Рhysics and design of wide-aperture bipolar particle sources
A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal separation of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of creating bipolar ion-ion source are discussed basing on recent research re...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109280 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Рhysics and design of wide-aperture bipolar particle sources / S.V. Dudin // Вопросы атомной науки и техники. — 2013. — № 1. — С. 155-159. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109280 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092802016-11-23T03:02:32Z Рhysics and design of wide-aperture bipolar particle sources Dudin, S.V. Низкотемпературная плазма и плазменные технологии A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal separation of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of creating bipolar ion-ion source are discussed basing on recent research results from Ecole Polytechnique (France) and from V.N. Karazin Kharkоv National University (Ukraine), particularly on comparative study of the sources with magnetic and electrostatic electron filters. Обзор известных конструкций биполярных источников заряженных частиц проведен с классификацией их по пространственной или временной сепарации противоположно заряженных частиц. Рассмотрены как ион-электронные, так и ион-ионные источники. Возможности создания биполярных ион-ионных источников обсуждаются на основе результатов последних исследований в Ecole Polytechnique (Франция) и в Харьковском национальном университете имени В.Н. Каразина (Украина), в частности, сравнительного изучения магнитных и электростатических электронных фильтров. Огляд відомих конструкцій біполярних джерел заряджених частинок проведено з класифікацією їх по просторовій або часовій сепарації протилежно заряджених частинок. Розглянуто як іон-електронні, так і іон- іонні джерела. Можливості створення біполярних іон-іонних джерел обговорюються на основі результатів останніх досліджень в Ecole Polytechnique (Франція) та в Харківському національному університеті імені В.Н. Каразіна (Україна), зокрема, порівняльного вивчення магнітних і електростатичних електронних фільтрів. 2013 2013 Article Рhysics and design of wide-aperture bipolar particle sources / S.V. Dudin // Вопросы атомной науки и техники. — 2013. — № 1. — С. 155-159. — Бібліогр.: 26 назв. — англ. 1562-6016 PACS: 52.59.-f http://dspace.nbuv.gov.ua/handle/123456789/109280 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Dudin, S.V. Рhysics and design of wide-aperture bipolar particle sources Вопросы атомной науки и техники |
description |
A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal separation of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of creating bipolar ion-ion source are discussed basing on recent research results from Ecole Polytechnique (France) and from V.N. Karazin Kharkоv National University (Ukraine), particularly on comparative study of the sources with magnetic and electrostatic electron filters. |
format |
Article |
author |
Dudin, S.V. |
author_facet |
Dudin, S.V. |
author_sort |
Dudin, S.V. |
title |
Рhysics and design of wide-aperture bipolar particle sources |
title_short |
Рhysics and design of wide-aperture bipolar particle sources |
title_full |
Рhysics and design of wide-aperture bipolar particle sources |
title_fullStr |
Рhysics and design of wide-aperture bipolar particle sources |
title_full_unstemmed |
Рhysics and design of wide-aperture bipolar particle sources |
title_sort |
рhysics and design of wide-aperture bipolar particle sources |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109280 |
citation_txt |
Рhysics and design of wide-aperture bipolar particle sources / S.V. Dudin // Вопросы атомной науки и техники. — 2013. — № 1. — С. 155-159. — Бібліогр.: 26 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dudinsv rhysicsanddesignofwideaperturebipolarparticlesources |
first_indexed |
2025-07-07T22:51:13Z |
last_indexed |
2025-07-07T22:51:13Z |
_version_ |
1837030363016200192 |
fulltext |
LOW TEMPERATURE PLASMA AND PLASMA TECHNOLOGIES
ISSN 1562-6016. ВАНТ. 2013. №1(83) 155
PHYSICS AND DESIGN OF WIDE-APERTURE BIPOLAR PARTICLE
SOURCES
S.V. Dudin
V.N. Karazin Kharkov National University, Kharkov, Ukraine
E-mail: stanislav_dudin@rambler.ru
A review of known designs of bipolar particle sources is presented classifying them by spatial or temporal sepa-
ration of the oppositely charged particles. Both ion-electron and ion-ion sources are considered. Possibilities of cre-
ating bipolar ion-ion source are discussed basing on recent research results from Ecole Polytechnique (France) and
from V.N. Karazin Kharkоv National University (Ukraine), particularly on comparative study of the sources with
magnetic and electrostatic electron filters.
PACS: 52.59.-f
INTRODUCTION
Wide aperture positive ion sources are in common
use for years in different technologies and for electric
propulsion in space [1]. In all these applications the neu-
tralization of positive ion beam space charge or current
is important task, which is usually solved with use of a
neutralizer emitting electrons. The neutralizer is a dedi-
cated device requiring additional power supply and of-
ten degrading the overall system reliability due to lim-
ited lifetime. Thus the idea of bipolar particle source
that is able to emit simultaneously the directed flows of
particles of both polarities looks attractive in number of
applications.
A few devices are known allowing simultaneous
extraction of oppositely charged particles, ions and elec-
trons [2-4] or positive and negative ions [5, 6]. Such
devices, namely “bipolar” sources, stand out against
different types of ion sources since their unusual design
and physical processes allows simultaneous acceleration
of oppositely charged particles. Among the methods of
bipolar extraction the simultaneous ion-electron extrac-
tion is relatively well investigated, and several sources
of bipolar ion-electron flow based on different physical
principles have been developed and characterized [2-
4, 7]. However, the problem of simultaneous extraction
of positive and negative ions, or ion-ion extraction, is
not extensively studied and currently only pulsed and
alternate ion-ion extraction are realized [5, 6]. Thus,
investigation of the problem of simultaneous extraction
of positive and negative ions is of great interest.
For the first glance, the simultaneous extraction
problem can be solved easily since any plasma contains
particles of both polarities. However, simultaneous ex-
traction and acceleration of oppositely charged particles
is hampered by the obvious fact that in a stationary elec-
tric field the oppositely charged particles are accelerated
in the opposite directions. The possible solution of the
simultaneous extraction problem is spatial or temporal
separation of acceleration paths of positive and negative
particles.
A conceptual diagram of possible solutions of the
bipolar extraction problem is shown in Fig. 1. One can
see six possible configurations of bipolar extraction.
One of them, namely, parallel ion-electron extraction
represents in fact the classical system “positive ion
source + neutralizer”, while other cases are considered
in the present review by examples of existing sources.
1. ION-ELECTRON SOURCES
One of known ion-electron sources is a combined
electron and ion beam system employing a double-
chamber inductively coupled plasma (ICP) developed in
Lawrence Berkeley National Laboratory, USA for a
combined electron and ion beam lithography system
[2,8]. The source consists of two independent plasmas
with different potentials connected in-series (see Fig. 2).
Electrons born in the first plasma and accelerated by an
electrode system penetrate trough the second plasma
where positive ions are created. At the source output
the ions are accelerated while electron beam from the
first plasma is decelerated, though keeping significant
energy. According to the classification presented in In-
troduction this source may be treated as a serial source
with spatial separation.
Fig. 1. Conceptual diagram of bipolar extraction
Fig. 2. Scheme of double-chamber ion-electron
source [9]
156 ISSN 1562-6016. ВАНТ. 2013. №1(83)
One more example of serial ion-electron source is
multichannel source with Penning discharge developed
in V.N. Karazin Kharkоv National University, Ukraine
[3]. Single sell of the source is schematically shown in
Fig. 3,a. The device consists of cathode-extractor (lower
electrode in Fig. 3,a), anode (middle), and hollow cath-
ode (upper). Gas is fed through the hollow cathode bi-
ased negatively with respect to the cathode-extractor.
Both cathodes serve also as poles of magnetic system
creating magnetic field with strength of 1…1.5 kOe.
The source generates coinciding ion and electron beams
with energies 0.2…2 keV and current density up to
5 mA/cm2, with different level of current compensation.
Typical electron and ion energy distribution functions
(EDF) are shown in Fig. 3,b.
Another kind of ion-electron source, the source with
temporal separation, is represented by ICP-based single-
grid ion source with RF biasing of the plasma interfac-
ing electrode [10], which is schematically shown in
Fig. 4. Due to continuous ion acceleration by stationary
part of plasma bias (appears because of self-biasing ef-
fect) and pulsed electron extraction in most negative
part of RF period of the plasma biasing the source pos-
sess the unique ability of quasisimultaneous generation
of coinciding flows of positive ions and electrons in
contrast to more common two- or three-grid sources [4].
Using the ICP for ionization ensures its durability to
reactive gases, and due to the single-grid ion-optical
system it is free from disadvantages of multigrid sys-
tems. In the paper [11] it was shown that the ion source
RF biasing mode of operation is superior since the full
ion beam current neutralization is provided for the entire
range of ion energy of interest and the extracted ion
current is higher than in the DC biasing mode. It should
be also mentioned that the RF bias applied to the poten-
tial electrode affects not only the ion acceleration but
also the plasma as a whole. In fact there is the combined
inductive-capacitive discharge studied in the papers
[11, 12].
Since the modern industry requires ion sources with
hig processing area, in the V.N. Karazin Kharkоv Na-
tional University the number of RF ion sources with
beam diameters of 20…250 mm have been developed.
In particular, the 250 mm industrial grade ICP-based
single-grid ion-electron source is described in [13]. In-
ternal structure of the mentioned source is shown in
Fig. 5. The source is able of providing 0.5…5 mA/cm2
current density in the low ion energy range of
50…250 eV, with possibility of independent current
density and energy control. Fig. 6 demonstrates energy
distribution function of ion and electron flows emitted
by the source as well as etching test result performed
using the ion-electron flow. One can see from Fig. 6,a
that when the RF bias is applied to the potential elec-
trode, the energy distribution function contains the elec-
tron peak and two ion peaks, namely, the high-energy
ion beam peak and the peak of slow ions from the ion-
beam plasma.
Fig. 6,b shows SEM image of SiO2 film etched by
a b
Fig. 3. Multichannel ion-electron source with Pen-
ning discharge [3]: a – scheme of single channel;
b – electron and ion energy distribution functions
ICP
Target
Ion-beam
plasma
Ion beam
Grid
Biasing
electrode
~
Fig. 4. Schematic diagram of single-grid ion source
with RF biasing of the plasma interfacing electrode
[10]
Fig. 5. Internal structure of 250 mm industrial
grade ICP-based single-grid ion-electron
source [13]
a b
70 nm feature
Fig. 6. Energy distribution function of ion and elec-
tron flows emitted by the bipolar source [13] (a) as
well as etching test result performed using the ion-
electron flow (b). The vertical feature is 70 nm thick
and 800 nm in height
ISSN 1562-6016. ВАНТ. 2013. №1(83) 157
the bipolar source. Perfect vertical etch profile indicates
absence of dielectric surface charging problem. In con-
trast to reactive ion etching in plasma reactors, utilizing
the developed bipolar source provides the possibility of
etching under an arbitrary ion incidence angle to the
surface.
2. ION-ION SOURCES
In the previous section we have shown that the ion-
electron sources are a relatively mature technology with
proven efficiency. In contrast, ion-ion sources at the
moment are just “breaking new ground”.
Recently, it was proposed to use both positive and
negative ions for thrust in an electromagnetic space pro-
pulsion system [14]. This concept is called PEGASES
meaning Plasma Propulsion with Electronegative
GASES and has been patented by the Ecole Polytech-
nique in France in 2007 [15]. The basic idea is to create
a stratified plasma with an electron free (ion-ion
plasma) region at the periphery of a highly ionized
plasma core such that both positive and negative ions
can be extracted and accelerated to provide thrust. As
the extracted beam is globally neutral there is no need
for a downstream neutralizer. The first PEGASES pro-
totype, designed in 2007 in Laboratoire de Physique des
Plasmas, Ecole Polytechnique, France, is shown in
Fig. 7. The first prototype has two extractors with the
extraction surface perpendicular to the cylinder axis and
the magnetic field. The two extractors were originally
intended for separate extraction of positive and negative
ions. One issue with this method is that the accelerated
ions have to be brought back to the same potential be-
fore being able to recombine. Since the ions originate
from the same source the effective acceleration potential
will become zero and no net thrust can possibly be
achieved [16]. So, we can conclude that in order to real-
ize the parallel type of bipolar extraction (see Introduc-
tion) presence in the source of two independent plasmas
with different potential is essential.
Taking into account the disadvantages of the first
PEGASES prototype, a new prototype is being designed
(Fig. 8) with an inductively coupled antenna at 4 MHz
and only one extractor surface, allowing alternate ex-
traction and acceleration of positively and negatively
charged ions [17, 18].
Fig. 8 illustrates internal structure of PEGASES Pro-
totype II, while the bipolar ion acceleration scheme is
shown in Fig. 9,a. This prototype was successfully
tested, particularly, the ability of bipolar beam genera-
tion has been confirmed. Fig. 9,b shows the bipolar ion
energy distribution function.
Another approach based on the serial concept is
treated in V.N. Karazin Kharkоv National University,
Ukraine. A double-plasma source capable of the genera-
tion of a continuous bipolar ion-ion beam has been de-
veloped and tested [19]. According to this concept, in
order to generate continuously accelerated coinciding
bipolar ion-ion flow with volume production of ions of
both polarities the source should contain two plasma
regions having different potentials. Taking into account
that the usual design of negative ion source with volume
ion production includes two plasmas separated by an
electron filter [9], such a source may be used as a start-
ing point for the bipolar ion-ion source design. How-
ever, in the negative ion source the primary plasma
serves only as an electron source for the secondary
plasma where the negative ions are created. For genera-
tion of the accelerated bipolar ion-ion beam in such a
system the primary plasma stage should be a bipolar
ion-electron source simultaneously generating acceler-
ated positive ions and cold electrons. Among the men-
tioned above ion-electron sources the single-grid source
[4, 7] is an appropriate choice since low-energy electron
emission [21]. As it was shown in the papers [20, 22]
the extraction grid of such source can serve not only as
ion-optical system but also as the new promising type of
nonmagnetic electron filter, namely a grid-type electro-
static filter [20] allowing efficient negative ion genera-
tion in the secondary plasma. Initial comparison of the
electrostatic and more common magnetic types of the
Positive
ions
ICP
Magnetic
filter
Negative
ions
Fig. 7. PEGASES Prototype I
ICP
source
Magnetic
filter
Gridded alternate
acceleration
Fig. 8. Internal structure of PEGASES Prototype II
a b
AC Biasing 0 V
Fig. 9. PEGASES Prototype II: (a) - bipolar ion
acceleration scheme; (b) - bipolar ion energy dis-
tribution function
158 ISSN 1562-6016. ВАНТ. 2013. №1(83)
electron filter is presented in [23], though the question
still requires more detailed study. In the paper [20] the
broad beam negative ion source based on inductively
coupled plasma (ICP) discharge with the grid-type elec-
trostatic filter has been described. It was shown that SF6
ions are efficiently created beyond the filter and can be
easily extracted from the secondary “cold” plasma (CP)
since it can be biased negatively with respect to the
high-area extraction electrode. The proposed design of
the bipolar ion-ion source is schematically shown in the
Fig. 10. The system is divided by the grid filter into the
two regions: primary inductively coupled plasma and
downstream cold plasma.
Ion paths through the system as well as qualitative
axial potential distribution along the double-plasma
source are shown in the Fig. 11,a. Majority of positive
ions are created in the ICP while the negative ions are
created mostly in the CP region. The necessary condi-
tion for positive ion extraction in the system is the posi-
tive ICP potential versus the extraction electrode, while
extraction of negative ions created in the CP is possible
only with negative plasma potential. These conditions
are not in direct contradiction since the system contains
two plasmas with different potentials. The compromise
solution allowing bipolar ion-ion extraction can be
found in the range of relatively low grid biasing, as it is
shown in the Fig. 11,b. We can see that the ICP poten-
tial in this case is higher than both the CP potential and
the extraction electrode potential, hence the positive
ions created in the ICP can penetrate through the filter
grid holes to the CP region and reach the extraction
electrode (here we assume low collisionality of the
ions). Negative ions created in the CP can freely move
to the more positive extraction electrode.
Fig. 12 shows the bipolar ion EDFs measured at dif-
ferent filter grid biasing within and near the range of
ion-ion extraction. It is seen that almost mono-energetic
peaks of both positive and negative ions are present in
the distributions, with different amplitudes affected by
the grid bias. The increase of negative grid potential
leads to suppression of the positive ion peak and growth
of the negative ion peak. At the grid potential about
-30 V the positive and negative ion peaks are similar
and nearly symmetrical versus zero energy, so quasi-
neutral ion-ion beam is formed. Total current of each
ion species generated by the source to the 250 mm di-
ameter extraction electrode is about 80 mA; the electron
current doesn’t exceed 30 % of the ion current.
It’s worthy to discuss the problem of ion energy con-
trol in the bipolar ion-ion beam. In the reported experi-
ments the energies were very low (5…10 eV) due to the
limit of the single-grid ion-electron source with DC grid
biasing to emit only low energy ions simultaneously
with electrons [24]. However, the source with RF grid
biasing can generate bipolar ion-electron flow with arbi-
trary ion energy [4, 7]. Therefore, using the RF grid
biasing along with CP potential control would allow
independent positive and negative ion energy control in
a wide range.
In summary, it can be concluded that despite bipolar
particle sources are known for decades their potential is
not realized yet. From the presented results, it is be-
lieved that the bipolar sources have great prospective in
modern technologies and Space applications. In particu-
lar, one can expect that due to the high directionality of
both positive and negative particle flux the bipolar par-
ticle sources can compete with neutral beam sources in
such technologies as atomic layer etching [25] and as-
pect ratio dependent etching removal [26].
Fig. 10. Design of the double-plasma bipolar ion-
ion source [19]
a b
z
φ
φCP
φICP
0
φG e
i-
i+
i-
e
i-
i+
ICP CP
ICP CP e
i-
i+
Back
plate
Grid
filter
Extraction
electrode
Fig. 11. Qualitative axial potential distribution
along the double-plasma source and ion paths
through the system (a). CP and ICP potential de-
pendences on the negative grid bias φG (b)
Fig. 12. Positive and negative ion energy distribu-
tion functions (IEDF) at different grid potential φG.
The negative ion distributions are shown to the left
of zero energy and positive IEDFs to the right
ISSN 1562-6016. ВАНТ. 2013. №1(83) 159
REFERENCES
1. I.G. Brown. The Physics and Technology of Ion
Sources: Second, Revised and Extended Edition/ New
York: Wiley-VCH, 2004.
2. Q. Ji, L. Ji, et al. Combined electron- and ion-beam
imprinter and its applications // Appl. Phys. Lett. 2004,
v. 20, p. 4618.
3. A.A. Bizyukov, A.Y. Kashaba, et al. Multichannel
source of synthesized ion-electrone flow // Rev. Sci.
Instrum. 1996, v. 67, p. 4117.
4. S.V. Dudin and D.V. Rafalskyi. On the simultaneous
extraction of positive ions and electrons from single-
grid ICP source // Europhys. Lett. 2009, v. 88, р. 55002.
5. A. Aanesland, A. Meige, and P. Chabert. Electric
propulsion using ion-ion plasmas // Journal of Physics:
Conference Series. 2009, v. 162, р. 012009.
6. S.G. Walton, D. Leonhardt, et al. Extraction of posi-
tive and negative ions from electron-beam-generated
plasmas // Appl. Phys. Lett. 2002, v. 81, p. 987.
7. S.V. Dudin, D.V. Rafalskyi, and A.V. Zykov. High
homogeneity 25 cm low-energy rf ion source with in-
herent electron compensation // Rev. Sci. Instrum. 2010,
v. 81, р. 083302.
8. J. R. A. Cleaver and H. Ahmed. A combined electron
and ion beam lithography system // J. Vac. Sci. Technol.
B. 1985, v. 3, № 1, p. 144-147.
9. Huashun Zhang. Ion Sources. Beijing: Science press
and Springer-Verlag, 1999.
10. A.M. Budyanskiy, A.V. Zykov, and V.I. Farenik.
Radio-frequency ion source: Patent of Ukraine, 1994,
№ 2426.
11. S.V. Dudin, A.V. Zykov, K.I. Polozhii, and
V.I. Farenik. Ion energy cost in a combined inductive-
capacitive RF discharge // Tech. Phys. Lett. 1998, v. 24,
№ 11, p. 881.
12. S.V. Dudin, A.V. Zykov, and K.I. Polozhii. Energy
optimization of sputtering system based on a combined
rf inductive-capacitive discharge // Tech. Phys. Lett.
1996, v. 22, № 11, p. 801.
13. S.V. Dudin, D.V. Rafalskyi and A.V. Zykov. High
homogeneity 25 cm low-energy rf ion source with in-
herent electron compensation // Rev. Sci. Instrum. 2010,
v. 81, р. 083302.
14. A. Aanesland, A. Meige, and P. Chabert. Electric
propulsion using ion-ion plasmas // J. Phys.: Conf. Ser.
2009, v. 162, р. 012009.
15. P. Chabert. Patent Application № WO 2007/065915
A1 (pending).
16. Ane Aanesland, Lara Popelier, Pascal Chabert. In-
ductively coupled electronegative plasmas applied to
space propulsion // Proc. of 20th ESCAMPIG, 13-17 July
2010 / Novi Sad, Serbia.
17. A. Aanesland, S. Mazouffre and P. Chabert. Pegases
a new promising electric propulsion concept // Euro
Phys. News. 2011, v. 44, p. 28.
18. A. Aanesland, J. Bredin, P. Chabert, V. Godyak.
Electron energy distribution function and plasma pa-
rameters across magnetic filters // Applied Physics Let-
ters. 2012, v. 100, p. 044102.
19. S.V. Dudin, D.V. Rafalsky. A double-plasma source
of continuous bipolar ion-ion beam // Submitted to Appl.
Phys. Lett. 2012.
20. D.V. Rafalskyi, S.V. Dudin. A new grid-type elec-
tron filter for volume-production negative-ion source //
Europhys. Lett. 2012, v. 97, р. 55001.
21. D.V. Rafalskyi, S.V. Dudin // Proc. of 7th Interna-
tional Conference on Reactive Plasmas, Paris, France,
4-8 October, 2010, p. 375-376.
22. S. Iizuka, K. Kato, A. Takahashi, K. Nakagomi,
N. Sato. Negative Hydrogen Ions Produced by Electron
Temperature Control in an RF Plasma // Jpn. J. Appl.
Phys. 1997, v. 36, p. 4551.
23. S. Dudin, D. Rafalskyi, L. Popelier. A. Aanesland.
Comparative study of positive and negative ion flows
extracted from downstream plasmas beyond magnetic
and electrostatic electron filters // Phys. Surf. Eng. 2012,
v. 10, № 1, p. 22.
24. S.V. Dudin, D.V. Rafalskyi. Influence of ion-beam
plasma on ion extraction efficiency in a single-grid ion
source // Eur. Phys. J. D. 2009, v. 65, p. 475-479.
25. D. Athavale and D.J. Economou. Molecular dynam-
ics simulation of atomic layer etching of silicon // J.
Vac. Sci. Technol. 1995, v. 13, p. 966.
26. D.J. Economou. Fast (tens to hundreds of eV) neu-
tral beams for materials processing // J. Phys. D: Appl.
Phys. 2008, v. 41, р. 024001.
Article received 20.10.12
ФИЗИКА И УСТРОЙСТВО ШИРОКОАПЕРТУРНЫХ БИПОЛЯРНЫХ ИСТОЧНИКОВ ЧАСТИЦ
С.В. Дудин
Обзор известных конструкций биполярных источников заряженных частиц проведен с классификацией
их по пространственной или временной сепарации противоположно заряженных частиц. Рассмотрены как
ион-электронные, так и ион-ионные источники. Возможности создания биполярных ион-ионных источников
обсуждаются на основе результатов последних исследований в Ecole Polytechnique (Франция) и в Харьков-
ском национальном университете имени В.Н. Каразина (Украина), в частности, сравнительного изучения
магнитных и электростатических электронных фильтров.
ФІЗИКА І БУДОВА ШИРОКОАПЕРТУРНИХ БІПОЛЯРНИХ ДЖЕРЕЛ ЗАРЯДЖЕНИХ ЧАСТИНОК
С.В. Дудін
Огляд відомих конструкцій біполярних джерел заряджених частинок проведено з класифікацією їх по
просторовій або часовій сепарації протилежно заряджених частинок. Розглянуто як іон-електронні, так і іон-
іонні джерела. Можливості створення біполярних іон-іонних джерел обговорюються на основі результатів
останніх досліджень в Ecole Polytechnique (Франція) та в Харківському національному університеті імені
В.Н. Каразіна (Україна), зокрема, порівняльного вивчення магнітних і електростатичних електронних
фільтрів.
|