Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones

There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bogdanov, R.V., Kostiukevych, O.M.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109287
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones / R.V. Bogdanov, O.M. Kostiukevych // Вопросы атомной науки и техники. — 2013. — № 1. — С. 189-191. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109287
record_format dspace
spelling irk-123456789-1092872016-11-23T03:02:41Z Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones Bogdanov, R.V. Kostiukevych, O.M. Низкотемпературная плазма и плазменные технологии There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the experimental data from test targets sputtering on this magnetron sputtering device demonstrated their compliance in the identical conditions. Построена самосогласованная компьютерная модель магнетронного распылительного устройства с двумя зонами эрозии катода-мишени. Использовался алгоритм Монте-Карло. Магнетронное распылительное устройство является дополнительным модулем для промышленной вакуумной установки ВУП-5. Сравнение результатов компьютерного моделирования и экспериментальных данных распыления тестовых мишеней на данном магнетронном распылительном устройстве продемонстрировало их соответствие при одинаковых условиях. Побудована самоузгоджена комп’ютерна модель магнетронного розпилювального пристрою з двома зонами ерозії катода-мішені. Використовувався алгоритм Монте-Карло. Магнетронний розпилювальний пристрій є додатковим модулем для промислової вакуумної установки ВУП-5. Порівняння результатів комп’ютерного моделювання та експериментальних даних розпилення тестових мішеней на даному магнетронному розпилювальному пристрої продемонструвало їх відповідність за однакових умов. 2013 2013 Article Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones / R.V. Bogdanov, O.M. Kostiukevych // Вопросы атомной науки и техники. — 2013. — № 1. — С. 189-191. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.65.Pp, 52.75.-d, 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/109287 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
spellingShingle Низкотемпературная плазма и плазменные технологии
Низкотемпературная плазма и плазменные технологии
Bogdanov, R.V.
Kostiukevych, O.M.
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
Вопросы атомной науки и техники
description There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the experimental data from test targets sputtering on this magnetron sputtering device demonstrated their compliance in the identical conditions.
format Article
author Bogdanov, R.V.
Kostiukevych, O.M.
author_facet Bogdanov, R.V.
Kostiukevych, O.M.
author_sort Bogdanov, R.V.
title Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
title_short Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
title_full Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
title_fullStr Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
title_full_unstemmed Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
title_sort experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Низкотемпературная плазма и плазменные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/109287
citation_txt Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones / R.V. Bogdanov, O.M. Kostiukevych // Вопросы атомной науки и техники. — 2013. — № 1. — С. 189-191. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bogdanovrv experimentalinvestigationandcomputersimulationofthemagnetronsputteringdevicewithtwoerosionzones
AT kostiukevychom experimentalinvestigationandcomputersimulationofthemagnetronsputteringdevicewithtwoerosionzones
first_indexed 2025-07-07T22:51:50Z
last_indexed 2025-07-07T22:51:50Z
_version_ 1837030400419954688
fulltext ISSN 1562-6016. ВАНТ. 2013. №1(83) 189 EXPERIMENTAL INVESTIGATION AND COMPUTER SIMULATION OF THE MAGNETRON SPUTTERING DEVICE WITH TWO EROSION ZONES R.V. Bogdanov1, O.M. Kostiukevych2 1,2Taras Shevchenko National University of Kiev, Faculty of Radio Physics, Kiev, Ukraine 1E-mail: RSemsterFX@gmail.com; 2E-mail: mirror@ukr.net There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the experimental data from test targets sputtering on this magnetron sputtering device demonstrated their compliance in the identical conditions. PACS: 52.65.Pp, 52.75.-d, 52.80.Sm INTRODUCTION Magnetron sputtering is one of the modern methods of nanomaterials production. One of the ways of improvement the parameters of magnetron sputtering devices (hereinafter – MSD) is to create of a systems with many erosion zones of the cathode-target. The MSD with two erosion zones of the cathode- target is the additional module for the industrial vacuum system VUP-5 [1]. The device (Fig. 1.) consists of the planar and circular cathode unit (with the diameter 74 mm) and annular anode (diameter is 86 mm and it is made of a copper tube with cross section 6 mm). Fig. 1. The scheme of the MSD with two erosion zones [1]: 1 – the cylindrical magnet; 2 – the ring magnet; 3, 4 – the magnetic circuit; 5 – the pads on magnets for amplification of tangential to the cathode magnetic field; 6 – the cavity, which circulates the coolant; 7 – the cathode-target; 8 – the annular anode; 9 – the substrate to be coated; 10 – the power supply; 11 – the plasma of magnetized glow discharge in working gas (usually Ar) 1. ABOUT THE MODEL For determine the parameters of the simulation the tangential and normal to the cathode components of the magnetic field of the MSD were measured by the magnetic inductometer with Hall probe (Fig. 2). From the measurements it was found, that at increasing of the distance to the cathode surface the magnetic field induction decreases in e times on 3.2 mm in the internal discharge zone and on 6.4 mm in the external one [2]. Fig. 2. The components of the magnetic field at the cathode surface along its radius r, (Bt – tangential and Bn – normal components) The electric field was chosen as one-dimensional and parallel to the axis of the system. As in ordinary glow discharge the electric field intensity in the cathode layer (cathode sheath) is [2]: ))(1()2()( 0 EEh dhdVhE −⋅−= , (1) where: V0 – the cathode voltage drop; dE – the sheath width; h – the vertical coordinate in a cylindrical coordinate system, in which the starting point is at the cathode. Outside the cathode layer was considered that Eh(h) = -25 V/m. To estimate the required width of the cathode layer dE used reasoning similar to [2]. Based on the current density of ions at the cathode and the cathode voltage drop, obtained from the experiments, the width of the cathode layer was evaluated according to the Child-Langmuir law (according to [3]): ( )( )4 0,75 0,25 0,52, 43 10 { }E i id U M j cm−= ⋅ ⋅ ⋅ , (2) 190 ISSN 1562-6016. ВАНТ. 2013. №1(83) where U – the voltage on the cathode layer {V}, Mi – the mass of the ion in atomic mass units (Mi(Ar) = 40), ji – the ion current density on the cathode surface {A/cm2}. The discharge current Id more over the ion current at (1+γ) times, which γ – the ratio of secondary ion-electron emission, typically the γ ≤ 0,1 [4]. The simulation program, written on C#, based on the integration of the equations of particles motion in crossed electric and magnetic fields [2]. The fourth order Runge-Kutta method used. For electrons, the time step is τ = 10-11 s, that far less than the period of the electron cyclotron rotation in the MSD magnetic fields. The time of the electron motion is limited to 2.5 μs, since under collisions with atoms of the working gas the electrons come out from the system earlier. For ions the time step is about 10-8 s, and near the cathode it decreases (also, the magnetic force was neglected). At the initial time, secondary electrons emitted from random positions on the cathode. The probability of the particle collisions to atoms of the working gas at each time step was accounted by Monte Carlo method. The criterion of collisions is following [2, 5]: ( )( )WsnRnd aσΔ−−< exp1 , (3) where Rnd – the random number between 0 and 1, which was generated on each time step; Δs – the path which traced by the particle during the time step; σ(W) – the collision cross section, which depends on the particle energy W; na – concentration of atoms in the working gas. At this stage of the study the algorithm for self- consistency of the starting positions of the secondary electrons was introduced. In the self-consistency loop a limited number of electrons (~103) started at every step from the random positions on the cathode according to the distribution obtained in the previous step. This limitation allows speeding up the calculations, but also eliminates the direct effect of the coefficient γ. Similar to [6], the secondary electrons positions were considered as self-consistent when the number of created ions in the current step differs from the previous no more than 10 %. Then, the self-consistency cycle stops. Note: the motion and energy of ions are completely calculated only after ending of the self- consistency cycle, during which the positions of ionizations directly projected onto the cathode (with consideration of possible losses). 2. THE EXPERIMENTAL RESULTS AND ITS COMPARISON WITH MODELING In the previous real experiments there was observed, that variation of discharge voltage within the limits that typically for this magnetron sputtering device, accompanied by the effect of individual ignition of internal and external zones of discharge [2]. This is typically for discharge currents up to Id = 5…15 mA and for the corresponding voltages (if the pressure of working gas Ar was near p = 1.33 Pa). At the higher pressures (p = 6.65 Pa) both discharge zones are usually ignited. The computer calculation by using of the developed simulation program has showed the similar regimes [2]. At low pressures the cathode plasma sheath can be larger than dE =3,2 mm. In this case, the electron confinement by magnetic field in the internal zone is less effective than in the external zone. The electrons in internal zone provides less number of ionizations unlike the external zone conditions when they have a good confinement and acceleration in the cathode sheath. For checking of the modeling results, the test targets for this MSD were produced on it by deposition of the copper thin-film on the thin non-magnetic stainless steel plates (in Ar work gas at pressure p = 1,4 Pa, discharge current Id = 40 mA, the time of the process was about 1 h). Before the processes, the vacuum chamber was unpressured to the level p = 6,65 mPa. For the comparison, the two modes of the target sputtering were chosen – the“low current” (Id = 8…10 mA, V0 = 230 V), in which only the outer zone of discharge was seen clearly (Fig. 3,a), and the “high current” (Id = 70mA, V0 = 290 V), for which the both zones were ignited (Fig. 3,b). If zone of the discharge was ignited, the copper thin-film on the test target under this zone was completely eroded after the time span equals 30 min at “low current” mode and equals 10 min at “high current” mode. When the MSD working at current Id ~ 10 mA the internal zone is hardly noticeable, but can be included in the results of the targets sputtering. The width of corresponding erosion areas was defined from these experimental results. Then, the current densities were estimated of and the widths of the cathode layer from the expression (2) were calculated (Table). According to (2), the change of the discharge current Id between 10 mA to 70 mA is accompanied by a decreasing of the cathode layer width by 1.68 times (see Table). Some data for the cathode sheath evaluation Id, mA Inner zone radial position, cm External zone radial position, cm Sum area, cm2 dE, cm 10 mA 0.6…0.9 2.25…2.85 11.03 0.2 70 mA 0.4…1.05 2.125…3.125 19.45 0.119 The wider cathode layers were used in the simulation due to the need to separate the two modes brighter (dE = 3.2 mm at “high current” and dE = 5.4 mm for the case of “low current” mode), because if the width of the cathode layer is strongly less than 3.2 mm then, both zones can be ignited, by the reason of effective magnetic confinement of electrons in this case. Also the real width of the cathode layer will be uneven along the radius of the cathode region, due to the above reasons [3]. The typical discharge behavior (ignition of the central zone only at high currents) and boundary correspondence of erosion zones in the experiment and in the simulation demonstrates the correctness of chosen approximations (see Fig. 3). ISSN 1562-6016. ВАНТ. 2013. №1(83) 191 (a) (b) Fig. 3. These are photos of the test targets with the erosion zones under discharge current 8...10 mA (a) and 70 mA (b). The curves – are the simulation results. (Ni(r) – the number of ions, which bombarded the target along its radius r, Ns – the total number of bombarding ions) CONCLUSIONS At this stage the computer modeling program of the magnetron sputtering device with two erosion zones takes into account the process of self-maintaining of the discharge. The algorithm of self-consistency of the secondary electrons starting positions on the cathode provides more clearly predict of the discharge modes in the corresponding ranges of voltages and currents. It has been demonstrated that experimentally observed areas of erosion of the test targets are coincidence for the results of the computer simulation. REFERENCES 1. E.T. Kucherenko. Magnetronnoe raspyilitelnoe ustroystvo s dvumya zonami erozii // Plazmotehnologiya-97. Zaporozhye, 1997, p. 121-124 (in Russian). 2. R.V. Bogdanov, O.M. Kostiukevych. Komp’yuterne modelyuvannya mahnetronnoho rozpylyuvalnoho prystroyu z dvoma zonamy eroziyi // Visnyk Kyyivskoho nacionalnoho universytetu imeni Tarasa Shevchenka. Seriya «Ffizyko-matematychni nauky», 2012, № 1, p. 249-260 (in Ukrainian). 3. A.I. Kuzmichev. Magnetronnyie raspyilitelnyie sistemy. Kniga 1. Vvedenie v fiziku i tehniku magnetronnogo raspyileniya. Kiev: «Avers», 2008 (in Russian). 4. Yu.P. Raiser Fizika gazovogo razrjada. 2-e izd. M: «Nauka» / Gl. red. fiz.-mat. lit., 1992 (in Russian). 5. J. Musschoot, D. Depla, J. Haemers and R. De Gryse. Influence of the geometrical configuration on the plasma ionization distribution and erosion profile of a rotation cylindrical magnetron: a Monte Carlo simulation // Plasma Sources Sci. Technol. 2006, № 39, 015209, p. 3989-3993. 6. J. Musschoot, D. Depla, J. Haemers and R.De. Gryse. Investigation of the sustaining mechanisms of dc magnetron discharges and consequences for I-V characteristics // Plasma Sources Sci. Technol. 2008, № 41, 015209, p. 1-5. Article received 20.10.12 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ МАГНЕТРОННОГО РАСПЫЛИТЕЛЬНОГО УСТРОЙСТВА С ДВУМЯ ЗОНАМИ ЭРОЗИИ Р.В. Богданов, О.Н. Костюкевич Построена самосогласованная компьютерная модель магнетронного распылительного устройства с двумя зонами эрозии катода-мишени. Использовался алгоритм Монте-Карло. Магнетронное распылительное устройство является дополнительным модулем для промышленной вакуумной установки ВУП-5. Сравнение результатов компьютерного моделирования и экспериментальных данных распыления тестовых мишеней на данном магнетронном распылительном устройстве продемонстрировало их соответствие при одинаковых условиях. ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТА КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ МАГНЕТРОННОГО РОЗПИЛЮВАЛЬНОГО ПРИСТРОЮ З ДВОМА ЗОНАМИ ЕРОЗІЇ Р.В. Богданов, О.М. Костюкевич Побудована самоузгоджена комп’ютерна модель магнетронного розпилювального пристрою з двома зонами ерозії катода-мішені. Використовувався алгоритм Монте-Карло. Магнетронний розпилювальний пристрій є додатковим модулем для промислової вакуумної установки ВУП-5. Порівняння результатів комп’ютерного моделювання та експериментальних даних розпилення тестових мішеней на даному магнетронному розпилювальному пристрої продемонструвало їх відповідність за однакових умов.