Рhysics and design of wide-aperture bipolar particle sources

A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal separation of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of creating bipolar ion-ion source are discussed basing on recent research re...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автор: Dudin, S.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109280
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Рhysics and design of wide-aperture bipolar particle sources / S.V. Dudin // Вопросы атомной науки и техники. — 2013. — № 1. — С. 155-159. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109280
record_format dspace
spelling irk-123456789-1092802016-11-23T03:02:32Z Рhysics and design of wide-aperture bipolar particle sources Dudin, S.V. Низкотемпературная плазма и плазменные технологии A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal separation of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of creating bipolar ion-ion source are discussed basing on recent research results from Ecole Polytechnique (France) and from V.N. Karazin Kharkоv National University (Ukraine), particularly on comparative study of the sources with magnetic and electrostatic electron filters. Обзор известных конструкций биполярных источников заряженных частиц проведен с классификацией их по пространственной или временной сепарации противоположно заряженных частиц. Рассмотрены как ион-электронные, так и ион-ионные источники. Возможности создания биполярных ион-ионных источников обсуждаются на основе результатов последних исследований в Ecole Polytechnique (Франция) и в Харьковском национальном университете имени В.Н. Каразина (Украина), в частности, сравнительного изучения магнитных и электростатических электронных фильтров. Огляд відомих конструкцій біполярних джерел заряджених частинок проведено з класифікацією їх по просторовій або часовій сепарації протилежно заряджених частинок. Розглянуто як іон-електронні, так і іон- іонні джерела. Можливості створення біполярних іон-іонних джерел обговорюються на основі результатів останніх досліджень в Ecole Polytechnique (Франція) та в Харківському національному університеті імені В.Н. Каразіна (Україна), зокрема, порівняльного вивчення магнітних і електростатичних електронних фільтрів. 2013 2013 Article Рhysics and design of wide-aperture bipolar particle sources / S.V. Dudin // Вопросы атомной науки и техники. — 2013. — № 1. — С. 155-159. — Бібліогр.: 26 назв. — англ. 1562-6016 PACS: 52.59.-f http://dspace.nbuv.gov.ua/handle/123456789/109280 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Dudin, S.V.
Рhysics and design of wide-aperture bipolar particle sources
Вопросы атомной науки и техники
description A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal separation of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of creating bipolar ion-ion source are discussed basing on recent research results from Ecole Polytechnique (France) and from V.N. Karazin Kharkоv National University (Ukraine), particularly on comparative study of the sources with magnetic and electrostatic electron filters.
format Article
author Dudin, S.V.
author_facet Dudin, S.V.
author_sort Dudin, S.V.
title Рhysics and design of wide-aperture bipolar particle sources
title_short Рhysics and design of wide-aperture bipolar particle sources
title_full Рhysics and design of wide-aperture bipolar particle sources
title_fullStr Рhysics and design of wide-aperture bipolar particle sources
title_full_unstemmed Рhysics and design of wide-aperture bipolar particle sources
title_sort рhysics and design of wide-aperture bipolar particle sources
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/109280
citation_txt Рhysics and design of wide-aperture bipolar particle sources / S.V. Dudin // Вопросы атомной науки и техники. — 2013. — № 1. — С. 155-159. — Бібліогр.: 26 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dudinsv rhysicsanddesignofwideaperturebipolarparticlesources
first_indexed 2025-07-07T22:51:13Z
last_indexed 2025-07-07T22:51:13Z
_version_ 1837030363016200192
fulltext LOW TEMPERATURE PLASMA AND PLASMA TECHNOLOGIES ISSN 1562-6016. ВАНТ. 2013. №1(83) 155 PHYSICS AND DESIGN OF WIDE-APERTURE BIPOLAR PARTICLE SOURCES S.V. Dudin V.N. Karazin Kharkov National University, Kharkov, Ukraine E-mail: stanislav_dudin@rambler.ru A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal sepa- ration of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of cre- ating bipolar ion-ion source are discussed basing on recent research results from Ecole Polytechnique (France) and from V.N. Karazin Kharkоv National University (Ukraine), particularly on comparative study of the sources with magnetic and electrostatic electron filters. PACS: 52.59.-f INTRODUCTION Wide aperture positive ion sources are in common use for years in different technologies and for electric propulsion in space [1]. In all these applications the neu- tralization of positive ion beam space charge or current is important task, which is usually solved with use of a neutralizer emitting electrons. The neutralizer is a dedi- cated device requiring additional power supply and of- ten degrading the overall system reliability due to lim- ited lifetime. Thus the idea of bipolar particle source that is able to emit simultaneously the directed flows of particles of both polarities looks attractive in number of applications. A few devices are known allowing simultaneous extraction of oppositely charged particles, ions and elec- trons [2-4] or positive and negative ions [5, 6]. Such devices, namely “bipolar” sources, stand out against different types of ion sources since their unusual design and physical processes allows simultaneous acceleration of oppositely charged particles. Among the methods of bipolar extraction the simultaneous ion-electron extrac- tion is relatively well investigated, and several sources of bipolar ion-electron flow based on different physical principles have been developed and characterized [2- 4, 7]. However, the problem of simultaneous extraction of positive and negative ions, or ion-ion extraction, is not extensively studied and currently only pulsed and alternate ion-ion extraction are realized [5, 6]. Thus, investigation of the problem of simultaneous extraction of positive and negative ions is of great interest. For the first glance, the simultaneous extraction problem can be solved easily since any plasma contains particles of both polarities. However, simultaneous ex- traction and acceleration of oppositely charged particles is hampered by the obvious fact that in a stationary elec- tric field the oppositely charged particles are accelerated in the opposite directions. The possible solution of the simultaneous extraction problem is spatial or temporal separation of acceleration paths of positive and negative particles. A conceptual diagram of possible solutions of the bipolar extraction problem is shown in Fig. 1. One can see six possible configurations of bipolar extraction. One of them, namely, parallel ion-electron extraction represents in fact the classical system “positive ion source + neutralizer”, while other cases are considered in the present review by examples of existing sources. 1. ION-ELECTRON SOURCES One of known ion-electron sources is a combined electron and ion beam system employing a double- chamber inductively coupled plasma (ICP) developed in Lawrence Berkeley National Laboratory, USA for a combined electron and ion beam lithography system [2,8]. The source consists of two independent plasmas with different potentials connected in-series (see Fig. 2). Electrons born in the first plasma and accelerated by an electrode system penetrate trough the second plasma where positive ions are created. At the source output the ions are accelerated while electron beam from the first plasma is decelerated, though keeping significant energy. According to the classification presented in In- troduction this source may be treated as a serial source with spatial separation. Fig. 1. Conceptual diagram of bipolar extraction Fig. 2. Scheme of double-chamber ion-electron source [9] 156 ISSN 1562-6016. ВАНТ. 2013. №1(83) One more example of serial ion-electron source is multichannel source with Penning discharge developed in V.N. Karazin Kharkоv National University, Ukraine [3]. Single sell of the source is schematically shown in Fig. 3,a. The device consists of cathode-extractor (lower electrode in Fig. 3,a), anode (middle), and hollow cath- ode (upper). Gas is fed through the hollow cathode bi- ased negatively with respect to the cathode-extractor. Both cathodes serve also as poles of magnetic system creating magnetic field with strength of 1…1.5 kOe. The source generates coinciding ion and electron beams with energies 0.2…2 keV and current density up to 5 mA/cm2, with different level of current compensation. Typical electron and ion energy distribution functions (EDF) are shown in Fig. 3,b. Another kind of ion-electron source, the source with temporal separation, is represented by ICP-based single- grid ion source with RF biasing of the plasma interfac- ing electrode [10], which is schematically shown in Fig. 4. Due to continuous ion acceleration by stationary part of plasma bias (appears because of self-biasing ef- fect) and pulsed electron extraction in most negative part of RF period of the plasma biasing the source pos- sess the unique ability of quasisimultaneous generation of coinciding flows of positive ions and electrons in contrast to more common two- or three-grid sources [4]. Using the ICP for ionization ensures its durability to reactive gases, and due to the single-grid ion-optical system it is free from disadvantages of multigrid sys- tems. In the paper [11] it was shown that the ion source RF biasing mode of operation is superior since the full ion beam current neutralization is provided for the entire range of ion energy of interest and the extracted ion current is higher than in the DC biasing mode. It should be also mentioned that the RF bias applied to the poten- tial electrode affects not only the ion acceleration but also the plasma as a whole. In fact there is the combined inductive-capacitive discharge studied in the papers [11, 12]. Since the modern industry requires ion sources with hig processing area, in the V.N. Karazin Kharkоv Na- tional University the number of RF ion sources with beam diameters of 20…250 mm have been developed. In particular, the 250 mm industrial grade ICP-based single-grid ion-electron source is described in [13]. In- ternal structure of the mentioned source is shown in Fig. 5. The source is able of providing 0.5…5 mA/cm2 current density in the low ion energy range of 50…250 eV, with possibility of independent current density and energy control. Fig. 6 demonstrates energy distribution function of ion and electron flows emitted by the source as well as etching test result performed using the ion-electron flow. One can see from Fig. 6,a that when the RF bias is applied to the potential elec- trode, the energy distribution function contains the elec- tron peak and two ion peaks, namely, the high-energy ion beam peak and the peak of slow ions from the ion- beam plasma. Fig. 6,b shows SEM image of SiO2 film etched by a b Fig. 3. Multichannel ion-electron source with Pen- ning discharge [3]: a – scheme of single channel; b – electron and ion energy distribution functions ICP Target Ion-beam plasma Ion beam Grid Biasing electrode ~ Fig. 4. Schematic diagram of single-grid ion source with RF biasing of the plasma interfacing electrode [10] Fig. 5. Internal structure of 250 mm industrial grade ICP-based single-grid ion-electron source [13] a b 70 nm feature Fig. 6. Energy distribution function of ion and elec- tron flows emitted by the bipolar source [13] (a) as well as etching test result performed using the ion- electron flow (b). The vertical feature is 70 nm thick and 800 nm in height ISSN 1562-6016. ВАНТ. 2013. №1(83) 157 the bipolar source. Perfect vertical etch profile indicates absence of dielectric surface charging problem. In con- trast to reactive ion etching in plasma reactors, utilizing the developed bipolar source provides the possibility of etching under an arbitrary ion incidence angle to the surface. 2. ION-ION SOURCES In the previous section we have shown that the ion- electron sources are a relatively mature technology with proven efficiency. In contrast, ion-ion sources at the moment are just “breaking new ground”. Recently, it was proposed to use both positive and negative ions for thrust in an electromagnetic space pro- pulsion system [14]. This concept is called PEGASES meaning Plasma Propulsion with Electronegative GASES and has been patented by the Ecole Polytech- nique in France in 2007 [15]. The basic idea is to create a stratified plasma with an electron free (ion-ion plasma) region at the periphery of a highly ionized plasma core such that both positive and negative ions can be extracted and accelerated to provide thrust. As the extracted beam is globally neutral there is no need for a downstream neutralizer. The first PEGASES pro- totype, designed in 2007 in Laboratoire de Physique des Plasmas, Ecole Polytechnique, France, is shown in Fig. 7. The first prototype has two extractors with the extraction surface perpendicular to the cylinder axis and the magnetic field. The two extractors were originally intended for separate extraction of positive and negative ions. One issue with this method is that the accelerated ions have to be brought back to the same potential be- fore being able to recombine. Since the ions originate from the same source the effective acceleration potential will become zero and no net thrust can possibly be achieved [16]. So, we can conclude that in order to real- ize the parallel type of bipolar extraction (see Introduc- tion) presence in the source of two independent plasmas with different potential is essential. Taking into account the disadvantages of the first PEGASES prototype, a new prototype is being designed (Fig. 8) with an inductively coupled antenna at 4 MHz and only one extractor surface, allowing alternate ex- traction and acceleration of positively and negatively charged ions [17, 18]. Fig. 8 illustrates internal structure of PEGASES Pro- totype II, while the bipolar ion acceleration scheme is shown in Fig. 9,a. This prototype was successfully tested, particularly, the ability of bipolar beam genera- tion has been confirmed. Fig. 9,b shows the bipolar ion energy distribution function. Another approach based on the serial concept is treated in V.N. Karazin Kharkоv National University, Ukraine. A double-plasma source capable of the genera- tion of a continuous bipolar ion-ion beam has been de- veloped and tested [19]. According to this concept, in order to generate continuously accelerated coinciding bipolar ion-ion flow with volume production of ions of both polarities the source should contain two plasma regions having different potentials. Taking into account that the usual design of negative ion source with volume ion production includes two plasmas separated by an electron filter [9], such a source may be used as a start- ing point for the bipolar ion-ion source design. How- ever, in the negative ion source the primary plasma serves only as an electron source for the secondary plasma where the negative ions are created. For genera- tion of the accelerated bipolar ion-ion beam in such a system the primary plasma stage should be a bipolar ion-electron source simultaneously generating acceler- ated positive ions and cold electrons. Among the men- tioned above ion-electron sources the single-grid source [4, 7] is an appropriate choice since low-energy electron emission [21]. As it was shown in the papers [20, 22] the extraction grid of such source can serve not only as ion-optical system but also as the new promising type of nonmagnetic electron filter, namely a grid-type electro- static filter [20] allowing efficient negative ion genera- tion in the secondary plasma. Initial comparison of the electrostatic and more common magnetic types of the Positive ions ICP Magnetic filter Negative ions Fig. 7. PEGASES Prototype I ICP source Magnetic filter Gridded alternate acceleration Fig. 8. Internal structure of PEGASES Prototype II a b AC Biasing 0 V Fig. 9. PEGASES Prototype II: (a) - bipolar ion acceleration scheme; (b) - bipolar ion energy dis- tribution function 158 ISSN 1562-6016. ВАНТ. 2013. №1(83) electron filter is presented in [23], though the question still requires more detailed study. In the paper [20] the broad beam negative ion source based on inductively coupled plasma (ICP) discharge with the grid-type elec- trostatic filter has been described. It was shown that SF6 ions are efficiently created beyond the filter and can be easily extracted from the secondary “cold” plasma (CP) since it can be biased negatively with respect to the high-area extraction electrode. The proposed design of the bipolar ion-ion source is schematically shown in the Fig. 10. The system is divided by the grid filter into the two regions: primary inductively coupled plasma and downstream cold plasma. Ion paths through the system as well as qualitative axial potential distribution along the double-plasma source are shown in the Fig. 11,a. Majority of positive ions are created in the ICP while the negative ions are created mostly in the CP region. The necessary condi- tion for positive ion extraction in the system is the posi- tive ICP potential versus the extraction electrode, while extraction of negative ions created in the CP is possible only with negative plasma potential. These conditions are not in direct contradiction since the system contains two plasmas with different potentials. The compromise solution allowing bipolar ion-ion extraction can be found in the range of relatively low grid biasing, as it is shown in the Fig. 11,b. We can see that the ICP poten- tial in this case is higher than both the CP potential and the extraction electrode potential, hence the positive ions created in the ICP can penetrate through the filter grid holes to the CP region and reach the extraction electrode (here we assume low collisionality of the ions). Negative ions created in the CP can freely move to the more positive extraction electrode. Fig. 12 shows the bipolar ion EDFs measured at dif- ferent filter grid biasing within and near the range of ion-ion extraction. It is seen that almost mono-energetic peaks of both positive and negative ions are present in the distributions, with different amplitudes affected by the grid bias. The increase of negative grid potential leads to suppression of the positive ion peak and growth of the negative ion peak. At the grid potential about -30 V the positive and negative ion peaks are similar and nearly symmetrical versus zero energy, so quasi- neutral ion-ion beam is formed. Total current of each ion species generated by the source to the 250 mm di- ameter extraction electrode is about 80 mA; the electron current doesn’t exceed 30 % of the ion current. It’s worthy to discuss the problem of ion energy con- trol in the bipolar ion-ion beam. In the reported experi- ments the energies were very low (5…10 eV) due to the limit of the single-grid ion-electron source with DC grid biasing to emit only low energy ions simultaneously with electrons [24]. However, the source with RF grid biasing can generate bipolar ion-electron flow with arbi- trary ion energy [4, 7]. Therefore, using the RF grid biasing along with CP potential control would allow independent positive and negative ion energy control in a wide range. In summary, it can be concluded that despite bipolar particle sources are known for decades their potential is not realized yet. From the presented results, it is be- lieved that the bipolar sources have great prospective in modern technologies and Space applications. In particu- lar, one can expect that due to the high directionality of both positive and negative particle flux the bipolar par- ticle sources can compete with neutral beam sources in such technologies as atomic layer etching [25] and as- pect ratio dependent etching removal [26]. Fig. 10. Design of the double-plasma bipolar ion- ion source [19] a b z φ φCP φICP 0 φG e i- i+ i- e i- i+ ICP CP ICP CP e i- i+ Back plate Grid filter Extraction electrode Fig. 11. Qualitative axial potential distribution along the double-plasma source and ion paths through the system (a). CP and ICP potential de- pendences on the negative grid bias φG (b) Fig. 12. Positive and negative ion energy distribu- tion functions (IEDF) at different grid potential φG. The negative ion distributions are shown to the left of zero energy and positive IEDFs to the right ISSN 1562-6016. ВАНТ. 2013. №1(83) 159 REFERENCES 1. I.G. Brown. The Physics and Technology of Ion Sources: Second, Revised and Extended Edition/ New York: Wiley-VCH, 2004. 2. Q. Ji, L. Ji, et al. Combined electron- and ion-beam imprinter and its applications // Appl. Phys. Lett. 2004, v. 20, p. 4618. 3. A.A. Bizyukov, A.Y. Kashaba, et al. Multichannel source of synthesized ion-electrone flow // Rev. Sci. Instrum. 1996, v. 67, p. 4117. 4. S.V. Dudin and D.V. Rafalskyi. On the simultaneous extraction of positive ions and electrons from single- grid ICP source // Europhys. Lett. 2009, v. 88, р. 55002. 5. A. Aanesland, A. Meige, and P. Chabert. Electric propulsion using ion-ion plasmas // Journal of Physics: Conference Series. 2009, v. 162, р. 012009. 6. S.G. Walton, D. Leonhardt, et al. Extraction of posi- tive and negative ions from electron-beam-generated plasmas // Appl. Phys. Lett. 2002, v. 81, p. 987. 7. S.V. Dudin, D.V. Rafalskyi, and A.V. Zykov. High homogeneity 25 cm low-energy rf ion source with in- herent electron compensation // Rev. Sci. Instrum. 2010, v. 81, р. 083302. 8. J. R. A. Cleaver and H. Ahmed. A combined electron and ion beam lithography system // J. Vac. Sci. Technol. B. 1985, v. 3, № 1, p. 144-147. 9. Huashun Zhang. Ion Sources. Beijing: Science press and Springer-Verlag, 1999. 10. A.M. Budyanskiy, A.V. Zykov, and V.I. Farenik. Radio-frequency ion source: Patent of Ukraine, 1994, № 2426. 11. S.V. Dudin, A.V. Zykov, K.I. Polozhii, and V.I. Farenik. Ion energy cost in a combined inductive- capacitive RF discharge // Tech. Phys. Lett. 1998, v. 24, № 11, p. 881. 12. S.V. Dudin, A.V. Zykov, and K.I. Polozhii. Energy optimization of sputtering system based on a combined rf inductive-capacitive discharge // Tech. Phys. Lett. 1996, v. 22, № 11, p. 801. 13. S.V. Dudin, D.V. Rafalskyi and A.V. Zykov. High homogeneity 25 cm low-energy rf ion source with in- herent electron compensation // Rev. Sci. Instrum. 2010, v. 81, р. 083302. 14. A. Aanesland, A. Meige, and P. Chabert. Electric propulsion using ion-ion plasmas // J. Phys.: Conf. Ser. 2009, v. 162, р. 012009. 15. P. Chabert. Patent Application № WO 2007/065915 A1 (pending). 16. Ane Aanesland, Lara Popelier, Pascal Chabert. In- ductively coupled electronegative plasmas applied to space propulsion // Proc. of 20th ESCAMPIG, 13-17 July 2010 / Novi Sad, Serbia. 17. A. Aanesland, S. Mazouffre and P. Chabert. Pegases a new promising electric propulsion concept // Euro Phys. News. 2011, v. 44, p. 28. 18. A. Aanesland, J. Bredin, P. Chabert, V. Godyak. Electron energy distribution function and plasma pa- rameters across magnetic filters // Applied Physics Let- ters. 2012, v. 100, p. 044102. 19. S.V. Dudin, D.V. Rafalsky. A double-plasma source of continuous bipolar ion-ion beam // Submitted to Appl. Phys. Lett. 2012. 20. D.V. Rafalskyi, S.V. Dudin. A new grid-type elec- tron filter for volume-production negative-ion source // Europhys. Lett. 2012, v. 97, р. 55001. 21. D.V. Rafalskyi, S.V. Dudin // Proc. of 7th Interna- tional Conference on Reactive Plasmas, Paris, France, 4-8 October, 2010, p. 375-376. 22. S. Iizuka, K. Kato, A. Takahashi, K. Nakagomi, N. Sato. Negative Hydrogen Ions Produced by Electron Temperature Control in an RF Plasma // Jpn. J. Appl. Phys. 1997, v. 36, p. 4551. 23. S. Dudin, D. Rafalskyi, L. Popelier. A. Aanesland. Comparative study of positive and negative ion flows extracted from downstream plasmas beyond magnetic and electrostatic electron filters // Phys. Surf. Eng. 2012, v. 10, № 1, p. 22. 24. S.V. Dudin, D.V. Rafalskyi. Influence of ion-beam plasma on ion extraction efficiency in a single-grid ion source // Eur. Phys. J. D. 2009, v. 65, p. 475-479. 25. D. Athavale and D.J. Economou. Molecular dynam- ics simulation of atomic layer etching of silicon // J. Vac. Sci. Technol. 1995, v. 13, p. 966. 26. D.J. Economou. Fast (tens to hundreds of eV) neu- tral beams for materials processing // J. Phys. D: Appl. Phys. 2008, v. 41, р. 024001. Article received 20.10.12 ФИЗИКА И УСТРОЙСТВО ШИРОКОАПЕРТУРНЫХ БИПОЛЯРНЫХ ИСТОЧНИКОВ ЧАСТИЦ С.В. Дудин Обзор известных конструкций биполярных источников заряженных частиц проведен с классификацией их по пространственной или временной сепарации противоположно заряженных частиц. Рассмотрены как ион-электронные, так и ион-ионные источники. Возможности создания биполярных ион-ионных источников обсуждаются на основе результатов последних исследований в Ecole Polytechnique (Франция) и в Харьков- ском национальном университете имени В.Н. Каразина (Украина), в частности, сравнительного изучения магнитных и электростатических электронных фильтров. ФІЗИКА І БУДОВА ШИРОКОАПЕРТУРНИХ БІПОЛЯРНИХ ДЖЕРЕЛ ЗАРЯДЖЕНИХ ЧАСТИНОК С.В. Дудін Огляд відомих конструкцій біполярних джерел заряджених частинок проведено з класифікацією їх по просторовій або часовій сепарації протилежно заряджених частинок. Розглянуто як іон-електронні, так і іон- іонні джерела. Можливості створення біполярних іон-іонних джерел обговорюються на основі результатів останніх досліджень в Ecole Polytechnique (Франція) та в Харківському національному університеті імені В.Н. Каразіна (Україна), зокрема, порівняльного вивчення магнітних і електростатичних електронних фільтрів.