received 22.11.12 ИСПОЛЬЗОВАНИЕ ЛИНЕЙНОГО КОЭФФИЦИЕНТА ПОГЛОЩЕНИЯ ДЛЯ АБСОЛЮТНОГО СРАВНЕНИЯ ПЛАЗМЕННЫХ ПЛЕНОК В СРЕДНЕМ ИК-ДИАПАЗОНЕ T. Gautier, N. Carrasco, A. Mahjoub , I. Stefanovic, C. Szopa, G. Cernogora, E. Hadamcik, J. Winter Представлен анализ в среднем инфракрасном диапазоне аналогов титановых аэрозолей, которые производятся в радиочастотных источниках плазмы с емкостной связью (РЧ-ЕСС). Также изучено влияние газовой смеси на спектры аэрозолей с помощью анализа углеродсодержащих полос спектра и ее гауссовой деконволюции (обратная свертка). ВИКОРИСТАННЯ ЛІНІЙНОГО КОЕФІЦІЄНТА ПОГЛИНАННЯ ДЛЯ АБСОЛЮТНОГО ПОРІВНЯННЯ ПЛАЗМОВИХ ПЛІВОК У СЕРЕДНЬОМУ IЧ-ДІАПАЗОНІ T. Gautier, N. Carrasco, A. Mahjoub. , I. Stefanovic, C. Szopa, G. Cernogora, E. Hadamcik, J. Winter Представлено аналіз у середньому інфрачервоному діапазоні аналогів титанових аерозолів, які проводяться в радіочастотних джерелах плазми з ємнісним зв'язком (РЧ-ЕСС). Також вивчено вплив газової суміші на спектри аерозолів за допомогою аналізу вуглецевмісних смуг спектра і її гауссової деконволюції (зворотня згортка).