Plasma wakefield excitation providing homogeneous focusing of electron bunches

Wakefield plasma lens, which focuses all relativistic electron bunches of the sequence identically and uniformly, are investigated analytically and by numerical simulation. The necessary conditions of such lens operation are the followings: length of the bunches is ξb=q(λ/2), q=1, 2, …(λ is the plas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Maslov, V.I., Onishchenko, I.N., Yarovaya, I.P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/109273
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Plasma wakefield excitation providing homogeneous focusing of electron bunches / V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya // Вопросы атомной науки и техники. — 2013. — № 1. — С. 134-136. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109273
record_format dspace
spelling irk-123456789-1092732016-11-23T03:02:43Z Plasma wakefield excitation providing homogeneous focusing of electron bunches Maslov, V.I. Onishchenko, I.N. Yarovaya, I.P. Плазменная электроника Wakefield plasma lens, which focuses all relativistic electron bunches of the sequence identically and uniformly, are investigated analytically and by numerical simulation. The necessary conditions of such lens operation are the followings: length of the bunches is ξb=q(λ/2), q=1, 2, …(λ is the plasma wavelength), the distance between bunches is Δξ=pλ, p=1, 2, … All bunches have the same charge and the 1-st bunch has a half of this charge. It is shown that with the exception of 1-st bunch all other bunches are occurred in zero longitudinal wakefield and in uniform along bunch length focusing radial wakefield. In the case of inhomogeneous longitudinal distribution of electron bunch density the middle of bunches are focused slower in comparison with their edges. Аналитически и численным моделированием исследуется кильватерная плазменная линза, в которой все релятивистские электронные сгустки последовательности фокусируются одинаково и однородно. При этом необходимо, чтобы сгустки имели длины, равные ξb=q(λ/2), q=1, 2, …, скважность между сгустками была равна Δξ=pλ, p=1, 2,…, заряд 1-го сгустка был в два раза меньше зарядов всех остальных сгустков. Показано, что только 1-й сгусток находится в конечном продольном электрическом кильватерном поле Ez≠0. Другие сгустки находятся в Ez=0. Радиальная кильватерная сила Fr в областях расположения сгустков постоянна вдоль сгустков. В случае неоднородного продольного распределения плотности электронных сгустков их середины фокусируются медленнее, чем фронты. Аналітично і чисельним моделюванням досліджується кільватерна плазмова лінза, в якій усі релятивістські електронні згустки послідовності фокусуються однаково і однорідно. При цьому необхідно, щоб згустки мали довжини, рівні ξb=q(λ/2), q=1, 2, ..., шпаруватість між згустками була рівною Δξ=pλ, p=1, 2,…, заряд 1-го згустка був в два рази менше зарядів усіх інших згустків. Показано, що тільки 1-й згусток знаходиться в кінцевому поздовжньому кільватерному електричному полі Ez≠0. Інші згустки знаходяться в Ez=0. Радіальна кільватерна сила Fr в областях розташування згустків постійна уздовж згустків. У разі неоднорідного поздовжнього розподілу щільності електронних згустків їх середини фокусуються повільніше, ніж фронти. 2013 2013 Article Plasma wakefield excitation providing homogeneous focusing of electron bunches / V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya // Вопросы атомной науки и техники. — 2013. — № 1. — С. 134-136. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx; http://dspace.nbuv.gov.ua/handle/123456789/109273 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменная электроника
Плазменная электроника
spellingShingle Плазменная электроника
Плазменная электроника
Maslov, V.I.
Onishchenko, I.N.
Yarovaya, I.P.
Plasma wakefield excitation providing homogeneous focusing of electron bunches
Вопросы атомной науки и техники
description Wakefield plasma lens, which focuses all relativistic electron bunches of the sequence identically and uniformly, are investigated analytically and by numerical simulation. The necessary conditions of such lens operation are the followings: length of the bunches is ξb=q(λ/2), q=1, 2, …(λ is the plasma wavelength), the distance between bunches is Δξ=pλ, p=1, 2, … All bunches have the same charge and the 1-st bunch has a half of this charge. It is shown that with the exception of 1-st bunch all other bunches are occurred in zero longitudinal wakefield and in uniform along bunch length focusing radial wakefield. In the case of inhomogeneous longitudinal distribution of electron bunch density the middle of bunches are focused slower in comparison with their edges.
format Article
author Maslov, V.I.
Onishchenko, I.N.
Yarovaya, I.P.
author_facet Maslov, V.I.
Onishchenko, I.N.
Yarovaya, I.P.
author_sort Maslov, V.I.
title Plasma wakefield excitation providing homogeneous focusing of electron bunches
title_short Plasma wakefield excitation providing homogeneous focusing of electron bunches
title_full Plasma wakefield excitation providing homogeneous focusing of electron bunches
title_fullStr Plasma wakefield excitation providing homogeneous focusing of electron bunches
title_full_unstemmed Plasma wakefield excitation providing homogeneous focusing of electron bunches
title_sort plasma wakefield excitation providing homogeneous focusing of electron bunches
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Плазменная электроника
url http://dspace.nbuv.gov.ua/handle/123456789/109273
citation_txt Plasma wakefield excitation providing homogeneous focusing of electron bunches / V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya // Вопросы атомной науки и техники. — 2013. — № 1. — С. 134-136. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi plasmawakefieldexcitationprovidinghomogeneousfocusingofelectronbunches
AT onishchenkoin plasmawakefieldexcitationprovidinghomogeneousfocusingofelectronbunches
AT yarovayaip plasmawakefieldexcitationprovidinghomogeneousfocusingofelectronbunches
first_indexed 2025-07-07T22:50:37Z
last_indexed 2025-07-07T22:50:37Z
_version_ 1837030328546361344
fulltext 134 ISSN 1562-6016. ВАНТ. 2013. №1(83) PLASMA WAKEFIELD EXCITATION PROVIDING HOMOGENEOUS FOCUSING OF ELECTRON BUNCHES V.I. Maslov1, I.N. Onishchenko1, I.P. Yarovaya2 1NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2V.N. Karazin Kharkov National University, Kharkov, Ukraine Wakefield plasma lens, which focuses all relativistic electron bunches of the sequence identically and uniformly, are investigated analytically and by numerical simulation. The necessary conditions of such lens operation are the followings: length of the bunches is ξb=q(λ/2), q=1, 2, …(λ is the plasma wavelength), the distance between bunches is ∆ξ=pλ, p=1, 2, … All bunches have the same charge and the 1-st bunch has a half of this charge. It is shown that with the exception of 1-st bunch all other bunches are occurred in zero longitudinal wakefield and in uniform along bunch length focusing radial wakefield. In the case of inhomogeneous longitudinal distribution of electron bunch density the middle of bunches are focused slower in comparison with their edges. PACS: 29.17.+w; 41.75.Lx; INTRODUCTION The focusing of relativistic electron bunches by wakefield, excited in plasma, is very interesting and important (see, for example, [1-2]). The focusing of bunches by wakefield, excited in plasma by resonant sequence of relativistic electron bunches, is inhomogeneous. In [3] the mechanism of focusing by plasma wakefield, in which all bunches of sequence are focused identically and uniformly, has been proposed and numerically investigated. We analytically and numerically investigate by 2.5D code lcode [4] the longitudinal distribution of radial wake-force, excited by sequence of lengthy electron bunches in homogeneous plasma. 1. RESULTS OF SIMULATION At first the wakefield excitation by resonant sequence of bunches is considered. We find the longitudinal Ez, radial Er fields and focusing force Fr in the areas of location of bunches. For this purpose we use the theory developed in [1]. For the bunch of permanent density, the length of which equals ξb=λ/2, we get that Ez and Er are proportional to ZII (λ/2)(ξ) and Z⊥ (λ/2)(ξ) ZII (λ/2)(ξ)=(2/k)sin(kξ), Z⊥ (λ/2)(ξ)=-(2/k)cos(kξ). (1) Ez in the middle of 1st bunch equals ZII.1 (λ/2)=(1/k)∫0 π/2 dx0 cos(kξ-x0)|kξ=π/2=(1/k). (2) One can see it is, as well as observed, in 2 times less than amplitude of the wakefield after 1st bunch. Now we derive the fields into the 2nd resonant bunch, ZII.2 (ξ)(ξ)=(3/k)sin(kξ), Z⊥.2 (ξ)(ξ)=(2/k)[1-2cos(kξ)]. (3) ZII.2 (ξ)(kξ) changes from ZII.2 (ξ)(x=2π)=0 to ZII.2 (ξ)(kξ=2.5π)=ZII.2 (max)=(3/k) and then again ZII.2 (ξ)(kξ=3π)=0. Thus Z⊥.2 (ξ)(kξ) changes from Z⊥.2 (ξ)(x=2π)=-(2/k) to Z⊥.2 (ξ)(x=3π)=(6/k), reaching zero in the 1st half of bunch, where cos(xa)=1/2, xa=2π+π/3<2π+π/2. I.e. longer (in (π-xa)/xa=2 times) part (back front) of bunch focuses in larger field Er than 1st front (more short) of bunch defocuses (in 3 times less field Er). In resonant case 1st bunch only focuses, and for other bunches (if length of bunch equals ξb=λ/2) back fronts (more long) are in larger focusing field Er, than (more short) 1st fronts are in defocusing Er. I.e. this lens is inhomogeneous. In [3] wakefield plasma lens has been numerically simulated with homogeneous focusing force for the sequence of bunches, lengths of which equal ξb=λ/2, with the 1st bunch, charge of which in two times less than charges of other bunches Q1=Qi/2, i=2, 3, …, distance between bunches equals 1.5λ. From Fig. 1 one can see that in this case dips of electron plasma density, in which bunches are localized, wide and shallow, and humps are narrow and high. From Fig. 1 one can see that Ez=0 in the areas of location of bunches. Fig. 1. Longitudinal distribution of density nb of sequence of bunches (yellow), longitudinal wakefield Ez (red), δne (grey) and coupling factor <Ez> of bunches with Ez (black), excited by sequence of 10 bunches. t is normalized on ωpe From Fig. 2 one can see that in the areas of bunches location Fr does not approximately depend on a longitudinal coordinate. Fig. 2. nb (yellow), radiuses rb (blue), Ez (red), wake radial force Fr (dark blue), magnetic-field Hθ (pale blue) In the areas of location of bunches the radial field of their volume charge is compensated by radial field, appearing as a result of shift of several number of plasma electrons from the areas of bunches location. Ez=0 in the areas of bunches location, except 1st one (see Fig. 2). Thus screening of bunches takes place due to that wide (≈λ) dips of plasma electron density δne<0 and narrow (≈λ/2) humps of δne>0 appear (see Fig. 1). I.e. ISSN 1562-6016. ВАНТ. 2013. №1(83) 135 plasma in the vicinity of bunches is positively charged. Due to inertness of electrons screening of 1st bunch is realized only in its end, where dip of density δne<0 is not flat, as for 2nd bunch, but approximately three- cornered. For the bunch of permanent density and ξb=λ/2 longitudinal ZII (λ/2)(ξ) and transversal Z⊥ (λ/2)(ξ) fields are equal (1). Now we derive the wakefield into 2nd bunch ZII.2 (ξ)(ξ)=(2/k)sin(kξ)+2∫0 ξ dξ0cos[k(ξ-ξ0)+3π]=0 (4) As well as in numeral simulation, Ez=0 got in the areas of bunches location. Fig. 3. nb (yellow), rb (blue), Ez (red), Fr (dark blue) Now we consider wakefield plasma lenses for the sequence of bunches for three cases of their lengths at the interbunch gap equal to ∆ξ=λ. The bunch-precursor of half-charge is used. We connect it with next (1st) bunch. 1st case: ξb=λ (Fig. 3), 2nd case: ξb=1.5λ (Figs. 4, 5), 3rd case: ξb=2λ (Figs. 6–8). From Figs. 3–5, and 7, 8 one can see that in the areas of bunches location Ez=0, Fr≈const. Fig. 4. nb (yellow), Ez (red), <Ez> (black) Fig. 5. nb (yellow), rb (blue), Ez (red), Fr (dark blue) Fig. 6. Spatial distribution of δne in the wakefield Fig. 7. nb (yellow), Ez (red), <Ez> (black) Fig. 8. nb (yellow), rb (blue), Ez (red), Fr (dark blue) Now we consider the wake plasma lens for the bunches of identical charge with lengths equal to λ/2 and the interbunch gap equal to λ (Figs. 9–11). Fig. 9. nb (yellow), Ez (red), <Ez> (black) Fig. 10. nb (yellow) и δne (grey) Fig. 11. nb (yellow), rb (blue), Fr (dark blue) If all bunches are identical and they are placed through 1.5λ, all bunches are focused identically, but inhomogeneously along bunches (see Figs. 10, 11). Odd number bunches are decelerated, and the even number bunches are accelerated (see Fig. 9). We consider the wake plasma lens for the bunches of identical charges with lengths and interbunch gap equal to λ (Figs. 12, 13). Both longitudinal and radial fields between bunches are equal to zero, and the fields in every bunch are equal to ZII1 (ξ)(ξ)=(1/k)sin(kξ), Z⊥1 (ξ)(ξ)=(2/k)sin2(kξ/2). (5) The radial field has one sign along bunch. Therefore bunches are focused, however on fronts of bunches Fr=0. The longitudinal field is oscillated between E0 in the forehand of bunch and -E0 in the back-end of bunch. Therefore the front half of bunch is decelerated, and the back is accelerated. Fig. 12. nb (yellow), Ez (red), <Ez> (black) Fig. 13. nb (yellow), rb (blue), Ez (red), Fr (dark blue) The results of numeral simulation for the case of length of bunches, equal to 2λ, are presented in Fig. 14. We consider the case of electron density distribution along bunch according to sin2(kξ) (Figs. 15, 16). Bunches are placed through 1.5λ. The charge of 1st bunch is less than charges of other bunches in 2 times. From Fig. 16 one can see that 1st front of bunch is accelerated, and the back is decelerated. Fig. 14. nb (yellow), rb (blue), Ez (red), Fr (dark blue) 136 ISSN 1562-6016. ВАНТ. 2013. №1(83) Fig. 15. Er (red), Fr (dark blue), Hθ (pale blue), excited by sequence of 10 inhomogeneous bunches From Fig. 15 one can see that fronts of bunches are focused stronger than their centers. If the electrons of lengthy (ξb=λ/2) bunch are distributed according to sin2(kξ), 0<ξ0<λ/2, then after 1st bunch we get ZII (sin2)(ξ)=(4/3k)sin(kξ). (6) Fig. 16. nb of 10 inhomogeneous bunches (yellow), ne (grey), Ez (red) Now we derive the radial field Z⊥ (sin2)(ξ)=(4/3k)cos(kξ) (7) We obtain the field in the center of 1st bunch ZII.1 (sin2)= ∫0 λ/4 dξ0cos[k(ξ-ξ0)]sin2(kξ0)|kξ=π/2=(2/3k). (8) One can see that, as well as observed, the field in the center of 1st bunch is in 2 times less than amplitude of the wake field after the 1st bunch. For the fields into the 2nd bunch we derive ZII.2 (sin2)(ξ)=(2/3k)sin(2kξ). (9) As well as observed, into the 2nd bunch period is in 2 times shorter and amplitude is in 2 times less than after the 1st bunch. Z⊥.2 (sin2)(ξ)=-(4/3k)+(2/3k)sin2(kξ). (10) At the change into the 2nd bunch 3π<kξ<4π on the edges (at kξ=3π and kξ=4π) of 2nd bunch focusing is the strongest (the force is equal to -(4/3k)) and in the middle of the 2nd bunch (at x=3π+π/2), focusing is the weakest (force is in 2 times less -(2/3k)). CONCLUSIONS It has been shown that all bunches of the sequence can be focused identically and uniformly under the conditions: all bunches lengths are equal to qλ/2, q=1, 2, 3, .., the distance between them equals pλ, p=1, 2, 3, .., the charge of 1-st bunch equals a half of the charges of the other bunches. It has been shown that only 1-st bunch is in finite Ez≠0. Other bunches are in zero longitudinal electrical wakefield Ez=0. Hence the 1-st bunch loss the energy for excitation of wakefield, which amplitude is constant along the sequence. Radial wake force Fr in regions, occupied by bunches, is constant along bunches length. In the case of inhomogeneous longitudinal distribution of electron bunch density the middle of bunches are focused slower than edges. If all bunches are identical and they are placed over 1.5λ, then bunches are focused identically, but not uniformly along bunch length. REFERENCES 1. Ya. Fainberg, M. Ayzatskiy, V. Balakirev, et al. Focusing of Relativistic Electron Bunches at the Wakefield Excitation in Plasma // Proceedings PAC’97. 12-16 May, 1997 Vancouver, Canada, v. II, p. 651-653. 2. G. Hairapetian, P. Davis, C.E. Clyaton, C. Joshi, C. Pellegrini. Transverse dynamics of a short, relativistic electron bunch in a plasma lens // Phys. Plasmas. 1995, v. 2, p. 2555-2561. 3. K. V.Lotov, V.I. Maslov, I.N. Onishchenko, O.M. Svistun. Homogeneous focusing of electron bunch sequence by plasma wakefield // Problems of Atomic Science and Technology. 2012, №3 (79), p. 159- 163. 4. K.V. Lotov. Simulation of ultrarelativistic beam dynamics in plasma wake-field accelerator // Phys. Plasmas. 1998, v. 5, № 3, p. 785-791. Article received 20.09.12 ВОЗБУЖДЕНИЕ КИЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМЕ, ОБЛАДАЮЩЕГО ОДНОРОДНОЙ ФОКУСИРОВКОЙ ЭЛЕКТРОННЫХ СГУСТКОВ В.И. Маслов, И.Н. Онищенко, И.П. Яровая Аналитически и численным моделированием исследуется кильватерная плазменная линза, в которой все релятивистские электронные сгустки последовательности фокусируются одинаково и однородно. При этом необходимо, чтобы сгустки имели длины, равные ξb=q(λ/2), q=1, 2, …, скважность между сгустками была равна ∆ξ=pλ, p=1, 2,…, заряд 1-го сгустка был в два раза меньше зарядов всех остальных сгустков. Показано, что только 1-й сгусток находится в конечном продольном электрическом кильватерном поле Ez≠0. Другие сгустки находятся в Ez=0. Радиальная кильватерная сила Fr в областях расположения сгустков постоянна вдоль сгустков. В случае неоднородного продольного распределения плотности электронных сгустков их середины фокусируются медленнее, чем фронты. ЗБУДЖЕННЯ КІЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМІ, ЯКЕ ОДНОРІДНО ФОКУСУЄ ЕЛЕКТРОННІ ЗГУСТКИ В.І. Маслов, І.М. Онищенко, І.П. Ярова Аналітично і чисельним моделюванням досліджується кільватерна плазмова лінза, в якій усі релятивістські електронні згустки послідовності фокусуються однаково і однорідно. При цьому необхідно, щоб згустки мали довжини, рівні ξb=q(λ/2), q=1, 2, ..., шпаруватість між згустками була рівною ∆ξ=pλ, p=1, 2,…, заряд 1-го згустка був в два рази менше зарядів усіх інших згустків. Показано, що тільки 1-й згусток знаходиться в кінцевому поздовжньому кільватерному електричному полі Ez≠0. Інші згустки знаходяться в Ez=0. Радіальна кільватерна сила Fr в областях розташування згустків постійна уздовж згустків. У разі неоднорідного поздовжнього розподілу щільності електронних згустків їх середини фокусуються повільніше, ніж фронти.