Numerical simulation of plasma wakefield excitation by a sequence of laser pulses

The results of numeral simulation of plasma wakefield excitation by sequence of laser pulses are presented. It is shown that if laser pulses are placed through one wavelength, the accelerated bunch of electrons is formed and accelerated only after the last laser pulse. If laser pulses are placed thr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Maslov, V.I., Onishchenko, I.N., Svistun, O.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109278
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Numerical simulation of plasma wakefield excitation by a sequence of laser pulses / V.I. Maslov, I.N. Onishchenko, O.M. Svistun // Вопросы атомной науки и техники. — 2013. — № 1. — С. 149-151. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109278
record_format dspace
spelling irk-123456789-1092782016-11-23T03:02:31Z Numerical simulation of plasma wakefield excitation by a sequence of laser pulses Maslov, V.I. Onishchenko, I.N. Svistun, O.M. Плазменная электроника The results of numeral simulation of plasma wakefield excitation by sequence of laser pulses are presented. It is shown that if laser pulses are placed through one wavelength, the accelerated bunch of electrons is formed and accelerated only after the last laser pulse. If laser pulses are placed through two wavelengths, the electron bunch is formed and accelerated after every laser pulse. Thus the second bunch of electrons after every pulse is nonmonoenergetic or it is not formed unlike the case of one pulse. Проведено численное моделирование возбуждения кильватерных полей в плазме последовательностью лазерных импульсов. В случае последовательности лазерных импульсов, расположенных через одну длину волны, сгусток ускоряемых электронов формируется только за последним импульсом. Если лазерные импульсы расположены через две длины волны, за каждым импульсом ускоряется сгусток электронов. При этом вторые сгустки электронов за каждым импульсом не формируются в отличие от случая одного импульса или они представляют собой немоноэнергетичные пучки. Проведено чисельне моделювання збудження кільватерних полів у плазмі послідовністю лазерних імпульсів. У випадку послідовності лазерних імпульсів, розташованих через одну довжину хвилі, згусток прискорюваних електронів формується тільки за останнім імпульсом. Якщо лазерні імпульси розташовані через дві довжини хвилі, за кожним імпульсом прискорюється згусток електронів. При цьому другі згустки електронів за кожним імпульсом не формуються на відміну від випадку одного імпульсу або вони є немоноенергетичними пучками. 2013 2013 Article Numerical simulation of plasma wakefield excitation by a sequence of laser pulses / V.I. Maslov, I.N. Onishchenko, O.M. Svistun // Вопросы атомной науки и техники. — 2013. — № 1. — С. 149-151. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx http://dspace.nbuv.gov.ua/handle/123456789/109278 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменная электроника
Плазменная электроника
spellingShingle Плазменная электроника
Плазменная электроника
Maslov, V.I.
Onishchenko, I.N.
Svistun, O.M.
Numerical simulation of plasma wakefield excitation by a sequence of laser pulses
Вопросы атомной науки и техники
description The results of numeral simulation of plasma wakefield excitation by sequence of laser pulses are presented. It is shown that if laser pulses are placed through one wavelength, the accelerated bunch of electrons is formed and accelerated only after the last laser pulse. If laser pulses are placed through two wavelengths, the electron bunch is formed and accelerated after every laser pulse. Thus the second bunch of electrons after every pulse is nonmonoenergetic or it is not formed unlike the case of one pulse.
format Article
author Maslov, V.I.
Onishchenko, I.N.
Svistun, O.M.
author_facet Maslov, V.I.
Onishchenko, I.N.
Svistun, O.M.
author_sort Maslov, V.I.
title Numerical simulation of plasma wakefield excitation by a sequence of laser pulses
title_short Numerical simulation of plasma wakefield excitation by a sequence of laser pulses
title_full Numerical simulation of plasma wakefield excitation by a sequence of laser pulses
title_fullStr Numerical simulation of plasma wakefield excitation by a sequence of laser pulses
title_full_unstemmed Numerical simulation of plasma wakefield excitation by a sequence of laser pulses
title_sort numerical simulation of plasma wakefield excitation by a sequence of laser pulses
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Плазменная электроника
url http://dspace.nbuv.gov.ua/handle/123456789/109278
citation_txt Numerical simulation of plasma wakefield excitation by a sequence of laser pulses / V.I. Maslov, I.N. Onishchenko, O.M. Svistun // Вопросы атомной науки и техники. — 2013. — № 1. — С. 149-151. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi numericalsimulationofplasmawakefieldexcitationbyasequenceoflaserpulses
AT onishchenkoin numericalsimulationofplasmawakefieldexcitationbyasequenceoflaserpulses
AT svistunom numericalsimulationofplasmawakefieldexcitationbyasequenceoflaserpulses
first_indexed 2025-07-07T22:51:01Z
last_indexed 2025-07-07T22:51:01Z
_version_ 1837030353524490240
fulltext ISSN 1562-6016. ВАНТ. 2013. №1(83) 149 NUMERICAL SIMULATION OF PLASMA WAKEFIELD EXCITATION BY A SEQUENCE OF LASER PULSES V.I. Maslov, I.N. Onishchenko, O.M. Svistun NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: vmaslov@kipt.kharkov.ua The results of numeral simulation of plasma wakefield excitation by sequence of laser pulses are presented. It is shown that if laser pulses are placed through one wavelength, the accelerated bunch of electrons is formed and accelerated only after the last laser pulse. If laser pulses are placed through two wavelengths, the electron bunch is formed and accelerated after every laser pulse. Thus the second bunch of electrons after every pulse is non- monoenergetic or it is not formed unlike the case of one pulse. PACS: 29.17.+w; 41.75.Lx INTRODUCTION The intense plasma wakefield excitation by a single intense laser pulse has allowed to other authors to achieve large accelerating field (see [1...8]). At excitation of the wakefield by one intensive laser pulse two bubbles are formed at certain conditions after it and an electron bunch is accelerated in each of them. I.e. an intensive laser pulse can form a sequence of two accelerated electron bunches. Also after these two bubbles wake is excited. Hence it would be useful to enhance this wake and to use it for the electron bunch acceleration for increase of number of accelerated electrons. I.e. the question arises about possibility of wakefield excitation by sequence of laser pulses. To address this question the authors of this paper study by numerical simulation, using fully relativistic electromagnetic PIC code-UMKA2D3V, self - consistent effect of three short laser pulses on the uniform plasma with density n0=1.7458·1019 cm-3. The amplitude of each pulse equals b=1, 3 or 5. The amplitude is normalized on E0 = mecω0/(2πe), ω0 is the pulse frequency. It is shown that, if laser pulses are distributed through one wavelength of plasma oscillations, pulses effect on the field steepening and bunch of the accelerated electrons is formed only after the last pulse. If laser pulses are distributed through two wavelengths, after every pulse the electron bunch is accelerated. Thus, as every second field steepening is effected by a laser pulse, the second electron bunch after every pulse is not formed unlike the case of one pulse or it is non-monoenergetic beams. Thus, although bubble after the last pulse is excited with a time delay relatively to first bubble, the accelerated bunches in the first and last bubbles can be formed approximately simultaneously, as amplitudes of bubbles grow along the sequence. RESULTS OF SIMULATION At first we consider well-known case of the wakefield excitation by one intensive laser pulse. At certain parameters after an intensive laser pulse two bubbles of plasma electrons are formed and in each of them an electron bunch is accelerated (Fig. 1). I.е. an intensive laser pulse forms a sequence of two accelerated electron bunches. Also after these two plasma electron bubbles a wake is excited (Figs. 2, 3). It would be useful, for increase of number of accelerated electrons, to enhance and use it for electron bunch acceleration. Fig. 1. Two plasma electron bubbles and two electron bunches, accelerated by one laser pulse in the time, when the laser pulse deeply penetrated into the plasma (see Fig. 2) t=140t0. The amplitude of pulse equals b=5. The pulse half-duration (normalized on t0) equals tl = 1. Its half-width (normalized on λ) equals r0 = 4. λ is the wavelength and t0 = 2π/ω0 is the period of laser pulse. x and y on the axes are normalized on λ Fig. 2. Two plasma electron bubbles and two electron bunches, accelerated by one laser pulse in the time, when the laser pulse deeply penetrated into the plasma Now we investigate a sequence of two laser pulses- drivers. In the case of two laser pulses-drivers, if they are distributed through one wavelength of plasma oscillations, pulses effect on the field steepening and bunch of accelerated electrons is formed only after the last pulse (Fig. 4). 150 ISSN 1562-6016. ВАНТ. 2013. №1(83) Fig. 3. Longitudinal component of the wakefield excited by one laser pulse in the time, when a laser pulse deeply penetrated into the plasma Fig. 4. Wake perturbation from two laser pulses, distributed through one wavelength of plasma oscillations (through δх=10.49) in the time t=100t0. The amplitude of each pulse equals b=3. The half-duration of the first pulse equals tl = 1 and of the second pulse equals tl = 2. The half-width of the first pulse equals r0 = 4 and of the second pulse equals r0 = 2 Fig. 5. Sequence of two electron bunches, accelerated by a sequence of two laser pulses, distributed through two wavelengths of plasma oscillations (through δх=22), in the time, when laser pulses deeply penetrated into the plasma t=140t0. The amplitudes of both pulses equal b=3. The half-duration of the first pulse equals tl = 1 and of the second pulse equals tl = 2. The half-width of the first pulse equals r0 = 4 and of the second pulse equals r0 = 2 Fig. 6. Appearance of sequence of two electron bunches, accelerated by the sequence of two laser pulses, in the time t=40t0. The pulses are distributed through δх=22. The amplitudes of both pulses equal b=3. The half-duration of the first pulse equals tl = 1 and of the second pulse equals tl = 2. The half-width of the first pulse equals r0 = 4 and of the second pulse equals r0 = 2 If laser pulses are distributed through two wavelengths of plasma oscillations, after every pulse the electron bunch is accelerated (Fig. 5). Thus, as every second field steepening is effected by laser pulse, the second electron bunch after every pulse is not formed (see Fig. 5) unlike the case of one pulse or it is non- monoenergetic bunch (see Fig. 5). Thus, although the plasma electron bubble after the last pulse is formed with a time delay relatively first one, the accelerated electron bunches can be formed by the first and last plasma electron bubbles, as it is observed, approximately simultaneously, if amplitudes of plasma electron bubbles grow along their sequence (Fig. 6). Fig. 7. Wake perturbation of plasma electron density, excited by a sequence of three laser pulses of large intensity, in the time t=80t0. The pulses are distributed through δх=22. The amplitudes of all pulses equal b=3. The half-duration of the first pulse equals tl = 1 and of the second and third pulses equal tl = 2. The half-width of the first pulse equals r0 = 4 and of the second and third pulses equal r0 = 2 If the third laser pulse follows after the second pulse through two wavelengths of plasma oscillations, after third pulse the third electron bunch is also accelerated (Fig. 7). The wakefield, excited by a sequence of three laser pulses of large intensity is shown in Fig. 8. The wake perturbation from three laser pulses of small intensity is shown in Fig. 9. ISSN 1562-6016. ВАНТ. 2013. №1(83) 151 Fig. 8. Longitudinal wakefield, excited by sequence of three laser pulses of large intensity Fig. 9. Wake perturbation from three laser pulses of small intensity in the time t=60t0. The pulses are distributed through δх=10. The amplitudes of all pulses equal b=1. The half-duration of all pulses equals tl = 1. The half-width of all pulses equals r0 = 1 CONCLUSIONS It is shown that in the case of laser pulses, distributed through one wavelength of plasma oscillations, bunch of accelerated electrons is formed only after the last pulse. If laser pulses are distributed through two wavelengths of plasma oscillations, after every pulse the electron bunch is accelerated. Thus the second electron bunch after every pulse is not formed unlike the case of one pulse or it is non-monoenergetic bunch. REFERENCES 1. S.V. Bulanov, V.I. Kirsanov, A.S. Saharov. The limit of electrical field of wake plasma lens // Pisma ZhETPh. 1991, v. 53, p. 540-544. 2. W. Lu, C. Huang, M. Zhou, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime // Phys. Rev. Let. 2006, v. 96, p. 165002. 3. S. Krishnagopal, A.K. Upadhyay, D. Sarkar, et al. Simulation of electron acceleration by two laser pulses, propagating in a homogenous plasma // Proceedings of IPAC’10. Kyoto, Japan, 2010, p. 4059-4061. 4. X. Wang, W. Yu, M.Y. Yu, et al. Simple model for wakefield excitation by intense short-pulse laser in underdense plasma // Phys. Plas. 2009, v. 16, p. 053107. 5. C.L. Chang, C.T. Hsieh, Y.C. Ho, et al. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator // Phys. Rev. E. 2007, v. 75, p. 036402. 6. S.V. Bulanov. New epoch in the charged particle acceleration by relativistically intense laser radiation // Plasma Phys. Cont. Fus. 2006, v. 48, p. 29-37. 7. A.G.R. Thomas, S.P.D. Mangles, Z. Najmudin, et al. Measurements ofWave-Breaking Radiation from a Laser-Wakefield Accelerator // Phys. Rev. Let. 2007, v. 98, p. 054802. 8. B. Hidding, K.U. Amthor, B. Liesfeld, et al. Generation of quasimonoenergetic electron bunches with 80-fs laser pulses // Phys. Rev. Let. 2006, v. 96, p. 105004. Article received 06.10.12 ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ВОЗБУЖДЕНИЯ КИЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМЕ ПОСЛЕДОВАТЕЛЬНОСТЬЮ ЛАЗЕРНЫХ ИМПУЛЬСОВ В.И. Маслов, И.Н. Онищенко, Е.Н. Свистун Проведено численное моделирование возбуждения кильватерных полей в плазме последовательностью лазерных импульсов. В случае последовательности лазерных импульсов, расположенных через одну длину волны, сгусток ускоряемых электронов формируется только за последним импульсом. Если лазерные импульсы расположены через две длины волны, за каждым импульсом ускоряется сгусток электронов. При этом вторые сгустки электронов за каждым импульсом не формируются в отличие от случая одного импульса или они представляют собой немоноэнергетичные пучки. ЧИСЕЛЬНЕ МОДЕЛЮВАННЯ ЗБУДЖЕННЯ КІЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМІ ПОСЛІДОВНІСТЮ ЛАЗЕРНИХ ІМПУЛЬСІВ В.І. Маслов, І.М. Онищенко, О.М. Свистун Проведено чисельне моделювання збудження кільватерних полів у плазмі послідовністю лазерних імпульсів. У випадку послідовності лазерних імпульсів, розташованих через одну довжину хвилі, згусток прискорюваних електронів формується тільки за останнім імпульсом. Якщо лазерні імпульси розташовані через дві довжини хвилі, за кожним імпульсом прискорюється згусток електронів. При цьому другі згустки електронів за кожним імпульсом не формуються на відміну від випадку одного імпульсу або вони є немоноенергетичними пучками.