Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluc...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2003
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/110143 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron / E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya // Вопросы атомной науки и техники. — 2003. — № 1. — С. 3-6. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110143 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1101432016-12-31T03:01:47Z Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron Volkov, E.D. Berezhnyj, V.L. Bondarenko, V.N. Chechkin, V.V. Fomin, I.P. Grigor’eva, L.I. Konovalov, V.G. Kotsubanov, V.D. Kulaga, A.E. Lapshin, V.I. Lesnyakov, G.G. Litvinov, A.P. Lozin, A.V. Mironov, Yu.K. Moiseenko, V.E. Nazarov, N.I. Nikol’skij, I.K. Ocheretenko, V.L. Pavlichenko, O.S. Pinos, I.B. Podoba, Yu.Ya. Romanov, V.S. Shapoval, A.N. Shcherbinina, T.E. Skibenko, A.I. Slavnyi, A.S. Sorokovoy, E.L. Tarasov, I.K. Tsybenko, S.A. Voitsenya, V.S. Magnetic confinement It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluctuations. After the ITB formation the transition to the improved plasma confinement takes place. The transition stars when electron temperature in the region of rational surfaces is sufficient to satisfy the condition υTe/uei>>2πR0 (here υTe is electron thermal velocity and uei is the frequency of ion – electron collisions, and R0 is the major radius of the torus). Such a regime can be maintained during the whole duration of RF discharge without any disturbances. Показано, що існує можливість формування внутрішнього теплового бар’єру (ВТБ) в плазмі ВЧ розряду в околиці раціональних поверхонь в торсатронній магнітній конфігурації. Формування ВТБ супроводжується бистрими змінами швидкості полоідального обертання плазми, радіального електричного поля и його шира і зменшенням флуктуацій густини плазми поблизу раціональних поверхонь. Після формування ВТБ спостерігається перехід в режим поліпшеного утримання плазми. Час переходу зменшується із збільшенням ВЧ потужності нагріву. Показано, что имеется возможность формирования внутреннего теплового барьера (ВТБ) в плазме ВЧ разряда в окрестности рациональных поверхностей в торсатронной магнитной конфигурации. Формирование ВТБ сопровождается быстрыми изменениями скорости полоидального вращения плазмы, радиального электрического поля и его шира и уменьшением флуктуаций плотности плазмы вблизи рациональных поверхностей. После формирования ВТБ наблюдается переход в режим улучшенного удержания плазмы. Время перехода сокращается с увеличением ВЧ мощности нагрева. 2003 Article Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron / E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya // Вопросы атомной науки и техники. — 2003. — № 1. — С. 3-6. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.55.Hc http://dspace.nbuv.gov.ua/handle/123456789/110143 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Magnetic confinement Magnetic confinement |
spellingShingle |
Magnetic confinement Magnetic confinement Volkov, E.D. Berezhnyj, V.L. Bondarenko, V.N. Chechkin, V.V. Fomin, I.P. Grigor’eva, L.I. Konovalov, V.G. Kotsubanov, V.D. Kulaga, A.E. Lapshin, V.I. Lesnyakov, G.G. Litvinov, A.P. Lozin, A.V. Mironov, Yu.K. Moiseenko, V.E. Nazarov, N.I. Nikol’skij, I.K. Ocheretenko, V.L. Pavlichenko, O.S. Pinos, I.B. Podoba, Yu.Ya. Romanov, V.S. Shapoval, A.N. Shcherbinina, T.E. Skibenko, A.I. Slavnyi, A.S. Sorokovoy, E.L. Tarasov, I.K. Tsybenko, S.A. Voitsenya, V.S. Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron Вопросы атомной науки и техники |
description |
It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluctuations. After the ITB formation the transition to the improved plasma confinement takes place. The transition stars when electron temperature in the region of rational surfaces is sufficient to satisfy the condition υTe/uei>>2πR0 (here υTe is electron thermal velocity and uei is the frequency of ion – electron collisions, and R0 is the major radius of the torus). Such a regime can be maintained during the whole duration of RF discharge without any disturbances. |
format |
Article |
author |
Volkov, E.D. Berezhnyj, V.L. Bondarenko, V.N. Chechkin, V.V. Fomin, I.P. Grigor’eva, L.I. Konovalov, V.G. Kotsubanov, V.D. Kulaga, A.E. Lapshin, V.I. Lesnyakov, G.G. Litvinov, A.P. Lozin, A.V. Mironov, Yu.K. Moiseenko, V.E. Nazarov, N.I. Nikol’skij, I.K. Ocheretenko, V.L. Pavlichenko, O.S. Pinos, I.B. Podoba, Yu.Ya. Romanov, V.S. Shapoval, A.N. Shcherbinina, T.E. Skibenko, A.I. Slavnyi, A.S. Sorokovoy, E.L. Tarasov, I.K. Tsybenko, S.A. Voitsenya, V.S. |
author_facet |
Volkov, E.D. Berezhnyj, V.L. Bondarenko, V.N. Chechkin, V.V. Fomin, I.P. Grigor’eva, L.I. Konovalov, V.G. Kotsubanov, V.D. Kulaga, A.E. Lapshin, V.I. Lesnyakov, G.G. Litvinov, A.P. Lozin, A.V. Mironov, Yu.K. Moiseenko, V.E. Nazarov, N.I. Nikol’skij, I.K. Ocheretenko, V.L. Pavlichenko, O.S. Pinos, I.B. Podoba, Yu.Ya. Romanov, V.S. Shapoval, A.N. Shcherbinina, T.E. Skibenko, A.I. Slavnyi, A.S. Sorokovoy, E.L. Tarasov, I.K. Tsybenko, S.A. Voitsenya, V.S. |
author_sort |
Volkov, E.D. |
title |
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron |
title_short |
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron |
title_full |
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron |
title_fullStr |
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron |
title_full_unstemmed |
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron |
title_sort |
formation of itb in the vicinity of rational surfaces in the uragan-3m torsatron |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2003 |
topic_facet |
Magnetic confinement |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110143 |
citation_txt |
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron / E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya // Вопросы атомной науки и техники. — 2003. — № 1. — С. 3-6. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT volkoved formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT berezhnyjvl formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT bondarenkovn formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT chechkinvv formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT fominip formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT grigorevali formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT konovalovvg formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT kotsubanovvd formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT kulagaae formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT lapshinvi formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT lesnyakovgg formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT litvinovap formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT lozinav formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT mironovyuk formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT moiseenkove formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT nazarovni formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT nikolskijik formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT ocheretenkovl formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT pavlichenkoos formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT pinosib formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT podobayuya formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT romanovvs formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT shapovalan formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT shcherbininate formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT skibenkoai formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT slavnyias formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT sorokovoyel formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT tarasovik formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT tsybenkosa formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron AT voitsenyavs formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron |
first_indexed |
2025-07-08T00:10:37Z |
last_indexed |
2025-07-08T00:10:37Z |
_version_ |
1837035356437872640 |
fulltext |
MAGNETIC CONFINEMENT
FORMATION OF ITB IN THE VICINITY OF RATIONAL SURFACES IN
THE URAGAN-3M TORSATRON
E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva,
V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin,
Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko,
I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko,
A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya
Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and
Technology”, 61108 Kharkov, Ukraine;
*National Technical University “Kharkov Politechnical Institute”, 61108 Kharkov, Ukraine
It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic
configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric
field and its shear and the decrease of plasma density fluctuations. After the ITB formation the transition to the
improved plasma confinement takes place. The transition stars when electron temperature in the region of rational
surfaces is sufficient to satisfy the condition υTe/νei>>2πR0 (here υTe is electron thermal velocity and νei is the frequency
of ion – electron collisions, and R0 is the major radius of the torus). Such a regime can be maintained during the whole
duration of RF discharge without any disturbances.
PACS: 52.55.Hc
1. INTRODUCTION
It has been demonstrated in a variety of toroidal
magnetic traps that E×B velocity shear is a key
mechanism, which can explain the reduction of plasma
turbulence and formation of transport barriers leading to
the improvement of plasma confinement [1]. There are
some publications [2-4] with indications that the
formation of internal transport barriers (ITB) in toroidal
devices could take place in the vicinity of low order
rational surfaces (RS).
In presented experiments the attempt to realize the
formation of ITB near of island chains with t=1/4 and to
study its influence on a RF discharge plasma confinement
was undertaken on the Uragan-3M torsatron. The
presupposition was made that the radial electric field
profile, Er(r), in this case will be determined by the
increase of a transversal electroconductivity due to a
longitudinal motion of electrons in stochastic layers of
magnetic field lines near RS. In accordance with this
presupposition the transition will be take place when
electron temperature Te in the region of RS is sufficient to
satisfy the condition υTe·τei=λ>>2πR0 (here υTe is electron
thermal velocity and τei is electron – ion collisional time).
In this respect the case with sufficient high heating power
in the region of RS localization is most interesting for the
study.
2. EXPERIMENTAL ARRANGEMENT
Experiments were carried out on the U-3M torsatron
with an open helical divertor (l=3, m=9, R0=100cm,
āpl=12,5cm) at the magnetic field strength B0=0,7T. The
measurements made by the triode and luminescent rod
techniques have shown that there is the possibility to
realize the magnetic configuration with two chains of
islands (t=1/4) located in the region of a small magnetic
shear [5]. Such a configuration takes place at the ratio of
vertical magnetic field to longitudinal one B⊥/B0=1,25%.
The outside shift of the magnetic axis from the
geometrical axis of helical coils equals to 5,5cm in this
case (Fig.1).
Fig.1 The magnetic configuration of the U-3M torsatron
in the cross-section symmetric relative to the middle
plane of the torus. The cross indicates the position of the
magnetic configuration axis
The frame type antenna was used for RF plasma
production and heating in the ion cyclotron range of
frequencies (f=8,8MHz, PRF≤200kW) to provide a
sufficient heating power in the region of localization of
island chains. Numerical simulations have shown that
Alfven waves excited by this antenna absorb at the
external part of a plasma column r /apl>0,5 where RS are
located at the plasma density 312
e cm102n −⋅≅ [6].
The multichannel microwave interferometry (λ=2÷
8mm) and reflectometry (λ=8÷17mm) were used for the
radial density profile ne(r) reconstruction. The density
fluctuation (f=10÷40kHz) level, δn/n, was estimated from
Problems of Atomic Science and Technology. 2003. № 1. Series: Plasma Physics (9). P. 3-6 3
reflected signal phase fluctuations measured by the cross-
detection technique. Radial distributions of radial wave
numbers, kr(r), and the poloidal rotation velocity of
plasma, Vθ(r), were measured by means of the dual-
polarization radial correlation reflectometry and the
poloidal correlation reflectometry. The radial distribution
of electron temperature, Te(r), was obtained from the data
of ECE measurements. The diamagnetic and saddle type
coils were used for the plasma energy content, nT ,
measurements. The bootstrap current, Ibs, measured by
Rogovski coil.
3. EXPERIMENTAL RESULTS
The transition to the improved plasma confinement
regime was observed in the U-3M torsatron with the
island magnetic configuration at RF power PRF>140kW. It
was shown that the transition moves to the beginning of
the discharge with the increase of PRF (Fig.2). The time
evolution of plasma parameters in the presence of such a
transition is shown in Fig.3.
Fig.2 Time evolution of nT for discharges with the
different PRF : (a) – 120 kW, (b) – 140 kW, (c) – 170
kW, (d) – 220 kW
The transition accompanied by the increase of en , Te,
Ibs, nT , and CV intensity. The decrease of δn/n, fast
change of |Vθ| and rE (Fig.4) and the widening of ne(r)
(Fig.5) were observed in the process of transition. High
plasma poloidal rotation velocity shear was detected in
the vicinity of RS after the transition (Fig.6).
It is interesting to note that the relative increase of Te (Te
after transition/Te before transition) is most large in the
region of RS (Fig.7). The radial electric field distribution,
E(r), after the transition was calculated from measured
Te(r), ne(r) and Vθ(r) using the force balance equation
( ) θθ BVBVPenZE T0i
1
iir +−∇= −
in the presupposition VTB0=0 (Fig.8). It is seen that the
sharp change of Er takes place in the vicinity of island
4
Fig.3. Time evolution of PRF, en , Ibs, Te, CV, and nT in
the presence of transition to the improved confinement
regime
chains. The value of |Er| decreases up to Er=0 in the
region of the outer RS. The smaller change of |Er| was
observed near the internal RS. The formation of high
radial electric field shear regions takes place in the
vicinity of both island chains. The observed maxima of
radial wave numbers are located in the same regions
(Fig.9).
The RF discharge plasma with en ≅2·1012cm-3, Te≅(400÷
600)eV, Ti(0)≅(300÷350)eV maintained after the transition
in
the
5
-10 0 10
-120
-40
0
40 Er,V/cm r,cm
Fig.8. The radial distribution of E
r
after ITB formation
39 40 41 42 0.00
0.01
0.02
n/n δ
-4
0
4
8
39 40 41 42
0
10
20
30
39 40 41 42
|V | ⋅ 10 cm⋅ s-1
, cm/s
θ 5
| E| ,V/cm r
time, ms
Fig.4. The behaviour of the density fluctuation level, δ
n/n, poloidal rotation velocity |V
θ|
and radial electric
field |E
r|
during the transition to the improved
confinement regime
-15 -10
-5 0 5 10
0
0.5
1
1.5
2
2.5 n 10 ,cm e
-12 -3
r, cm
. before transition
after transition
Fig.5. The radial distributions of plasma density
relative to the magnetic axis before and after
transition to the regime of improved confinement
Fig.6. The radial distribution of E
r
relative to the magnetic
axis after the ITB formation
-10 0 10
-8
0
8 Vθ ⋅10-5,cm⋅ s-1
r,cm
-10 -5 0 5 10
0
200
400
600
1
1.5
2
2.5
3
T ,eV e T (a)/T (b) e e
r,cm
Fig.7. The radial distributions of T
e
and the relative increase
of T
e
after the transition (T
e
after transition/ T
e
before
transition)
improved confinement regime during the whole duration
of discharge (∆t=50ms) without any disturbances.
4. CONCLUSION
It is shown that there is the possibility of ITB
formation in the vicinity of RS in a torsatron magnetic
configuration. The formation of such a barrier takes place
if the condition υTe·τei=λ>>2πR0 is satisfied in the region
of RS. This condition was fulfilled in the presented
experiment at en ≅2·1012cm-3 and PRF>140kW. In the
process of the ITB formation were observed the next
phenomena:
- the widening of ne(r) and the decrease of δn/n in the
region of RS,
- the increase of bootstrap current,
- fast changes of |Vθ| and rE ,
- the formation of regions with high radial electric
field shear in the vicinity of RS.
After the ITB formation the transition moves to the
beginning of the discharge with the increase of PRF. After
the ITB formation the regime of improved plasma
confinement can be maintained during the whole duration
of RF discharge without any disturbances.
REFERENCES
1. Burrel K. Phys. Plasmas 4(1997) 1499.
2. Strait E.J., Lao L.L, Mauel M.E. et al, Phys. Rev.
Lett. 75 (1995) 4421.
3. Levinton F.M., Zarnstorff M.C., Batha S.H. Phys.
Rev. Lett. 75 (1995) 4417.
4. Hidalgo C., Pedrosa M.A., Erents K. et al, Plasma
Fusion Res. SERIES, 4 (2001) 167.
5. Lesnyakov G.G.,Volkov E.D., Georgievskij A.V. et
al, Nucl. Fusion, 32 (1992) 2157.
6. Volkov E.D., Adamov I.Yu., Arsen’ev A.V. et al,
Plasma Phys. and Control. Nucl. Fusion Res.,
IAEA, Vienna, 2 (1993) 679.
ФОРМУВАННЯ ВТБ В ОКОЛИЦІ РАЦІОНАЛЬНИХ ПОВЕРХОНЬ В ТОРСАТРОНІ
УРАГАН-3М
Є.Д.Волков, В.Л.Бережний, В.М.Бондаренко, В.В.Чечкін, І.П.Фомін, Л.І.Григорьєва, В.Г.Коновалов,
В.Д.Коцубанов, А.Є.Кулага, В.І.Лапшин, Г.Г.Лесняков, А.П.Литвинов, О.В.Лозин, Ю.К.Миронов,
В.Є.Моісеєнко, М.І.Назаров, І.К.Никольський, В.Л.Очеретенко, О.С.Павличенко, І.Б.Пінос, Ю.Я.Подоба,
В.С.Романов, А.М.Шаповал, Т.Є.Щербиніна, А.І.Скибенко, О.С.Славний, Е.Л.Сороковой, І.К.Тарасов,
С.А.Цибенко, В.С.Войценя
Показано, що існує можливість формування внутрішнього теплового бар’єру (ВТБ) в плазмі ВЧ
розряду в околиці раціональних поверхонь в торсатронній магнітній конфігурації. Формування ВТБ
супроводжується бистрими змінами швидкості полоідального обертання плазми, радіального електричного
поля и його шира і зменшенням флуктуацій густини плазми поблизу раціональних поверхонь. Після
формування ВТБ спостерігається перехід в режим поліпшеного утримання плазми. Час переходу зменшується
із збільшенням ВЧ потужності нагріву.
ФОРМИРОВАНИЕ ВТБ В ОКРЕСТНОСТИ РАЦИОНАЛЬНЫХ ПОВЕРХНОСТЕЙ В
ТОРСАТРОНЕ УРАГАН-3М
Е.Д.Волков, В.Л.Бережный, М.Н.Бондаренко, В.В.Чечкин, И.П.Фомин, Л.И.Григорьева, В.Г.Коновалов,
В.Д.Коцубанов, А.Е.Кулага, В.И.Лапшин, Г.Г.Лесняков, А.П.Литвинов, А.В.Лозин, Ю.К.Миронов,
В.Е.Моисеенко, Н.И.Назаров, И.К.Никольский, В.Л.Очеретенко, О.С.Павличенко, И.Б.Пинос, Ю.Я.Подоба,
В.С.Романов, А.Н.Шаповал, Т.Е.Щербинина, А.И.Скибенко, А.С.Славный, Э.Л.Сороковой, И.К.Тарасов,
С.А.Цыбенко, В.С.Войценя
Показано, что имеется возможность формирования внутреннего теплового барьера (ВТБ) в плазме ВЧ
разряда в окрестности рациональных поверхностей в торсатронной магнитной конфигурации. Формирование
ВТБ сопровождается быстрыми изменениями скорости полоидального вращения плазмы, радиального
электрического поля и его шира и уменьшением флуктуаций плотности плазмы вблизи рациональных
6
-10.00 -5.00 0.0
0
5.0
0
10.0
0
0.0
0
1.0
0
2.0
0
3.0
0
kr, a.u.
r,cm
Fig.9. The radial distribution of k
r
after ITB formation
поверхностей. После формирования ВТБ наблюдается переход в режим улучшенного удержания плазмы.
Время перехода сокращается с увеличением ВЧ мощности нагрева.
7
|