Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones
There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the e...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109287 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones / R.V. Bogdanov, O.M. Kostiukevych // Вопросы атомной науки и техники. — 2013. — № 1. — С. 189-191. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109287 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1092872016-11-23T03:02:41Z Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones Bogdanov, R.V. Kostiukevych, O.M. Низкотемпературная плазма и плазменные технологии There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the experimental data from test targets sputtering on this magnetron sputtering device demonstrated their compliance in the identical conditions. Построена самосогласованная компьютерная модель магнетронного распылительного устройства с двумя зонами эрозии катода-мишени. Использовался алгоритм Монте-Карло. Магнетронное распылительное устройство является дополнительным модулем для промышленной вакуумной установки ВУП-5. Сравнение результатов компьютерного моделирования и экспериментальных данных распыления тестовых мишеней на данном магнетронном распылительном устройстве продемонстрировало их соответствие при одинаковых условиях. Побудована самоузгоджена комп’ютерна модель магнетронного розпилювального пристрою з двома зонами ерозії катода-мішені. Використовувався алгоритм Монте-Карло. Магнетронний розпилювальний пристрій є додатковим модулем для промислової вакуумної установки ВУП-5. Порівняння результатів комп’ютерного моделювання та експериментальних даних розпилення тестових мішеней на даному магнетронному розпилювальному пристрої продемонструвало їх відповідність за однакових умов. 2013 2013 Article Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones / R.V. Bogdanov, O.M. Kostiukevych // Вопросы атомной науки и техники. — 2013. — № 1. — С. 189-191. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.65.Pp, 52.75.-d, 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/109287 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Bogdanov, R.V. Kostiukevych, O.M. Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones Вопросы атомной науки и техники |
description |
There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the industrial vacuum system VUP-5. The results of computer simulation and the experimental data from test targets sputtering on this magnetron sputtering device demonstrated their compliance in the identical conditions. |
format |
Article |
author |
Bogdanov, R.V. Kostiukevych, O.M. |
author_facet |
Bogdanov, R.V. Kostiukevych, O.M. |
author_sort |
Bogdanov, R.V. |
title |
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones |
title_short |
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones |
title_full |
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones |
title_fullStr |
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones |
title_full_unstemmed |
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones |
title_sort |
experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109287 |
citation_txt |
Experimental investigation and computer simulation of the magnetron sputtering device with two erosion zones / R.V. Bogdanov, O.M. Kostiukevych // Вопросы атомной науки и техники. — 2013. — № 1. — С. 189-191. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bogdanovrv experimentalinvestigationandcomputersimulationofthemagnetronsputteringdevicewithtwoerosionzones AT kostiukevychom experimentalinvestigationandcomputersimulationofthemagnetronsputteringdevicewithtwoerosionzones |
first_indexed |
2025-07-07T22:51:50Z |
last_indexed |
2025-07-07T22:51:50Z |
_version_ |
1837030400419954688 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №1(83) 189
EXPERIMENTAL INVESTIGATION AND COMPUTER SIMULATION
OF THE MAGNETRON SPUTTERING DEVICE WITH TWO EROSION
ZONES
R.V. Bogdanov1, O.M. Kostiukevych2
1,2Taras Shevchenko National University of Kiev, Faculty of Radio Physics, Kiev, Ukraine
1E-mail: RSemsterFX@gmail.com;
2E-mail: mirror@ukr.net
There was built the self-consistent computer model of the magnetron sputtering device with two erosion zones of
cathode-target, based on Monte Carlo algorithm. The magnetron sputtering device is an additional module for the
industrial vacuum system VUP-5. The results of computer simulation and the experimental data from test targets
sputtering on this magnetron sputtering device demonstrated their compliance in the identical conditions.
PACS: 52.65.Pp, 52.75.-d, 52.80.Sm
INTRODUCTION
Magnetron sputtering is one of the modern methods
of nanomaterials production. One of the ways of
improvement the parameters of magnetron sputtering
devices (hereinafter – MSD) is to create of a systems
with many erosion zones of the cathode-target.
The MSD with two erosion zones of the cathode-
target is the additional module for the industrial vacuum
system VUP-5 [1]. The device (Fig. 1.) consists of the
planar and circular cathode unit (with the diameter
74 mm) and annular anode (diameter is 86 mm and it is
made of a copper tube with cross section 6 mm).
Fig. 1. The scheme of the MSD with two erosion zones
[1]: 1 – the cylindrical magnet; 2 – the ring magnet;
3, 4 – the magnetic circuit; 5 – the pads on magnets for
amplification of tangential to the cathode magnetic
field; 6 – the cavity, which circulates the coolant; 7 –
the cathode-target; 8 – the annular anode; 9 – the
substrate to be coated; 10 – the power supply; 11 – the
plasma of magnetized glow discharge in working gas
(usually Ar)
1. ABOUT THE MODEL
For determine the parameters of the simulation the
tangential and normal to the cathode components of the
magnetic field of the MSD were measured by the
magnetic inductometer with Hall probe (Fig. 2). From
the measurements it was found, that at increasing of the
distance to the cathode surface the magnetic field
induction decreases in e times on 3.2 mm in the internal
discharge zone and on 6.4 mm in the external one [2].
Fig. 2. The components of the magnetic field at the
cathode surface along its radius r, (Bt – tangential and
Bn – normal components)
The electric field was chosen as one-dimensional and
parallel to the axis of the system. As in ordinary glow
discharge the electric field intensity in the cathode layer
(cathode sheath) is [2]:
))(1()2()( 0 EEh dhdVhE −⋅−= , (1)
where: V0 – the cathode voltage drop; dE – the sheath
width; h – the vertical coordinate in a cylindrical
coordinate system, in which the starting point is at the
cathode. Outside the cathode layer was considered that
Eh(h) = -25 V/m. To estimate the required width of the
cathode layer dE used reasoning similar to [2].
Based on the current density of ions at the cathode
and the cathode voltage drop, obtained from the
experiments, the width of the cathode layer was
evaluated according to the Child-Langmuir law
(according to [3]):
( )( )4 0,75 0,25 0,52, 43 10 { }E i id U M j cm−= ⋅ ⋅ ⋅ , (2)
190 ISSN 1562-6016. ВАНТ. 2013. №1(83)
where U – the voltage on the cathode layer {V}, Mi –
the mass of the ion in atomic mass units (Mi(Ar) = 40), ji
– the ion current density on the cathode surface
{A/cm2}. The discharge current Id more over the ion
current at (1+γ) times, which γ – the ratio of secondary
ion-electron emission, typically the γ ≤ 0,1 [4].
The simulation program, written on C#, based on the
integration of the equations of particles motion in
crossed electric and magnetic fields [2]. The fourth
order Runge-Kutta method used. For electrons, the time
step is τ = 10-11 s, that far less than the period of the
electron cyclotron rotation in the MSD magnetic fields.
The time of the electron motion is limited to 2.5 μs,
since under collisions with atoms of the working gas the
electrons come out from the system earlier. For ions the
time step is about 10-8 s, and near the cathode it
decreases (also, the magnetic force was neglected).
At the initial time, secondary electrons emitted from
random positions on the cathode. The probability of the
particle collisions to atoms of the working gas at each
time step was accounted by Monte Carlo method. The
criterion of collisions is following [2, 5]:
( )( )WsnRnd aσΔ−−< exp1 , (3)
where Rnd – the random number between 0 and 1,
which was generated on each time step; Δs – the path
which traced by the particle during the time step; σ(W) –
the collision cross section, which depends on the
particle energy W; na – concentration of atoms in the
working gas.
At this stage of the study the algorithm for self-
consistency of the starting positions of the secondary
electrons was introduced. In the self-consistency loop a
limited number of electrons (~103) started at every step
from the random positions on the cathode according to
the distribution obtained in the previous step. This
limitation allows speeding up the calculations, but also
eliminates the direct effect of the coefficient γ. Similar
to [6], the secondary electrons positions were
considered as self-consistent when the number of
created ions in the current step differs from the previous
no more than 10 %. Then, the self-consistency cycle
stops. Note: the motion and energy of ions are
completely calculated only after ending of the self-
consistency cycle, during
which the positions of ionizations directly projected
onto the cathode (with consideration of possible losses).
2. THE EXPERIMENTAL RESULTS
AND ITS COMPARISON WITH
MODELING
In the previous real experiments there was observed,
that variation of discharge voltage within the limits that
typically for this magnetron sputtering device,
accompanied by the effect of individual ignition of
internal and external zones of discharge [2]. This is
typically for discharge currents up to Id = 5…15 mA
and for the corresponding voltages (if the pressure of
working gas Ar was near p = 1.33 Pa). At the higher
pressures (p = 6.65 Pa) both discharge zones are usually
ignited. The computer calculation by using of the
developed simulation program has showed the similar
regimes [2]. At low pressures the cathode plasma sheath
can be larger than dE =3,2 mm. In this case, the electron
confinement by magnetic field in the internal zone is
less effective than in the external zone. The electrons in
internal zone provides less number of ionizations unlike
the external zone conditions when they have a good
confinement and acceleration in the cathode sheath.
For checking of the modeling results, the test targets
for this MSD were produced on it by deposition of the
copper thin-film on the thin non-magnetic stainless steel
plates (in Ar work gas at pressure p = 1,4 Pa, discharge
current Id = 40 mA, the time of the process was about
1 h). Before the processes, the vacuum chamber was
unpressured to the level p = 6,65 mPa.
For the comparison, the two modes of the target
sputtering were chosen – the“low current”
(Id = 8…10 mA, V0 = 230 V), in which only the outer
zone of discharge was seen clearly (Fig. 3,a), and the
“high current” (Id = 70mA, V0 = 290 V), for which the
both zones were ignited (Fig. 3,b). If zone of the
discharge was ignited, the copper thin-film on the test
target under this zone was completely eroded after the
time span equals 30 min at “low current” mode and
equals 10 min at “high current” mode.
When the MSD working at current Id ~ 10 mA the
internal zone is hardly noticeable, but can be included in
the results of the targets sputtering. The width of
corresponding erosion areas was defined from these
experimental results. Then, the current densities were
estimated of and the widths of the cathode layer from
the expression (2) were calculated (Table). According to
(2), the change of the discharge current Id between
10 mA to 70 mA is accompanied by a decreasing of the
cathode layer width by 1.68 times (see Table).
Some data for the cathode sheath evaluation
Id, mA
Inner zone
radial
position,
cm
External
zone radial
position, cm
Sum
area,
cm2
dE,
cm
10 mA 0.6…0.9 2.25…2.85 11.03 0.2
70 mA 0.4…1.05 2.125…3.125 19.45 0.119
The wider cathode layers were used in the simulation
due to the need to separate the two modes brighter
(dE = 3.2 mm at “high current” and dE = 5.4 mm for
the case of “low current” mode), because if the width
of the cathode layer is strongly less than 3.2 mm then,
both zones can be ignited, by the reason of effective
magnetic confinement of electrons in this case. Also the
real width of the cathode layer will be uneven along the
radius of the cathode region, due to the above reasons
[3].
The typical discharge behavior (ignition of the
central zone only at high currents) and boundary
correspondence of erosion zones in the experiment and
in the simulation demonstrates the correctness of chosen
approximations (see Fig. 3).
ISSN 1562-6016. ВАНТ. 2013. №1(83) 191
(a)
(b)
Fig. 3. These are photos of the test targets with the
erosion zones under discharge current 8...10 mA (a)
and 70 mA (b). The curves – are the simulation results.
(Ni(r) – the number of ions, which bombarded the target
along its radius r, Ns – the total number of bombarding
ions)
CONCLUSIONS
At this stage the computer modeling program of the
magnetron sputtering device with two erosion zones
takes into account the process of self-maintaining of the
discharge. The algorithm of self-consistency of the
secondary electrons starting positions on the cathode
provides more clearly predict of the discharge modes in
the corresponding ranges of voltages and currents. It has
been demonstrated that experimentally observed areas
of erosion of the test targets are coincidence for the
results of the computer simulation.
REFERENCES
1. E.T. Kucherenko. Magnetronnoe raspyilitelnoe
ustroystvo s dvumya zonami erozii //
Plazmotehnologiya-97. Zaporozhye, 1997, p. 121-124
(in Russian).
2. R.V. Bogdanov, O.M. Kostiukevych. Komp’yuterne
modelyuvannya mahnetronnoho rozpylyuvalnoho
prystroyu z dvoma zonamy eroziyi // Visnyk Kyyivskoho
nacionalnoho universytetu imeni Tarasa Shevchenka.
Seriya «Ffizyko-matematychni nauky», 2012, № 1,
p. 249-260 (in Ukrainian).
3. A.I. Kuzmichev. Magnetronnyie raspyilitelnyie
sistemy. Kniga 1. Vvedenie v fiziku i tehniku
magnetronnogo raspyileniya. Kiev: «Avers», 2008 (in
Russian).
4. Yu.P. Raiser Fizika gazovogo razrjada. 2-e izd. M:
«Nauka» / Gl. red. fiz.-mat. lit., 1992 (in Russian).
5. J. Musschoot, D. Depla, J. Haemers and R. De Gryse.
Influence of the geometrical configuration on the
plasma ionization distribution and erosion profile of a
rotation cylindrical magnetron: a Monte Carlo
simulation // Plasma Sources Sci. Technol. 2006, № 39,
015209, p. 3989-3993.
6. J. Musschoot, D. Depla, J. Haemers and R.De. Gryse.
Investigation of the sustaining mechanisms of dc
magnetron discharges and consequences for I-V
characteristics // Plasma Sources Sci. Technol. 2008,
№ 41, 015209, p. 1-5.
Article received 20.10.12
ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ
МАГНЕТРОННОГО РАСПЫЛИТЕЛЬНОГО УСТРОЙСТВА С ДВУМЯ ЗОНАМИ ЭРОЗИИ
Р.В. Богданов, О.Н. Костюкевич
Построена самосогласованная компьютерная модель магнетронного распылительного устройства с двумя
зонами эрозии катода-мишени. Использовался алгоритм Монте-Карло. Магнетронное распылительное
устройство является дополнительным модулем для промышленной вакуумной установки ВУП-5. Сравнение
результатов компьютерного моделирования и экспериментальных данных распыления тестовых мишеней на
данном магнетронном распылительном устройстве продемонстрировало их соответствие при одинаковых
условиях.
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТА КОМП’ЮТЕРНЕ МОДЕЛЮВАННЯ
МАГНЕТРОННОГО РОЗПИЛЮВАЛЬНОГО ПРИСТРОЮ З ДВОМА ЗОНАМИ ЕРОЗІЇ
Р.В. Богданов, О.М. Костюкевич
Побудована самоузгоджена комп’ютерна модель магнетронного розпилювального пристрою з двома
зонами ерозії катода-мішені. Використовувався алгоритм Монте-Карло. Магнетронний розпилювальний
пристрій є додатковим модулем для промислової вакуумної установки ВУП-5. Порівняння результатів
комп’ютерного моделювання та експериментальних даних розпилення тестових мішеней на даному
магнетронному розпилювальному пристрої продемонструвало їх відповідність за однакових умов.
|