Spontaneous generation of beta-limiting MHD modes in tokamaks

It is shown that under conditions typical of fusion reactors of tokamak type, a spontaneous generation of magnetohydrodynamic (MHD) modes is possible, which may limit plasma pressure in ideally stable plasma. Electromagnetic field of such modes consists of two different scale lengths: a large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2003
Hauptverfasser: Shirokov, M.S., Mikhailovskii, A.B., Konovalov, S.V., Tsypin, V.S.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2003
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/110342
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Spontaneous generation of beta-limiting MHD modes in tokamaks / M.S. Shirokov, A.B. Mikhailovskii, S.V. Konovalov, V.S. Tsypin // Вопросы атомной науки и техники. — 2003. — № 1. — С. 46-48. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110342
record_format dspace
spelling irk-123456789-1103422017-01-16T12:35:02Z Spontaneous generation of beta-limiting MHD modes in tokamaks Shirokov, M.S. Mikhailovskii, A.B. Konovalov, S.V. Tsypin, V.S. Magnetic confinement It is shown that under conditions typical of fusion reactors of tokamak type, a spontaneous generation of magnetohydrodynamic (MHD) modes is possible, which may limit plasma pressure in ideally stable plasma. Electromagnetic field of such modes consists of two different scale lengths: a large-scale (MHD) component and a small-scale one, which is smaller than Larmor radius of thermal ions. It is suggested that these modes can be responsible for spontaneous generation of neoclassical tearing modes observed experimentally. The value of threshold beta for this mode onset was found to be similar to that in experiments showing NTMs. Показано, що в умовах термоядерних реакторів типу токамак можлива спонтанна генерація магнітогідродинамічних (МГД) збурень, що призводять до обмеження на тиск ідеально стійкої плазми. Електромагнітне поле таких збурень має не тільки великомасштабну МГД складову, а ще й дрібномасштабну, характерний розмір якої малий у зрівнянні з ларморівським радіусом іонів. Припущено, що вказані збурення можуть бути відповідальні за експериментально досліджену спонтанну генерацію неокласичних тиринг мод (НТМ). Величина порога по бета для збудження виявлених нестійкостей є близькою з характерними значеннями для експериментів з НТМ. Показано, что в условиях термоядерных реакторов типа токамак возможна спонтанная генерация магнитогидродинамических (МГД) возмущений, приводящая к ограничению на давление идеально устойчивой плазмы. Электромагнитное поле таких возмущений имеет не только крупномасштабную МГД составляющую, но и мелкомасштабную, характерный размер которой мал по сравнению с ларморовским радиусом ионов. Высказано предположение, что указанные возмущения могут быть ответственны за экспериментально наблюдаемую спонтанную генерацию неоклассических тиринг мод (НТМ). Величина порога по бета для возбуждения обнаруженных неустойчивостей оказывается близкой к характерным для экспериментов с НТМ значениям. 2003 Article Spontaneous generation of beta-limiting MHD modes in tokamaks / M.S. Shirokov, A.B. Mikhailovskii, S.V. Konovalov, V.S. Tsypin // Вопросы атомной науки и техники. — 2003. — № 1. — С. 46-48. — Бібліогр.: 20 назв. — англ. 1562-6016 PACS: 52.55.Fa, 52.35.-g http://dspace.nbuv.gov.ua/handle/123456789/110342 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Magnetic confinement
Magnetic confinement
spellingShingle Magnetic confinement
Magnetic confinement
Shirokov, M.S.
Mikhailovskii, A.B.
Konovalov, S.V.
Tsypin, V.S.
Spontaneous generation of beta-limiting MHD modes in tokamaks
Вопросы атомной науки и техники
description It is shown that under conditions typical of fusion reactors of tokamak type, a spontaneous generation of magnetohydrodynamic (MHD) modes is possible, which may limit plasma pressure in ideally stable plasma. Electromagnetic field of such modes consists of two different scale lengths: a large-scale (MHD) component and a small-scale one, which is smaller than Larmor radius of thermal ions. It is suggested that these modes can be responsible for spontaneous generation of neoclassical tearing modes observed experimentally. The value of threshold beta for this mode onset was found to be similar to that in experiments showing NTMs.
format Article
author Shirokov, M.S.
Mikhailovskii, A.B.
Konovalov, S.V.
Tsypin, V.S.
author_facet Shirokov, M.S.
Mikhailovskii, A.B.
Konovalov, S.V.
Tsypin, V.S.
author_sort Shirokov, M.S.
title Spontaneous generation of beta-limiting MHD modes in tokamaks
title_short Spontaneous generation of beta-limiting MHD modes in tokamaks
title_full Spontaneous generation of beta-limiting MHD modes in tokamaks
title_fullStr Spontaneous generation of beta-limiting MHD modes in tokamaks
title_full_unstemmed Spontaneous generation of beta-limiting MHD modes in tokamaks
title_sort spontaneous generation of beta-limiting mhd modes in tokamaks
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2003
topic_facet Magnetic confinement
url http://dspace.nbuv.gov.ua/handle/123456789/110342
citation_txt Spontaneous generation of beta-limiting MHD modes in tokamaks / M.S. Shirokov, A.B. Mikhailovskii, S.V. Konovalov, V.S. Tsypin // Вопросы атомной науки и техники. — 2003. — № 1. — С. 46-48. — Бібліогр.: 20 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT shirokovms spontaneousgenerationofbetalimitingmhdmodesintokamaks
AT mikhailovskiiab spontaneousgenerationofbetalimitingmhdmodesintokamaks
AT konovalovsv spontaneousgenerationofbetalimitingmhdmodesintokamaks
AT tsypinvs spontaneousgenerationofbetalimitingmhdmodesintokamaks
first_indexed 2025-07-08T00:30:24Z
last_indexed 2025-07-08T00:30:24Z
_version_ 1837036601987825664
fulltext SPONTANEOUS GENERATION OF BETA-LIMITING MHD MODES IN TOKAMAKS M.S.Shirokov,1,2 A.B.Mikhailovskii,1 S.V.Konovalov,1 V.S.Tsypin3 1 Institute of Nuclear Fusion, RRC “Kurchatov Institute”, Moscow, Russia 2 Moscow Institute of Physics and Engineering, Moscow, Russia 3 Institute of Physics, University of São Paulo, S/N, 05508-900 SP, Brasil 1. Neoclassical tearing modes (NTMs) are sug- gested to be one of the main obstacles to achieve ac- ceptable values of beta (ratio of plasma pressure to magnetic field pressure) in fusion reactors of toka- mak type [1]. The existing theory of NTMs [2] is based on the notion that these modes are triggered by other types of MHD (magnetohydrodynamic) activity such as ELMs (Edge Localized Modes), sawteeth and fishbones. Meanwhile, the observa- tional data from ASDEX Upgrade [3] and TFTR [4] show that NTMs can be generated spontaneously, i.e. in the absence of any MHD activity. To explain spontaneous generation of NTMs one should appeal to a linear instability excited when the parameter beta of ideally stable plasma exceeds a threshold value. However, the existing linear theory [5] does not predict such an instability. The need to have a non-ideal instability excited when beta exceeds a threshold value is felt also in explanation of observational data on NTMs from a series of tokamaks with hot-electron plasma (plasma with electron temperature essentially larger than the ion one) like T-10 [6], COMPASS-D [7] and TCV [8]. The fact is that, after the revision of the traditional NTM theory [9] confirmed by [10], it became clear that the polarization current effect in such a plasma is destabilizing. Therefore, the re- vised theory does not predict a threshold beta for NTM onset in these devices. Certainly, in order to interpret these data from the devices with hot-electron plasma one can turn to the transport threshold models of NTMs (see [11] and references therein). However, these models deal with a rather obscure coefficients of anomalous perpendicular transport. Therefore, though within the scope of the transport models it is possible to appeal to such an interpretation, it seems to be doubtful that all totality of the data from different devices can be satisfactorily explained. Thus, a rather broad series of experiments using the notions of NTM theory needs a β-limiting linear instability. In principle, preceding theoretical investigations of linear modes in tokamaks include certain indica- tions in favor of existence of beta-limiting instabil- ities. Thus, it was shown in [12] that for q ' 1 an instability distorting the magnetic surfaces of tokamak-type toroidal systems can be excited if, qualitatively (see Eq. (3.29) of [12]) βp > β(0) p ≡ s2L2 p/r 2 s . (1) Here q is the safety factor, βp is the poloidal beta, s is the shear, Lp is the characteristic scale of the plasma pressure gradient, rs is the radial coordinate of the rational magnetic surface where the mode is localized. According to [12], for excitation of this instability the presence of temperature gradient is necessary. The local approximation was used in [12], which is insufficient to show the existence of the eigen- modes. This defect of [12] has been corrected in [13, 14]. The eigenmodes found in [13, 14] have been called the beta-induced temperature gradient (BTG) eigenmodes. It was assumed in [12 - 14] that the BTG modes are excited due to toroidal acoustic resonance, i.e. for the condition ω∗ ' vTi/qR where ω∗ is the characteristic diamagnetic drift frequency, vTi is the ion thermal velocity, R is the torus major ra- dius. Such a resonance is effective only for suffi- ciently high poloidal and toroidal mode numbers, m = nq = Lprs/ (qRρi) > 1, where ρi is the ion Larmor radius. Experimental observation of BTG modes on JET was reported in [15]. The analysis of [12 - 14] was based on the ap- proximation that the characteristic radial scale of the mode is larger than ρi or ρs, kxρi � 1, kxρs � 1, where ρs is the ion Larmor radius calculated for the electron temperature, kx is the perpendicular projection of the wave vector ( the variable x is defined by x = r − rs). Nevertheless, in order to reveal the eigenmodes the authors of [13, 14] have been forced to allow for the formally small terms of the order of (kxρi) 2 and (kxρs) 2. At the same time, the MHD-like modes, includ- ing those with kxρi ≥ 1, kxρs ≥ 1, are subject of the theory of semicollisional modes [5, 16 - 18]. One of the main mathematical results of this theory is a rather complicated general dispersion relation (see, for details, Eq. (24.33) of [5] and Eq. (9) of the present paper). This dispersion relation con- tains a dimensionless parameter ν which in the case T0i = T0e = T0 (T0i and T0e are the equilibrium ion and electron temperatures, respectively) is given by ν2 = 1 4 − (ω − ω∗e) (ω − ω∗i) 2k2 yρ 2 iω 2 A . (2) Here ω is the mode frequency, ωA = svA/ (qR) is the Alfven frequency, vA is the Alfven velocity, ω∗e and ω∗i are the electron and ion diamagnetic drift frequencies, respectively, ky = m/rs is the poloidal projection of the wave vector. Up to now, the anal- ysis of the dispersion relation (24.33) of [5] was per- formed only for the particular case ∣∣ν2 − 1/4 ∣∣ � 1 In this case it describes the semicollisional internal kink and tearing modes [17] and the semicollisional ballooning modes [18]. All these modes do not be- long to the class of the β-limiting modes. The goal of the present paper is to discover a new linear instability excited for a beta value larger than a critical one and to show that this critical beta is of the same order as that necessary for ex- planation of the observational data from [3, 4, 6-8]. 2. Turning to dispersion relation (24.33) of [5], one can see that it is satisfied for ν = 0. (3) Then one has from (2) and (3) (ω − ω∗e) (ω − ω∗i)− 2ω2 ∗eβ (0) p /βp = 0. (4) We call the modes described by (4) the “sub-Larmor” modes. It follows from (4) that in the case of suffi- ciently low βp, βp � β (0) p , the mode frequencies prove to be essentially larger than both the elec- tron and ion diamagnetic drift frequencies. There- fore, in this case the modes can not be excited by the electron or ion diamagnetic drift effects. How- ever, with increasing the βp the mode frequency (4) decrease and prove to be of the order of ω∗e or ω∗i for the condition (1). For such βp the dissipative electron/ion drift effects can excite the sub-Larmor modes. 3. Now we consider the case of vanishing ion temperature. Similar to section 24.1 of [5], we start from the current continuity equation written in the Fourier space kx. We take ∇⊥ · j⊥ = − iω 4π k2 xε⊥φ. (5) Here φ is the electrostatic potential, ε⊥ = c2f/v2 A is the perpendicular plasma permittivity, c is the speed of light, f = f (ω) is the toroidal renormal- ization of perpendicular inertia [5], j⊥ is the per- turbed electric current density across the equilib- rium magnetic field B0, ∇⊥ is the perpendicular (with respect to B0) gradient. We use the parallel Ohm’s law (cf. (22.1) of [5]) E‖ − T0e een0 ( ∇‖ñ+ Bx B0 n′0 ) = j‖ σ . (6) Here E‖ = −∇‖φ + iωA‖/c is the perturbed par- allel electric field, A‖ = 4πj‖/ ( ck2 x ) is the parallel projection of the perturbed vector potential, j‖ is the perturbed parallel electric current density, σ is the plasma electric conductivity, Bx = ikyA‖ is the x-projection of the perturbed magnetic field, ky is the poloidal projection of the wave vector, ee is the electron electric charge, n0 is the equilibrium plasma density, the prime is the radial derivative, ñ is the perturbed plasma number density, ∇‖ is the parallel gradient. The perturbed plasma number density ñ is assumed to satisfy the electron conti- nuity equation −iωñ+ VExn ′ 0 +∇‖j‖/ee = 0, (7) where VEx = −ickyφ/B0 is the x-projection of the perturbed cross-field velocity. Far from the resonant point r = rs we use the “constant ψ approximation”, where ψ ≡ −A‖. In the Fourier space this means that for kx → 0 φ ∼ 1−∆′/kx, (8) where ∆′ is the standard tearing mode theory match- ing parameter. As a result, following the approach explained in chapter 24 of [5], we arrive at the dispersion relation Γ2 ( − 1 4 + ν 2 ) Γ2 (−ν)Q (ν) Γ2 ( − 1 4 − ν 2 ) Γ2 (ν)Q (−ν) = ( 4κ β̂2 )ν . (9) Here Γ is the gamma function, Q (ν) = 1 + κ−1/2 8rs∆′ Γ2 ( − 1 4 − ν 2 ) Γ2 ( − 5 2 − ν 2 ) ( ν2 − 1 4 ) , (10) the value ν is given by (cf. (2)) ν2 = 1 4 − ω (ω − ω∗e) k2 yρ 2 sω 2 A , (11) κ = fk2 yρ 2 s/ (1− ω∗e/ω), β̂ = (−iωγR)1/2 / (kyρsωA), γR = c2k2 y/ (4πσ) is the characteristic resistive de- cay rate. One can see that the dispersion relation (9) is satisfied for the condition (3). It follows from (11) that in this case the mode frequency is determined by the dispersion relation similar to (4): ω (ω − ω∗e) = k2 yρ 2 sω 2 A/4. (12) Equation (12) yields ω = ω± = −ω∗e 2 [ 1± ( 1 + 2s2L2 n βpr2s )1/2 ] , (13) One can see that, for the condition (1) the mode propagating in the electron drift direction has fre- quency of the order of electron diamagnetic drift frequency. 4. It is possible that nonlinear development of the “sub-Larmor” modes leads to NTMs. It is then of interest to estimate the linear growth rate γ of the modes considered and to elucidate the collision- ality dependence of the beta threshold. One can suggest that the growth rate γ of the mode of type (13) is determined by γ = γe + γi, (14) where γe is the electron growth rate and γi is the ion decay rate given by, respectively, γe ' fe ( νe εω∗e ) |ω∗e| , (15) γi ' − β (0) p βp νi. (16) Here fe [νe/ (εω∗e)] is a small dimensionless param- eter whose explicit form can be found turning to [19], νe and νi are the electron and ion collision fre- quencies, respectively. Then one can see that for finite νi the condition (1) is insufficient for exci- tation of the “sub-Larmor modes”. In this case, instead of (1), one should use the estimate βp > βcrit p , (17) where βcrit p = { β (0) p , νi < γe, β (0) p νi/γe, νi > γe. . (18) To determine βcrit one was forced to appeal to the polarization current threshold model [2] (see also [20]) or to the transport threshold model. In this context, Eq. (18) is an alternative to these models in determining the βcrit. The estimates, following from (18), prove to be compatible with the experimental data from [3, 4, 6-8]. Acknowledgments The authors would like to express their grati- tude to Dr. S. E. Sharapov for discussions stimu- lating this work. This work was supported by the Russian Federal Program on Support of Leading Scientific Schools, Grant No. 00-15-96526, the Research Support Foun- dation of the State of São Paulo (FAPESP), Uni- versity of São Paulo, and Excellence Research Pro- grams (PRONEX) RMOG 50/70 Grant from the Ministry of Science and Technology, Brazil. References [1] ITER Physics Expert Group on Disruptions, Plasma Control, and MHD, ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251 [2] Wilson H R et al 1996 Plasma Phys. Control. Fusion 38 A149 [3] Gude A et al 1999 Nucl. Fusion 39, 127 [4] Fredrickson E D 2002 Phys. Plasmas 9 548 [5] Mikhailovskii A B 1998 Instabilities in a Con- fined Plasma (Bristol: Institute of Physics) [6] Kislov D A et al 2001 Nucl. Fusion 41 1473 [7] Gates D A et al 1997 Nucl. Fusion 37 1593 [8] Reimerdes H et al 2002 Phys. Rev. Lett. 88 105005 [9] Waelbroeck F L and Fitzpatrick R 1997 Phys. Rev. Lett. 78 1703 [10] Mikhailovskii A B, Pustovitov V D, Smolyakov A I and Tsypin V S 2000 Phys. Plasmas 7 1214 [11] Shirokov M S, Mikhailovskii A B, Konovalov S V, Tsypin V S, 2002 Development of Transport Thresh- old Model of Neoclassical Tearing Modes, this confer- ence [12] Mikhailovskii A B 1973 Nucl. Fusion 13 259 [13] Mikhailovskii A B and Sharapov S E 1999 Plasma Phys. Rep 25 803 [14] Mikhailovskii A B and Sharapov S E 1999 Plasma Phys. Rep 25 838 [15] Sharapov S E et al 1998 Theory of Fusion Plas- mas. Proc. Int. Varenna-Lausanne Workshop on Fu- sion Plasmas (Varenna, 1998) eds Connor J W, Sindini E and Vaclavic J, Bologna; Compositori, p. 215 [16] Drake J F and Lee Y C 1977 Phys. Fluids 20 1341 [17] Pegoraro F and Schep T J 1986 Plasma Phys. Control. Fusion 28 647 [18] Mikhailovskii A B, Novakovskii S V and Churikov A P 1988 Sov. J. Plasma Phys. 14 536 [19] Kuvshinov B N and Mikhailovskii A B 1998 Plasma Phys. Rep. 24 245 [20] Shirokov M S, Mikhailovskii A B, Konovalov S V, Tsypin V S, 2002 Polarization Current Threshold Model of Neoclassical Tearing Modes in the Presence of Anomalous Perpendicular Viscosity, this conference