Initial stage of the beam-plasma discharge in helium: simulation via PIC method
Initial stage of the beam-plasma discharge (BPD) in Helium was studied using 1D simulation via particle-in-cell method. Several regimes were observed and described depend on ranges of beam current density and gas pressure: absence of BPD ignition, BDP ignition with the small degree of additional ion...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109272 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Initial stage of the beam-plasma discharge in helium: simulation via PIC method / B.P. Kosarevych, M.J. Soloviova, I.O. Anisimov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 131-133. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109272 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092722016-11-23T03:02:25Z Initial stage of the beam-plasma discharge in helium: simulation via PIC method Kosarevych, B.P. Soloviova, M.J. Anisimov, I.O. Плазменная электроника Initial stage of the beam-plasma discharge (BPD) in Helium was studied using 1D simulation via particle-in-cell method. Several regimes were observed and described depend on ranges of beam current density and gas pressure: absence of BPD ignition, BDP ignition with the small degree of additional ionization, and “regular” BPD mode with the significant heating of the background plasma electrons by the beam-plasma instability HF field. Исследована начальная стадия развития плазменно-пучкового разряда (ППР) в гелии с помощью одномерного компьютерного моделирования методом крупных частиц. В зависимости от плотности тока пучка и давления газа в системе наблюдалось три характерных режима: отсутствие зажигания ППР; зажигание ППР с малой дополнительной ионизацией; “регулярный” режим ППР, сопровождающийся заметным нагревом электронов фоновой плазмы высокочастотным электрическим полем плазменно- пучковой неустойчивости. Досліджено початкову стадію розвитку плазмово-пучкового розряду (ППР) у гелії шляхом одновимірного комп’ютерного моделювання методом макрочастинок. Залежно від густини струму пучка та тиску газу в системі виявлено три характерних режими: відсутність запалювання ППР; запалювання ППР з малою додатковою іонізацією; “регулярний” режим ППР, що супроводжується помітним розігрівом електронів фонової плазми високочастотним електричним полем плазмово-пучкової нестійкості. 2013 2013 Article Initial stage of the beam-plasma discharge in helium: simulation via PIC method / B.P. Kosarevych, M.J. Soloviova, I.O. Anisimov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 131-133. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 52.50.Gj, 52.40.Mj, 52.35.Qz, 52.65.Rr http://dspace.nbuv.gov.ua/handle/123456789/109272 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменная электроника Плазменная электроника |
spellingShingle |
Плазменная электроника Плазменная электроника Kosarevych, B.P. Soloviova, M.J. Anisimov, I.O. Initial stage of the beam-plasma discharge in helium: simulation via PIC method Вопросы атомной науки и техники |
description |
Initial stage of the beam-plasma discharge (BPD) in Helium was studied using 1D simulation via particle-in-cell method. Several regimes were observed and described depend on ranges of beam current density and gas pressure: absence of BPD ignition, BDP ignition with the small degree of additional ionization, and “regular” BPD mode with the significant heating of the background plasma electrons by the beam-plasma instability HF field. |
format |
Article |
author |
Kosarevych, B.P. Soloviova, M.J. Anisimov, I.O. |
author_facet |
Kosarevych, B.P. Soloviova, M.J. Anisimov, I.O. |
author_sort |
Kosarevych, B.P. |
title |
Initial stage of the beam-plasma discharge in helium: simulation via PIC method |
title_short |
Initial stage of the beam-plasma discharge in helium: simulation via PIC method |
title_full |
Initial stage of the beam-plasma discharge in helium: simulation via PIC method |
title_fullStr |
Initial stage of the beam-plasma discharge in helium: simulation via PIC method |
title_full_unstemmed |
Initial stage of the beam-plasma discharge in helium: simulation via PIC method |
title_sort |
initial stage of the beam-plasma discharge in helium: simulation via pic method |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Плазменная электроника |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109272 |
citation_txt |
Initial stage of the beam-plasma discharge in helium: simulation via PIC method / B.P. Kosarevych, M.J. Soloviova, I.O. Anisimov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 131-133. — Бібліогр.: 17 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kosarevychbp initialstageofthebeamplasmadischargeinheliumsimulationviapicmethod AT soloviovamj initialstageofthebeamplasmadischargeinheliumsimulationviapicmethod AT anisimovio initialstageofthebeamplasmadischargeinheliumsimulationviapicmethod |
first_indexed |
2025-07-07T22:50:32Z |
last_indexed |
2025-07-07T22:50:32Z |
_version_ |
1837030321842814976 |
fulltext |
PLASMA ELECTRONICS
ISSN 1562-6016. ВАНТ. 2013. №1(83) 131
INITIAL STAGE OF THE BEAM-PLASMA DISCHARGE IN HELIUM:
SIMULATION VIA PIC METHOD
B.P. Kosarevych, M.J. Soloviova, I.O. Anisimov
Taras Shevchenko National University of Kiev, Radio Physics Faculty, Kiev, Ukraine
E-maul: ioa@univ.kiev.ua
Initial stage of the beam-plasma discharge (BPD) in Helium was studied using 1D simulation via particle-in-cell
method. Several regimes were observed and described depend on ranges of beam current density and gas pressure:
absence of BPD ignition, BDP ignition with the small degree of additional ionization, and “regular” BPD mode with
the significant heating of the background plasma electrons by the beam-plasma instability HF field.
PACS: 52.50.Gj, 52.40.Mj, 52.35.Qz, 52.65.Rr
INTRODUCTION
The recent interest to the beam-plasma discharge
(BPD) is caused by its possible practical applications.
BPD as well as other types of discharges can be a
source of non-equilibrium plasma. Its electron
temperature can reach ~10 eV [1], so BPD can be used
for carrying out plasma-chemical reactions with the
energy threshold [2, 3]. Deposition technologies,
including chemical vapor deposition (CVD) and plasma
enhanced CVD (PECVD) also can be based on BPD. In
these cases plasma ions are accelerated by the external
potential and bombard the substrate.
For technological purposes it is necessary to manage
plasma parameters easy. BPD plasma parameters can be
varied by changing electron beam current or
accelerating voltage. At low current densities of the
beam BPD is not realized, only electron beam focusing
by ions takes place [4]. At high pressures BPD is not
realized too, because the beam electrons can’t get the
necessary energy at the mean free path. Ignition of the
BPD is connected with the development of beam-
plasma instability (BPI).
Although BPD was discovered 50 years ago and
many works related to it were carried out, most of them
are experimental [5-10]. The first attempts to describe
BPD theoretically were made by Ya. B. Fainberg et al.
[11-12]. In [11] only temporal dynamics of the plasma
density and electron temperature were calculated. The
spatial dynamics of the system was not studied.
The analytical BPD theory [1] describes its
development only in general terms. BPI and ionization
of the background plasma by the excited HF field are
not considered self-consistently. However, the plasma
density variation in time and space, the dependence of
cross sections on interaction energy cannot describe
BPD analytically. Full description can be done only
using computer simulation [13-16].
The main goal of this work was simulation of the
BPD initial stage in helium for various current densities
of the electron beam and wide range of gas pressures.
The objectives were to analyze the ionization degree of
neutral gas in the later stages of simulation and to
investigate the conditions when intense electric field is
excited in the system and how this field affects the
process of neutral gas ionization.
1. SIMULATION MODEL AND
PARAMETERS
BPD ignition is caused by the electron beam
injection into neutral or partially ionized gas. In the first
case plasma initially appears due to ionization of neutral
gas by electron beam impact. Usually the electron beam
is weak and the beam electron density is much less than
the initial background plasma density.
One-dimensional package PDP1 [17] was used for
simulation of the BPD initial stage. Electron beam was
injected into the interelectrode space filled by the
partially ionized plasma. Three kinds of particles (beam
electrons, plasma electrons and ions) were taken into
account. Neutral gas was considered as background.
Several elementary processes (elastic electron-neutral
collisions, neutrals’ excitation and ionization by
electron impact) were taken into account in the package.
Interaction of electrons with neutral gas was considered
only for plasma electrons. Thus the electron beam
interaction with plasma took place only due to
excitation of HF electric field.
Initially the gas was partially ionized with degree
3·10-4…3·10-7. Main simulation parameters were taken
close to experimental values [4] and are given in Table.
Table Simulation parameters
Gas type Helium
Gas pressure р=10-3; 10-2; 0.1 Тоrr
Gas temperature Т=0.025 еV
Interelectrode length L=1 m
Initial plasma density ne0=1010 сm-3
Plasma electron temperature Te0=1 еV
Debye length rD=0,01 сm
Langmuir oscillations period Tpe=1·10-9 s
Beam acceleration voltage Ua=5000 V
Beam density nb=1.5·107; 3.0·107;
7.5·107; 1.5·108;
3·108 cm-3
Beam current density jb=100; 200; 500; 1000;
2000 A/m2
Beam electron’s transit time 2.4·10-8 s
Number of cells 2·104
Simulation time step 1·10-12 s
Simulation time (0.8…1.0)·10-7 s
132 ISSN 1562-6016. ВАНТ. 2013. №1(83)
2. SIMULATION RESULTS
The spatial-temporal dynamics of the main system
characteristics is presented on Fig. 1. The current and
pressure correspond to the boundary between regimes of
the moderate and strong ionization.
According to the results of simulation there are three
typical modes of the beam interaction with weakly
ionized plasma.
At low pressures BPI is developed, beam is
modulated by excited BPI HF field. However,
additional gas ionization is not observed as the mean
free path of electrons in a neutral gas are comparable to
the system length.
At higher pressures mean free path decreases, and as
a result, BPD ignites. However, the increase of the
degree of the gas ionization does not exceed its initial
value.
At high current densities and higher pressures the gas
ionization is significant. Plasma density can exceed an
order of the initial background value. In this mode
ionization of the background plasma first starts closer to
the left electrode. But variation of the background
plasma density leads to moving of BPI from this area.
Consequently, the area of intense electric field and
intense gas ionization moves away from the injector.
Therefore, the final distribution of plasma density can
be non-monotonous.
Simulation interval is four times larger than the
electron beam flight time between electrodes and equal
to 100 electron plasma periods.
The electron beam density distribution is shown on
Fig. 1,a. Dark areas correspond to the electron bunches;
their slope is determined by the beam velocity. Electron
beam in the left part of space is homogeneous and
monokinetic. The beam homogeneity breaks down as a
result of BPI development in the right half space. Beam
is modulated by density, so bunches are formed.
However, they decay later due to the electrons’ mixing.
The HF electric field is excited in the same area
(Fig. 1,b). Average electron beam density is correlated
with the distribution of electric field due to bunches’
interaction with potential wave. The most intensive
electric field occurs near the middle of the system closer
to the right electrode. This field assists plasma heating
and gas ionization. However, plasma density increases
due to ionization, so Cherenkov resonance condition
breaks. It leads to the gradual shift of the region of
maximum electric field and ionization to the right half
space (see Fig. 1,b).
One can see few maxima at the final plasma density
distribution (Fig. 1,d). From Fig. 1,a it’s clear that the
first maximum is formed earlier (approximately at
t=25 ns). It can be associated with the first splash of the
electric field in Fig. 1,b, which is observed at
t=10…30 ns. Next maxima formation occurs in the area
where the field periodically reaches its maximum,
starting from t=40 ns.
The program does not take into account the plasma
diffusion in the transverse direction and its
recombination. So the plasma density at each point in
space only increases in time.
In further research it would be interesting to consider
the collisions of beam electrons with neutral atoms and
recombination processes in the background plasma, as
well as to explore the possibility of stationary mode. It
would also be interesting to consider 2D and 3D system
geometry.
a
b
c
d
Fig. 1. Space-time dependence of the beam electron
density (a), electric field (b), plasma ion density (c) and
spatial distribution of plasma ion density (d) at time
moment t = 1.1·10-7c (d). Beam current density
j=200 A/m2, neutral gas pressure p=0.1 Torr
ISSN 1562-6016. ВАНТ. 2013. №1(83) 133
REFERENCES
1. E.V. Mishyn, Yu.Ya. Ruzhin, V.A. Telegin.
Interaction of electronic flows with ionospheric plasma.
Leningrad: “Gidrometeoizdat”, 1989.
2. V.M. Atamanov, A.Y. Zhuzhunashvyly, S.Y. Krashe-
nynnykov, H.B. Levadnyy, Yu.F. Nasedky, V.A. Nyky-
forov, T.K. Soboleva, N.Y. Tymchenko, E.K. Cher-
kasova. Experimental investigation of the beam-plasma
discharge on purpose for holding the plasma-chemical
reactions // Journ. of Plasma Phys. 1979, v. 5, № 1,
p. 204-210.
3. A.A. Ivanov, T.K. Soboleva, P.N. Yushmanov. Pers-
pectives of plasma-beam discharge application in
plasma-chemistry // Journ. of Plasma Phys. 1977, v. 3,
№ 1, p. 152-162.
4. V.A. Tutyk. Research of mode plasma-beam
discharge by operation of the gas discharge electronic
gun // Probl. of Atomic Sci. and Techn. Ser. «Plasma
Electronics and New Acceleration Methods». 2008,
№ 4, p. 184-188.
5. L.Yu. Kochmarev, A.Y. Chmyl, E.H. Shustyn. About
the structure and generation mechanism HF fluctuations
in the beam-plasma discharge // Journ. of Plasma Phys.
1995, v. 21, № 3, p. 257-266.
6. A.K. Berezyn, E.V. Lyfshyts, Ya.B. Fainberg,
Y.A. Bezyazychnyy, Yu.M. Lyapkalo, A.M. Artamo-
shkyn. Collective interaction of intense electronic
beams with plasma. Ι. Appearance and development of
the beam-plasma discharge // Journ. of Plasma Phys.
1995, v. 21, № 3, p. 226-240.
7. I.N. Meshkov, S.S. Nagaytsev, I.A. Seleznev,
E.M. Syresin. Beam-plasma discharge with an electron
beam injection into rarefied gas: Novosibirsk Preprint.
1990, № 90-12, p. 15.
8. A.A. Ivanov, V.G. Leyman. About ignition of the
beam-plasma discharge by powerful electron beam in a
gas of high density // Journ. of Plasma Phys. 1977, v. 3,
№ 4, p. 780-785.
9. E.I. Skibenko. Beam-plasma discharge in a dense gas
and strong magnetic field, its features and possible
applications // Probl. of Atomic Sci. and Techn. Plasma
Electronics and New Acceleration Methods. 2010, v. 7,
№ 4, p. 219-225.
10. A.A. Serov. Relaxation of the electron beam in an
inhomogeneous plasma in stationary beam-plasma
discharge at the moderate low pressure // Journ. of
Plasma Phys. 2009, v. 35, № 7, p. 624-635.
11. I.M. Lebedev, I.N. Onischenko, Yu.V. Tkach,
Ya.B. Fainberg, V.I. Shevchenko. The theory of the
beam-plasma discharge // Journ. of Plasma Phys. 1976,
v. 2, № 3, p. 407-413.
12. Yu.P. Blioh, M.G. Lyubarsky, V.O. Podobinsky,
Ya.B. Fainberg. A nonstationary beam-plasma
discharge. I. Mathematical model and linear theory //
Journ. of Plasma Phys. 2003, v. 29, № 9, p. 801-808.
13. G.I. Guseva, K.K. Dmitriev, M.A. Zavyalov,
V.A. Leytan, A.S. Roshal. The development kinetics of
the initial stage of the beam-plasma discharge // Journ.
of Plasma Phys. 1987, v. 13, № 3, p. 366-369.
14. Ch. K. Birdsall, A. B. Langdon. Plasma Physics, via
Computer Simulation. New York: «McGraw-Hill Book
Company», 1985.
15. J.P. Verboncoeur, M.V. Alves, V. Vahedi and
Ch.K. Birdsall. Simultaneous Potential and Circuit
Solution for 1D bounded Plasma Particle Simulation
Codes // Journ. of Comp. Physics. 1993, № 104, p. 321-
328.
16. V.P. Tarakanov, E.G. Shustin. Dynamics of beam
instability in a bounded plasma space: numerical
experiment // Journ. of Plasma Phys. 2007, v. 33, № 2,
p. 151-158.
17. I.O. Anisimov, D.V. Sasyuk, T.V. Siversky.
Modified package PDP1 for beam-plasma systems’
simulation // Dynamical system modelling and stability
investigation. Conference reports. Kyiv, 2003, p. 257.
Article received 22.10.12
НАЧАЛЬНАЯ СТАДИЯ ПЛАЗМЕННО-ПУЧКОВОГО РАЗРЯДА В ГЕЛИИ:
МОДЕЛИРОВАНИЕ МЕТОДОМ КРУПНЫХ ЧАСТИЦ
Б.П. Косаревич, М.И. Соловьёва, И.А. Анисимов
Исследована начальная стадия развития плазменно-пучкового разряда (ППР) в гелии с помощью
одномерного компьютерного моделирования методом крупных частиц. В зависимости от плотности тока
пучка и давления газа в системе наблюдалось три характерных режима: отсутствие зажигания ППР;
зажигание ППР с малой дополнительной ионизацией; “регулярный” режим ППР, сопровождающийся
заметным нагревом электронов фоновой плазмы высокочастотным электрическим полем плазменно-
пучковой неустойчивости.
ПОЧАТКОВА СТАДІЯ ПЛАЗМОВО-ПУЧКОВОГО РОЗРЯДУ В ГЕЛІЇ:
МОДЕЛЮВАННЯ МЕТОДОМ МАКРОЧАСТИНОК
Б.П. Косаревич, М.Й. Соловйова, І.О. Анісімов
Досліджено початкову стадію розвитку плазмово-пучкового розряду (ППР) у гелії шляхом одновимірного
комп’ютерного моделювання методом макрочастинок. Залежно від густини струму пучка та тиску газу в
системі виявлено три характерних режими: відсутність запалювання ППР; запалювання ППР з малою
додатковою іонізацією; “регулярний” режим ППР, що супроводжується помітним розігрівом електронів
фонової плазми високочастотним електричним полем плазмово-пучкової нестійкості.
|