Particle charging in beam-plasma systems
The particle charging in an electron beam-plasma discharge is studied by means of the classical orbit motion limited approximation and on the basis of a discrete charging model. The particle charge fluctuations due to the stochastic nature of charging process are considered. The Fokker-Planck descri...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/109285 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Particle charging in beam-plasma systems / А.А. Bizyukov, E.V. Romashchenko, K.N. Sereda, S.N. Abolmasov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 183-185. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109285 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092852016-11-23T03:02:20Z Particle charging in beam-plasma systems Bizyukov, А.А. Romashchenko, E.V. Sereda, K.N. Abolmasov, S.N. Низкотемпературная плазма и плазменные технологии The particle charging in an electron beam-plasma discharge is studied by means of the classical orbit motion limited approximation and on the basis of a discrete charging model. The particle charge fluctuations due to the stochastic nature of charging process are considered. The Fokker-Planck description of the particle charging has been presented. An analytical expression for the charge distribution function has been derived taking into account the processes of the collection of plasma electrons and ions by the dust grain and secondary electron emission from it. В рамках классического приближения ограниченного орбитального движения и на основе дискретной модели изучается зарядка частиц в пучково-плазменных разрядах. Рассматриваются флуктуации заряда частиц, связанных со случайностью процесса зарядки. Представлено описание Фоккера-Планка зарядки частиц. Выведено аналитическое выражение для функции распределения заряда с учетом процессов поглощения электронов и ионов плазмы пылевой частицей и с учетом вторичной электронной эмиссии. У рамках класичного наближення обмеженого орбітального руху та на підставі дискретної моделі вивчається зарядження частинок у пучково-плазмових системах. Розглянуто флуктуації зарядження частинок, пов’язаних з випадковістю процесу зарядження. Представлено опис Фоккера-Планка зарядження частинок. Отримано аналітичний вираз для функції розподілу заряду, з урахуванням процесів поглинання електронів та іонів плазми пиловою частинкою та з урахуванням вторинної електронної емісії. 2013 2013 Article Particle charging in beam-plasma systems / А.А. Bizyukov, E.V. Romashchenko, K.N. Sereda, S.N. Abolmasov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 183-185. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.59.-f http://dspace.nbuv.gov.ua/handle/123456789/109285 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Bizyukov, А.А. Romashchenko, E.V. Sereda, K.N. Abolmasov, S.N. Particle charging in beam-plasma systems Вопросы атомной науки и техники |
description |
The particle charging in an electron beam-plasma discharge is studied by means of the classical orbit motion limited approximation and on the basis of a discrete charging model. The particle charge fluctuations due to the stochastic nature of charging process are considered. The Fokker-Planck description of the particle charging has been presented. An analytical expression for the charge distribution function has been derived taking into account the processes of the collection of plasma electrons and ions by the dust grain and secondary electron emission from it. |
format |
Article |
author |
Bizyukov, А.А. Romashchenko, E.V. Sereda, K.N. Abolmasov, S.N. |
author_facet |
Bizyukov, А.А. Romashchenko, E.V. Sereda, K.N. Abolmasov, S.N. |
author_sort |
Bizyukov, А.А. |
title |
Particle charging in beam-plasma systems |
title_short |
Particle charging in beam-plasma systems |
title_full |
Particle charging in beam-plasma systems |
title_fullStr |
Particle charging in beam-plasma systems |
title_full_unstemmed |
Particle charging in beam-plasma systems |
title_sort |
particle charging in beam-plasma systems |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109285 |
citation_txt |
Particle charging in beam-plasma systems / А.А. Bizyukov, E.V. Romashchenko, K.N. Sereda, S.N. Abolmasov // Вопросы атомной науки и техники. — 2013. — № 1. — С. 183-185. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bizyukovaa particlecharginginbeamplasmasystems AT romashchenkoev particlecharginginbeamplasmasystems AT seredakn particlecharginginbeamplasmasystems AT abolmasovsn particlecharginginbeamplasmasystems |
first_indexed |
2025-07-07T22:51:40Z |
last_indexed |
2025-07-07T22:51:40Z |
_version_ |
1837030389805219840 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №1(83) 183
PARTICLE CHARGING IN BEAM-PLASMA SYSTEMS
А.А. Bizyukov1, E.V. Romashchenko2, K.N. Sereda1, S.N. Abolmasov3
1V.N. Karazin Kharkov National University, Kharkov, Ukraine;
2V. Dahl East Ukrainian National University, Lugansk, Ukraine;
3LPICM, CNRS, Ecole Polytechnique, Palaiseau, France
The particle charging in an electron beam-plasma discharge is studied by means of the classical orbit motion
limited approximation and on the basis of a discrete charging model. The particle charge fluctuations due to the sto-
chastic nature of charging process are considered. The Fokker-Planck description of the particle charging has been
presented. An analytical expression for the charge distribution function has been derived taking into account the
processes of the collection of plasma electrons and ions by the dust grain and secondary electron emission from it.
PACS: 52.59.-f
INTRODUCTION
The generation of particles ranging in the size from
several microns to a few hundred microns has been ob-
served in many technological vacuum-plasma processes
such as vacuum arc methods for depositing decorative
and hardening coatings [1]. The presence of particles in
the plasma flow worsens the coating parameters. This is
a serious detriment which must be avoided.
We recently studied the behaviour of the floating
electric potential of a macroparticle in an electron beam-
plasma system in the framework of the orbit motion
limited (OML) approach [2] with account of secondary
electron emission [3]. We have used a “continuous
charging model” which assumes that the steady-state
potential to which a dust grain is charged has been de-
termined by the balance of the currents that are col-
lected by the grain surface and emitted from it [4]. This
paper extends our previous work to include the effect of
discreteness of the electrostatic charges that make these
currents.
1. CONTINUOUS CHARGING MODEL
Let us consider a beam-plasma discharge in which
the number density of dust grains is low and the average
intergrain distance l is much larger than the Debye
length dλ in plasma. This allows us to consider the
plasma with isolated dust grains [5]. Dust grain of ra-
dius la d <<<< λ behaves like a spherical electric
probe at floating potential fϕ [6]. The charge on a dust
particle is the result of the net effect of all possible cur-
rents to the particle surface. The charging of dust grain
mainly occurs by the collection of electrons and ions
from the plasma. In addition to this, dust grains are ex-
posed to high-energy electron beam, which releases
electrons by secondary electron emission process. The
dust particle acquires instantaneous charge zeq = (with
e the elementary charge and z an integer).
The charging of a dust particle is governed by the
following equation
∑=
j
jI
dt
dz , sbiej ,,,= ,
(1)
where the sum is taken over all the fluxes jI of charged
particles collected or emitted by the dust particle. Index
j here represents the various species: e – indicates
plasma electrons; −i plasma ions; −b beam electrons;
−s secondary electrons.
The ion, plasma-electron and beam-electron fluxes
flowing onto the dust grain surface in the framework of
OML model are
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=
i
si
Tii kT
ezvnaI ϕπ 18 0
2 , 0<sϕ ,
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=
i
si
Tii kT
ezvnaI ϕπ exp8 0
2 , 0>sϕ ,
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
=
e
s
Tee kT
evnaI ϕπ exp8 0
2 , 0<sϕ ,
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=
e
s
Tee kT
evnaI ϕπ 18 0
2 , 0>sϕ ,
(2)
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
−=
b
s
ebbb
evnaI
ε
ϕπ 12 , 0<sϕ ,
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=
b
s
ebbb
evnaI
ε
ϕπ 12 , 0>sϕ ,
Where – e is the electronic charge, zie is the ionic
charge, sϕ is the dust grain surface potential, a is the
dust grain radius (for arc plasmas, this radius is usually
from a few hundred nanometers to several tens of mi-
crons) , 0n ( bn ) is the plasma (beam electron) density,
eT ( iT ) is the electron (ion) temperature,
e
e
Te m
kTv = , ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
i
i
Ti m
kTv is the electron (ion) thermal
velocity, em ( im ) is the electron (ion) mass, k is the
Boltzmann constant,
e
b
eb m
v ε2
= is the beam electron
velocity , bε is the energy of beam electrons. For
0>sϕ and si ekT ϕ<< , the ion flux to the grain surface
can be ignored.
The flux sI of secondary electrons is connected to
flux bI of beam electrons through the secondary emis-
sion coefficient δ :
184 ISSN 1562-6016. ВАНТ. 2013. №1(83)
bs II δ= . (3)
The coefficient δ is described by the empirical de-
pendence connected to the energy of primary electrons
reaching the grain surface [3]:
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ −
−=
bm
sb
bm
b
m
e
ε
ϕε
ε
εδδ 2exp4.7 .
(4)
Here bmε is the primary electron energy at which the
secondary electron emission coefficient reaches the val-
ue mδ .
The floating potential fϕ can be found from the bal-
ance of the particle fluxes to/from its surface.
0=∑
j
jI . (5)
The charge on a grain q is related to the dust poten-
tial by:
sCq ϕ= , (6)
in which an isolated dust grain is considered as a spheri-
cal capacitor C of radius a . For a spherical dust grain
satisfying da λ<< , in vacuum the capacitance is given
by [7]
aC 04πε= . (7)
Hence, if one knows the potential of the dust grain
and its radius, it is easy to determine its charge
saq ϕπε04= . (8)
Let define the charging time τ , which indicates how
fast a grain can charge up in a plasma, as an RC time.
RC=τ . (9)
The resistor R is related to the slope of the charac-
teristic of a spherical probe at floating potential fϕ .
Therefore,
f
j
j
s
I
d
d
R
ϕ
ϕ ∑=−
1 .
(10)
Thus, we choose τ as the linear charge relaxation
time required for the grain charge to approach its equi-
librium value within one e-fold.
For example, when bmse εϕ << , the dust particle
acquires a positive charge during
( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
++=
b
eb
e
kT
n
nanekT
ε
πδπετ
0
0
2
0 2
112 .
(11)
The fact that relaxation time τ is inversely propor-
tional to both size of the dust grain and plasma density
means that the fastest charge relaxation occurs for large
grains and high plasma densities. Also the relaxation
time depends on electron temperature and secondary
electron emission coefficient δ .
2. DISCRETE CHARGING MODEL
The currents collected by the grain surface and emit-
ted from it actually consist of individual electrons and
ions. Let assume that all the ions carry a single charge.
Electrons and ions arrive at the particle’s surface at ran-
dom times. Upon collision with plasma particles and
with beam electrons, the particle charge undergoes a
stepwise change 11 ±=− −ii zz . The charge losses are
due to secondary electron emission and absorption of
plasma ions, while the increase in charge of negatively
charged particles is due to absorption of plasma elec-
trons. The generation and loss of a unit elementary
charge is a one-step Markov process for which transi-
tion from state z can only go to either state 1−z or
state 1+z . The probability for one charging event does
not depend on the history previous events. This Mark-
ovian property enables us to write a so-called Fokker-
Planck equation for the distribution function Zf [8]:
( ) ( )[ ] ( ) ( )[ ]tzfzB
z
tzfzA
zt
f
zz
z ,
2
1, 2
2
∂
∂
+
∂
∂
−=
∂
∂
(12)
where
( )
0→Δ
Δ
Δ
=
t
t
zzA
(13)
and
( )
0
2
→Δ
Δ
Δ
=
t
t
zzB .
(14)
The distribution function Zf is interpreted as the
fraction of the particles that carry the discrete elemen-
tary charge z . It is normalized by
1=∫
∞
∞−
dzf z .
(15)
Also, we have made use of the fact that Zf must be
“slow” function of the charge.
A Fokker-Planck equation is identical to the con-
tinuous equation. The equation (12) can be rewritten as
z
j
t
f z
∂
∂
−=
∂
∂ .
(16)
Here “flux” is given by
( ) ( ) ( ) ( )[ ]tzfzB
z
tzfzAj zz ,
2
1,
∂
∂
−= .
(17)
For case 0=j , we have equilibrium distribution
⎥
⎦
⎤
⎢
⎣
⎡
= ∫ dz
zB
zA
zB
Czf
)(
)(2exp
)(
)( ,
(18)
where C is the constant, calculated from condition
(15).
The first drift coefficient of the Fokker-Planck equa-
tion is the definition of the particle flux. Then, this coef-
ficient reads
∑=
j
jIzA )( (19)
To determine the second diffusive coefficient )(zB ,
we also use the analogy to a capacitor charging through
a resistor R following Einstein’s model for the thermal
noise in an electric circuit [9]:
R
kT
t
q e
t
2
0
2
=
Δ
Δ
→Δ
.
(20)
Therefore, an expression for the second drift coeffi-
cient )(zB is
Re
kTzB e
2
2)( = .
(21)
Figs. 1 and 2 show the charge distribution function at
small values of secondary electron emission coefficients
for typical laboratory plasma conditions: hydrogen
ISSN 1562-6016. ВАНТ. 2013. №1(83) 185
Fig. 1. Charge distribution function of dust particles
with plasma density n0 = 109 cm-3and different beam
electron energy: 1 – εb = 70 eV; 2 – εb = 50 eV;
3 – εb = 25 eV
Fig. 2. Charge distribution function of dust particles
with plasma density n0 = 1010 cm -3 and different beam
electron energy: 1 – εb = 70 eV; 2 – εb = 50 eV;
3 – without electron beam
plasma with a plasma density of, n0 = 109…1010 cm -3,
an electron temperature of, Te = 10 eV an ion tempera-
ture of Ti = 1 eV, grain radii of, a = 1 µ·m beam elec-
tron energies of εb = 25…100 eV. As the plasma den-
sity increases, the effects caused the electron beam be-
come weaker.
CONCLUSIONS
It has been shown that injection of an electron beam
into a dusty plasmas can significantly increase the nega-
tive potential of a dust grain at small values of secon-
dary electron emission coefficients. This allows to raise
the efficiency of plasma purification methods, namely
evaporation and Rayleigh decay of macroparticles.
REFERENCES
1. A.A. Andreev, L.P. Sablev, et al. Vacuum Arc De-
vices and Coatings. Kharkov: «NNTS KHFTI», 2005
(in Russian).
2. V.E. Fortov, A.G. Khrapak, etal. Dusty plasmas //
Physics – Uspekhi. 2004, № 47(5), p. 447-492.
3. I.M. Bronshten and B.S. Framan. Secondary Electron
Emission. Moscow: «Nauka», 1969.
4. A.A. Bizyukov, E.V. Romashchenko, K.N. Sereda,
and A.D. Chibisov. Electric Potential of a Macroparticle
in Beam-Plasma Systems // Plasma Physics Reports.
2009, v. 35, № 6, p. 499-501.
5. P.K. Shucla and A. Mamun. Introduction to Dusty
Plasma Physics. Bristol: «IOP Publishing», 2002.
6. I. Langmuir.Collected Works of Irving Langmuir.
Ed.by G. Suits. New York: «Pergamon», 1961.
7. A. Piel. Plasma Physics: An Introduction to Labora-
tory, Space, and Fusion Plasmas. «Springer», 2010.
8. N.G.V. Kampen. Stochastic Processes in Physics and
Chemistry. New York: «Elsevier», 1984.
9. I.A. Kvasnikov. Teorija neravnovesnyh system. M:
«URSS», 2003 (in Russian).
Article received 20.10.12
ЗАРЯДКА ЧАСТИЦЫ В ПУЧКОВО-ПЛАЗМЕННЫХ СИСТЕМАХ
А.А. Бизюков, Е.В. Ромащенко, К.Н. Середа, С.Н. Аболмасов
В рамках классического приближения ограниченного орбитального движения и на основе дискретной
модели изучается зарядка частиц в пучково-плазменных разрядах. Рассматриваются флуктуации заряда час-
тиц, связанных со случайностью процесса зарядки. Представлено описание Фоккера-Планка зарядки частиц.
Выведено аналитическое выражение для функции распределения заряда с учетом процессов поглощения
электронов и ионов плазмы пылевой частицей и с учетом вторичной электронной эмиссии.
ЗАРЯДЖЕННЯ ЧАСТИНКИ В ПУЧКОВО-ПЛАЗМОВИХ СИСТЕМАХ
О.А. Бізюков, О.В. Ромащенко, К.М. Середа, С.Н. Аболмасов
У рамках класичного наближення обмеженого орбітального руху та на підставі дискретної моделі вивча-
ється зарядження частинок у пучково-плазмових системах. Розглянуто флуктуації зарядження частинок,
пов’язаних з випадковістю процесу зарядження. Представлено опис Фоккера-Планка зарядження частинок.
Отримано аналітичний вираз для функції розподілу заряду, з урахуванням процесів поглинання електронів
та іонів плазми пиловою частинкою та з урахуванням вторинної електронної емісії.
|