Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron

It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluc...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Volkov, E.D., Berezhnyj, V.L., Bondarenko, V.N., Chechkin, V.V., Fomin, I.P., Grigor’eva, L.I., Konovalov, V.G., Kotsubanov, V.D., Kulaga, A.E., Lapshin, V.I., Lesnyakov, G.G., Litvinov, A.P., Lozin, A.V., Mironov, Yu.K., Moiseenko, V.E., Nazarov, N.I., Nikol’skij, I.K., Ocheretenko, V.L., Pavlichenko, O.S., Pinos, I.B., Podoba, Yu.Ya., Romanov, V.S., Shapoval, A.N., Shcherbinina, T.E., Skibenko, A.I., Slavnyi, A.S., Sorokovoy, E.L., Tarasov, I.K., Tsybenko, S.A., Voitsenya, V.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2003
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110143
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron / E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya // Вопросы атомной науки и техники. — 2003. — № 1. — С. 3-6. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110143
record_format dspace
spelling irk-123456789-1101432016-12-31T03:01:47Z Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron Volkov, E.D. Berezhnyj, V.L. Bondarenko, V.N. Chechkin, V.V. Fomin, I.P. Grigor’eva, L.I. Konovalov, V.G. Kotsubanov, V.D. Kulaga, A.E. Lapshin, V.I. Lesnyakov, G.G. Litvinov, A.P. Lozin, A.V. Mironov, Yu.K. Moiseenko, V.E. Nazarov, N.I. Nikol’skij, I.K. Ocheretenko, V.L. Pavlichenko, O.S. Pinos, I.B. Podoba, Yu.Ya. Romanov, V.S. Shapoval, A.N. Shcherbinina, T.E. Skibenko, A.I. Slavnyi, A.S. Sorokovoy, E.L. Tarasov, I.K. Tsybenko, S.A. Voitsenya, V.S. Magnetic confinement It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluctuations. After the ITB formation the transition to the improved plasma confinement takes place. The transition stars when electron temperature in the region of rational surfaces is sufficient to satisfy the condition υTe/uei>>2πR0 (here υTe is electron thermal velocity and uei is the frequency of ion – electron collisions, and R0 is the major radius of the torus). Such a regime can be maintained during the whole duration of RF discharge without any disturbances. Показано, що існує можливість формування внутрішнього теплового бар’єру (ВТБ) в плазмі ВЧ розряду в околиці раціональних поверхонь в торсатронній магнітній конфігурації. Формування ВТБ супроводжується бистрими змінами швидкості полоідального обертання плазми, радіального електричного поля и його шира і зменшенням флуктуацій густини плазми поблизу раціональних поверхонь. Після формування ВТБ спостерігається перехід в режим поліпшеного утримання плазми. Час переходу зменшується із збільшенням ВЧ потужності нагріву. Показано, что имеется возможность формирования внутреннего теплового барьера (ВТБ) в плазме ВЧ разряда в окрестности рациональных поверхностей в торсатронной магнитной конфигурации. Формирование ВТБ сопровождается быстрыми изменениями скорости полоидального вращения плазмы, радиального электрического поля и его шира и уменьшением флуктуаций плотности плазмы вблизи рациональных поверхностей. После формирования ВТБ наблюдается переход в режим улучшенного удержания плазмы. Время перехода сокращается с увеличением ВЧ мощности нагрева. 2003 Article Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron / E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya // Вопросы атомной науки и техники. — 2003. — № 1. — С. 3-6. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 52.55.Hc http://dspace.nbuv.gov.ua/handle/123456789/110143 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Volkov, E.D.
Berezhnyj, V.L.
Bondarenko, V.N.
Chechkin, V.V.
Fomin, I.P.
Grigor’eva, L.I.
Konovalov, V.G.
Kotsubanov, V.D.
Kulaga, A.E.
Lapshin, V.I.
Lesnyakov, G.G.
Litvinov, A.P.
Lozin, A.V.
Mironov, Yu.K.
Moiseenko, V.E.
Nazarov, N.I.
Nikol’skij, I.K.
Ocheretenko, V.L.
Pavlichenko, O.S.
Pinos, I.B.
Podoba, Yu.Ya.
Romanov, V.S.
Shapoval, A.N.
Shcherbinina, T.E.
Skibenko, A.I.
Slavnyi, A.S.
Sorokovoy, E.L.
Tarasov, I.K.
Tsybenko, S.A.
Voitsenya, V.S.
Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
Вопросы атомной науки и техники
description It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluctuations. After the ITB formation the transition to the improved plasma confinement takes place. The transition stars when electron temperature in the region of rational surfaces is sufficient to satisfy the condition υTe/uei>>2πR0 (here υTe is electron thermal velocity and uei is the frequency of ion – electron collisions, and R0 is the major radius of the torus). Such a regime can be maintained during the whole duration of RF discharge without any disturbances.
format Article
author Volkov, E.D.
Berezhnyj, V.L.
Bondarenko, V.N.
Chechkin, V.V.
Fomin, I.P.
Grigor’eva, L.I.
Konovalov, V.G.
Kotsubanov, V.D.
Kulaga, A.E.
Lapshin, V.I.
Lesnyakov, G.G.
Litvinov, A.P.
Lozin, A.V.
Mironov, Yu.K.
Moiseenko, V.E.
Nazarov, N.I.
Nikol’skij, I.K.
Ocheretenko, V.L.
Pavlichenko, O.S.
Pinos, I.B.
Podoba, Yu.Ya.
Romanov, V.S.
Shapoval, A.N.
Shcherbinina, T.E.
Skibenko, A.I.
Slavnyi, A.S.
Sorokovoy, E.L.
Tarasov, I.K.
Tsybenko, S.A.
Voitsenya, V.S.
author_facet Volkov, E.D.
Berezhnyj, V.L.
Bondarenko, V.N.
Chechkin, V.V.
Fomin, I.P.
Grigor’eva, L.I.
Konovalov, V.G.
Kotsubanov, V.D.
Kulaga, A.E.
Lapshin, V.I.
Lesnyakov, G.G.
Litvinov, A.P.
Lozin, A.V.
Mironov, Yu.K.
Moiseenko, V.E.
Nazarov, N.I.
Nikol’skij, I.K.
Ocheretenko, V.L.
Pavlichenko, O.S.
Pinos, I.B.
Podoba, Yu.Ya.
Romanov, V.S.
Shapoval, A.N.
Shcherbinina, T.E.
Skibenko, A.I.
Slavnyi, A.S.
Sorokovoy, E.L.
Tarasov, I.K.
Tsybenko, S.A.
Voitsenya, V.S.
author_sort Volkov, E.D.
title Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
title_short Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
title_full Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
title_fullStr Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
title_full_unstemmed Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron
title_sort formation of itb in the vicinity of rational surfaces in the uragan-3m torsatron
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2003
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/110143
citation_txt Formation of ITB in the vicinity of rational surfaces in the Uragan-3M torsatron / E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya // Вопросы атомной науки и техники. — 2003. — № 1. — С. 3-6. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT volkoved formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT berezhnyjvl formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT bondarenkovn formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT chechkinvv formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT fominip formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT grigorevali formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT konovalovvg formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT kotsubanovvd formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT kulagaae formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT lapshinvi formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT lesnyakovgg formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT litvinovap formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT lozinav formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT mironovyuk formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT moiseenkove formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT nazarovni formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT nikolskijik formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT ocheretenkovl formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT pavlichenkoos formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT pinosib formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT podobayuya formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT romanovvs formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT shapovalan formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT shcherbininate formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT skibenkoai formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT slavnyias formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT sorokovoyel formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT tarasovik formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT tsybenkosa formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
AT voitsenyavs formationofitbinthevicinityofrationalsurfacesintheuragan3mtorsatron
first_indexed 2025-07-08T00:10:37Z
last_indexed 2025-07-08T00:10:37Z
_version_ 1837035356437872640
fulltext MAGNETIC CONFINEMENT FORMATION OF ITB IN THE VICINITY OF RATIONAL SURFACES IN THE URAGAN-3M TORSATRON E.D. Volkov, V.L. Berezhnyj, V.N. Bondarenko, V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, V.G. Konovalov, V.D. Kotsubanov, A.E. Kulaga, V.I. Lapshin, G.G. Lesnyakov, A.P. Litvinov, A.V. Lozin, Yu.K. Mironov, V.E. Moiseenko, N.I. Nazarov, I.K. Nikol’skij, V.L. Ocheretenko, O.S. Pavlichenko, I.B. Pinos, Yu.Ya. Podoba, V.S. Romanov, A.N. Shapoval, T.E. Shcherbinina*, A.I. Skibenko, A.S. Slavnyi, E.L. Sorokovoy, I.K. Tarasov, S.A. Tsybenko, V.S. Voitsenya Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology”, 61108 Kharkov, Ukraine; *National Technical University “Kharkov Politechnical Institute”, 61108 Kharkov, Ukraine It was shown that there is the possibility of ITB formation in the vicinity of rational surfaces in a torsatron magnetic configuration. The formation of ITB is accompanied by fast change of plasma poloidal rotation velocity, radial electric field and its shear and the decrease of plasma density fluctuations. After the ITB formation the transition to the improved plasma confinement takes place. The transition stars when electron temperature in the region of rational surfaces is sufficient to satisfy the condition υTe/νei>>2πR0 (here υTe is electron thermal velocity and νei is the frequency of ion – electron collisions, and R0 is the major radius of the torus). Such a regime can be maintained during the whole duration of RF discharge without any disturbances. PACS: 52.55.Hc 1. INTRODUCTION It has been demonstrated in a variety of toroidal magnetic traps that E×B velocity shear is a key mechanism, which can explain the reduction of plasma turbulence and formation of transport barriers leading to the improvement of plasma confinement [1]. There are some publications [2-4] with indications that the formation of internal transport barriers (ITB) in toroidal devices could take place in the vicinity of low order rational surfaces (RS). In presented experiments the attempt to realize the formation of ITB near of island chains with t=1/4 and to study its influence on a RF discharge plasma confinement was undertaken on the Uragan-3M torsatron. The presupposition was made that the radial electric field profile, Er(r), in this case will be determined by the increase of a transversal electroconductivity due to a longitudinal motion of electrons in stochastic layers of magnetic field lines near RS. In accordance with this presupposition the transition will be take place when electron temperature Te in the region of RS is sufficient to satisfy the condition υTe·τei=λ>>2πR0 (here υTe is electron thermal velocity and τei is electron – ion collisional time). In this respect the case with sufficient high heating power in the region of RS localization is most interesting for the study. 2. EXPERIMENTAL ARRANGEMENT Experiments were carried out on the U-3M torsatron with an open helical divertor (l=3, m=9, R0=100cm, āpl=12,5cm) at the magnetic field strength B0=0,7T. The measurements made by the triode and luminescent rod techniques have shown that there is the possibility to realize the magnetic configuration with two chains of islands (t=1/4) located in the region of a small magnetic shear [5]. Such a configuration takes place at the ratio of vertical magnetic field to longitudinal one B⊥/B0=1,25%. The outside shift of the magnetic axis from the geometrical axis of helical coils equals to 5,5cm in this case (Fig.1). Fig.1 The magnetic configuration of the U-3M torsatron in the cross-section symmetric relative to the middle plane of the torus. The cross indicates the position of the magnetic configuration axis The frame type antenna was used for RF plasma production and heating in the ion cyclotron range of frequencies (f=8,8MHz, PRF≤200kW) to provide a sufficient heating power in the region of localization of island chains. Numerical simulations have shown that Alfven waves excited by this antenna absorb at the external part of a plasma column r /apl>0,5 where RS are located at the plasma density 312 e cm102n −⋅≅ [6]. The multichannel microwave interferometry (λ=2÷ 8mm) and reflectometry (λ=8÷17mm) were used for the radial density profile ne(r) reconstruction. The density fluctuation (f=10÷40kHz) level, δn/n, was estimated from Problems of Atomic Science and Technology. 2003. № 1. Series: Plasma Physics (9). P. 3-6 3 reflected signal phase fluctuations measured by the cross- detection technique. Radial distributions of radial wave numbers, kr(r), and the poloidal rotation velocity of plasma, Vθ(r), were measured by means of the dual- polarization radial correlation reflectometry and the poloidal correlation reflectometry. The radial distribution of electron temperature, Te(r), was obtained from the data of ECE measurements. The diamagnetic and saddle type coils were used for the plasma energy content, nT , measurements. The bootstrap current, Ibs, measured by Rogovski coil. 3. EXPERIMENTAL RESULTS The transition to the improved plasma confinement regime was observed in the U-3M torsatron with the island magnetic configuration at RF power PRF>140kW. It was shown that the transition moves to the beginning of the discharge with the increase of PRF (Fig.2). The time evolution of plasma parameters in the presence of such a transition is shown in Fig.3. Fig.2 Time evolution of nT for discharges with the different PRF : (a) – 120 kW, (b) – 140 kW, (c) – 170 kW, (d) – 220 kW The transition accompanied by the increase of en , Te, Ibs, nT , and CV intensity. The decrease of δn/n, fast change of |Vθ| and rE (Fig.4) and the widening of ne(r) (Fig.5) were observed in the process of transition. High plasma poloidal rotation velocity shear was detected in the vicinity of RS after the transition (Fig.6). It is interesting to note that the relative increase of Te (Te after transition/Te before transition) is most large in the region of RS (Fig.7). The radial electric field distribution, E(r), after the transition was calculated from measured Te(r), ne(r) and Vθ(r) using the force balance equation ( ) θθ BVBVPenZE T0i 1 iir +−∇= − in the presupposition VTB0=0 (Fig.8). It is seen that the sharp change of Er takes place in the vicinity of island 4 Fig.3. Time evolution of PRF, en , Ibs, Te, CV, and nT in the presence of transition to the improved confinement regime chains. The value of |Er| decreases up to Er=0 in the region of the outer RS. The smaller change of |Er| was observed near the internal RS. The formation of high radial electric field shear regions takes place in the vicinity of both island chains. The observed maxima of radial wave numbers are located in the same regions (Fig.9). The RF discharge plasma with en ≅2·1012cm-3, Te≅(400÷ 600)eV, Ti(0)≅(300÷350)eV maintained after the transition in the 5 -10 0 10 -120 -40 0 40 Er,V/cm r,cm Fig.8. The radial distribution of E r after ITB formation 39 40 41 42 0.00 0.01 0.02 n/n δ -4 0 4 8 39 40 41 42 0 10 20 30 39 40 41 42 |V | ⋅ 10 cm⋅ s-1 , cm/s θ 5 | E| ,V/cm r time, ms Fig.4. The behaviour of the density fluctuation level, δ n/n, poloidal rotation velocity |V θ| and radial electric field |E r| during the transition to the improved confinement regime -15 -10 -5 0 5 10 0 0.5 1 1.5 2 2.5 n 10 ,cm e -12 -3 r, cm . before transition after transition Fig.5. The radial distributions of plasma density relative to the magnetic axis before and after transition to the regime of improved confinement Fig.6. The radial distribution of E r relative to the magnetic axis after the ITB formation -10 0 10 -8 0 8 Vθ ⋅10-5,cm⋅ s-1 r,cm -10 -5 0 5 10 0 200 400 600 1 1.5 2 2.5 3 T ,eV e T (a)/T (b) e e r,cm Fig.7. The radial distributions of T e and the relative increase of T e after the transition (T e after transition/ T e before transition) improved confinement regime during the whole duration of discharge (∆t=50ms) without any disturbances. 4. CONCLUSION It is shown that there is the possibility of ITB formation in the vicinity of RS in a torsatron magnetic configuration. The formation of such a barrier takes place if the condition υTe·τei=λ>>2πR0 is satisfied in the region of RS. This condition was fulfilled in the presented experiment at en ≅2·1012cm-3 and PRF>140kW. In the process of the ITB formation were observed the next phenomena: - the widening of ne(r) and the decrease of δn/n in the region of RS, - the increase of bootstrap current, - fast changes of |Vθ| and rE , - the formation of regions with high radial electric field shear in the vicinity of RS. After the ITB formation the transition moves to the beginning of the discharge with the increase of PRF. After the ITB formation the regime of improved plasma confinement can be maintained during the whole duration of RF discharge without any disturbances. REFERENCES 1. Burrel K. Phys. Plasmas 4(1997) 1499. 2. Strait E.J., Lao L.L, Mauel M.E. et al, Phys. Rev. Lett. 75 (1995) 4421. 3. Levinton F.M., Zarnstorff M.C., Batha S.H. Phys. Rev. Lett. 75 (1995) 4417. 4. Hidalgo C., Pedrosa M.A., Erents K. et al, Plasma Fusion Res. SERIES, 4 (2001) 167. 5. Lesnyakov G.G.,Volkov E.D., Georgievskij A.V. et al, Nucl. Fusion, 32 (1992) 2157. 6. Volkov E.D., Adamov I.Yu., Arsen’ev A.V. et al, Plasma Phys. and Control. Nucl. Fusion Res., IAEA, Vienna, 2 (1993) 679. ФОРМУВАННЯ ВТБ В ОКОЛИЦІ РАЦІОНАЛЬНИХ ПОВЕРХОНЬ В ТОРСАТРОНІ УРАГАН-3М Є.Д.Волков, В.Л.Бережний, В.М.Бондаренко, В.В.Чечкін, І.П.Фомін, Л.І.Григорьєва, В.Г.Коновалов, В.Д.Коцубанов, А.Є.Кулага, В.І.Лапшин, Г.Г.Лесняков, А.П.Литвинов, О.В.Лозин, Ю.К.Миронов, В.Є.Моісеєнко, М.І.Назаров, І.К.Никольський, В.Л.Очеретенко, О.С.Павличенко, І.Б.Пінос, Ю.Я.Подоба, В.С.Романов, А.М.Шаповал, Т.Є.Щербиніна, А.І.Скибенко, О.С.Славний, Е.Л.Сороковой, І.К.Тарасов, С.А.Цибенко, В.С.Войценя Показано, що існує можливість формування внутрішнього теплового бар’єру (ВТБ) в плазмі ВЧ розряду в околиці раціональних поверхонь в торсатронній магнітній конфігурації. Формування ВТБ супроводжується бистрими змінами швидкості полоідального обертання плазми, радіального електричного поля и його шира і зменшенням флуктуацій густини плазми поблизу раціональних поверхонь. Після формування ВТБ спостерігається перехід в режим поліпшеного утримання плазми. Час переходу зменшується із збільшенням ВЧ потужності нагріву. ФОРМИРОВАНИЕ ВТБ В ОКРЕСТНОСТИ РАЦИОНАЛЬНЫХ ПОВЕРХНОСТЕЙ В ТОРСАТРОНЕ УРАГАН-3М Е.Д.Волков, В.Л.Бережный, М.Н.Бондаренко, В.В.Чечкин, И.П.Фомин, Л.И.Григорьева, В.Г.Коновалов, В.Д.Коцубанов, А.Е.Кулага, В.И.Лапшин, Г.Г.Лесняков, А.П.Литвинов, А.В.Лозин, Ю.К.Миронов, В.Е.Моисеенко, Н.И.Назаров, И.К.Никольский, В.Л.Очеретенко, О.С.Павличенко, И.Б.Пинос, Ю.Я.Подоба, В.С.Романов, А.Н.Шаповал, Т.Е.Щербинина, А.И.Скибенко, А.С.Славный, Э.Л.Сороковой, И.К.Тарасов, С.А.Цыбенко, В.С.Войценя Показано, что имеется возможность формирования внутреннего теплового барьера (ВТБ) в плазме ВЧ разряда в окрестности рациональных поверхностей в торсатронной магнитной конфигурации. Формирование ВТБ сопровождается быстрыми изменениями скорости полоидального вращения плазмы, радиального электрического поля и его шира и уменьшением флуктуаций плотности плазмы вблизи рациональных 6 -10.00 -5.00 0.0 0 5.0 0 10.0 0 0.0 0 1.0 0 2.0 0 3.0 0 kr, a.u. r,cm Fig.9. The radial distribution of k r after ITB formation поверхностей. После формирования ВТБ наблюдается переход в режим улучшенного удержания плазмы. Время перехода сокращается с увеличением ВЧ мощности нагрева. 7