Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators

Using the novel method of macroscopic computer simulation of the reflection of charged particles from solid surfaces at grazing incidence the kinetics of planar macrochanneling, the directed transport of particles between surfaces separated by macroscopic distance, has been studied for swift electro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Dyuldya, S.V., Bratchenko, M.I., Skorobogatov, M.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110394
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators / S.V. Dyuldya, M.I. Bratchenko, M.A. Skorobogatov // Вопросы атомной науки и техники. — 2007. — № 5. — С. 90-97. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110394
record_format dspace
spelling irk-123456789-1103942017-01-05T03:02:22Z Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators Dyuldya, S.V. Bratchenko, M.I. Skorobogatov, M.A. Ядернo-физические методы и обработка данных Using the novel method of macroscopic computer simulation of the reflection of charged particles from solid surfaces at grazing incidence the kinetics of planar macrochanneling, the directed transport of particles between surfaces separated by macroscopic distance, has been studied for swift electrons and ions. The dechanneling functions at macrochanneling have been calculated for the first time. The modeling of angular distributions of particles has confirmed the effect of beam angular splitting at the exit of macrochannel. The method of the taking into account of surface atomic discreteness at modeling of coherent effects of ion planar semichanneling has been developed. It has been shown that due to stochastic effects of particles reflection the macrochanneling of electrons in long channels is actually reduced to the effects of beam collimation while for ions the coherent effect allows to stabilize the macrochanneling and to achieve the beam transportation at long distances without considerable losses of intensity. Оригінальним методом макроскопічного математичного моделювання відбиття заряджених частинок від поверхні твердого тіла досліджена кінетика площинного макроканалювання швидких електронів та іонів — орієнтованого транспорту частинок між поверхнями, розділеними макроскопічною відстанню. Вперше розраховані функції деканалювання частинок при макроканалюванні. Моделювання кутових розподілів підтвердило існування ефекту розділення потоків частинок. Розроблено метод урахування атомної дискретності поверхні в моделюванні когерентних ефектів площинного напівканалювання іонів. Показано, що з-за стохастичності процесу відбиття макроканалювання електронів в каналах великої довжини ефективно визначається механізмами колімації пучка, тоді як для іонів когерентний ефект дозволяє стабілізувати макроканалювання та досягти транспортування та розділення пучка на великих відстанях без значних втрат інтенсивності. Оригинальным методом макроскопического математического моделирования отражения заряженных частиц от поверхности твердого тела исследована кинетика плоскостного макроканалирования быстрых электронов и ионов — ориентированного транспорта частиц между поверхностями, разделенными макроскопическим расстоянием. Впервые рассчитаны функции деканалирования частиц при макроканалировании. Моделирование угловых распределений подтвердило существование эффекта разделения потоков частиц. Разработан метод учета атомной дискретности поверхности при моделировании когерентных эффектов плоскостного полуканалирования ионов. Показано, что ввиду стохастичности процесса отражения макроканалирование электронов в каналах большой длины эффективно определяется механизмами коллимации пучка, тогда как для ионов когерентный эффект позволяет стабилизировать макроканалирование и достичь транспортировки и разделения пучка на больших расстояниях без существенных потерь интенсивности. 2007 Article Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators / S.V. Dyuldya, M.I. Bratchenko, M.A. Skorobogatov // Вопросы атомной науки и техники. — 2007. — № 5. — С. 90-97. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 02.70.Uu, 07.05.Tp, 29.27.Eg, 61.85.+p, 68.49.Jk, 68.49.Sf, 41.75.Ht, 41.85.Ct, 41.85.Ja, 41.85.Si http://dspace.nbuv.gov.ua/handle/123456789/110394 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Dyuldya, S.V.
Bratchenko, M.I.
Skorobogatov, M.A.
Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
Вопросы атомной науки и техники
description Using the novel method of macroscopic computer simulation of the reflection of charged particles from solid surfaces at grazing incidence the kinetics of planar macrochanneling, the directed transport of particles between surfaces separated by macroscopic distance, has been studied for swift electrons and ions. The dechanneling functions at macrochanneling have been calculated for the first time. The modeling of angular distributions of particles has confirmed the effect of beam angular splitting at the exit of macrochannel. The method of the taking into account of surface atomic discreteness at modeling of coherent effects of ion planar semichanneling has been developed. It has been shown that due to stochastic effects of particles reflection the macrochanneling of electrons in long channels is actually reduced to the effects of beam collimation while for ions the coherent effect allows to stabilize the macrochanneling and to achieve the beam transportation at long distances without considerable losses of intensity.
format Article
author Dyuldya, S.V.
Bratchenko, M.I.
Skorobogatov, M.A.
author_facet Dyuldya, S.V.
Bratchenko, M.I.
Skorobogatov, M.A.
author_sort Dyuldya, S.V.
title Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
title_short Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
title_full Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
title_fullStr Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
title_full_unstemmed Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
title_sort modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/110394
citation_txt Modeling of kinetics of macrochanneling of fast electrons and ions in planar gap collimators / S.V. Dyuldya, M.I. Bratchenko, M.A. Skorobogatov // Вопросы атомной науки и техники. — 2007. — № 5. — С. 90-97. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dyuldyasv modelingofkineticsofmacrochannelingoffastelectronsandionsinplanargapcollimators
AT bratchenkomi modelingofkineticsofmacrochannelingoffastelectronsandionsinplanargapcollimators
AT skorobogatovma modelingofkineticsofmacrochannelingoffastelectronsandionsinplanargapcollimators
first_indexed 2025-07-08T00:33:52Z
last_indexed 2025-07-08T00:33:52Z
_version_ 1837036819719389184
fulltext MODELING OF KINETICS OF MACROCHANNELING OF FAST ELECTRONS AND IONS IN PLANAR GAP COLLIMATORS S.V. Dyuldya∗, M.I. Bratchenko, M.A. Skorobogatov National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received May 23, 2006) Using the novel method of macroscopic computer simulation of the reflection of charged particles from solid surfaces at grazing incidence the kinetics of planar macrochanneling, the directed transport of particles between surfaces separated by macroscopic distance, has been studied for swift electrons and ions. The dechanneling functions at macrochanneling have been calculated for the first time. The modeling of angular distributions of particles has confirmed the effect of beam angular splitting at the exit of macrochannel. The method of the taking into account of surface atomic discreteness at modeling of coherent effects of ion planar semichanneling has been developed. It has been shown that due to stochastic effects of particles reflection the macrochanneling of electrons in long channels is actually reduced to the effects of beam collimation while for ions the coherent effect allows to stabilize the macrochanneling and to achieve the beam transportation at long distances without considerable losses of intensity. PACS: 02.70.Uu, 07.05.Tp, 29.27.Eg, 61.85.+p, 68.49.Jk, 68.49.Sf, 41.75.Ht, 41.85.Ct, 41.85.Ja, 41.85.Si 1. INTRODUCTION Macrochanneling, the steered motion of charged particles between deflective solid surfaces separated by macroscopic distance, is the macroscopic analogue of the particles’ channeling in single crystals. The ef- fect had been discovered experimentally [1] in course of investigations of the penetration of MeV energies electron beams through targets with extended inho- mogeneities. Unlike for the bulk channeling in crystals that is controlled by continuum potentials of atomic planes and/or chains [2] the basic event forming the macrochanneled particles trajectories is the reflection from solid surface. It has large probability at grazing incidence and, depending on the sort of particle, the state of surface and the angle of beam incidence, can be originated either from multiple atomic collisions of a particle inside the near-surface region or from the scattering by surface atoms. Due to the fact that between successive reflection events particles move in a free space without scatter- ing the macrochanneling is supposed to provide the beam transport at large distances with small energy losses [3, 4]. Similarly, the transport through bent macrochannels or collimators of appropriate geome- try can lead to the relativistic beams turning [3, 5], splitting or focusing. These applications stimulate the interest to the effect both from the point of view of the development of the accelerator related beam shapers and irradia- tion devices as well as of the progress of experimen- tal technique in high energy physics. The studies of macrochanneling can also clarify certain aspects of particle channeling in nanotubes [6] that in fact occu- pies an intermediate position on the scale of transver- sal dimensions of channels. However no attempts can be found in the litera- ture to build the quantitative kinetic theory of the ef- fect. In the present paper the kinetics of macrochan- neling of relativistic electrons and fast ions in planar gap collimators is studied using the ”macroscopic” computer simulation of multiple reflections of parti- cles from solid surfaces. The work is based on the novel simulation method developed in Ref. [7]. 2. MODELING METHODS For any definite geometry the modeling of macrochanneling per se comes to the following itera- tive procedure: the modeling of reflection event alter- nates to the 3D geometric calculation of the particle free motion between its collisions with surfaces. The latter can be easily carried out using the ray tracing algorithms while the main problem consists in the de- velopment of adequate and computationally effective methods of the simulation of the small-angle surface scattering. Currently the charged particles’ backscattering from solid surfaces is well studied both experimen- tally and theoretically either for ions [8, 9] or for swift electrons [10]. The reflection coefficient R (integral albedo) typically decreases with the increase of par- ticle energy E but increases with the reduction of the angle ψin between the beam axis and the surface plane (see Fig. 1). ∗Corresponding author. E-mail address: sdul@kipt.kharkov.ua 90 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5. Series: Nuclear Physics Investigations (48), p.90-97. As ψin decreases the angular spectra of backscat- tered particles demonstrate the transformation from the cosine-shaped distributions for normal incidence toward the distributions concentrated near the direc- tion of specular reflection. For heavy particles (ions) and for electrons at sufficiently high energies (that allow to neglect quantum diffraction effects) this behavior can be described within the scope of con- ventional mechanism of particle backscattering due to the sequence of uncorrelated (incoherent) atomic collisions. The target lattice structure is completely neglected in these models and the reflection mecha- nisms are only graded by the multiplicity of atomic scattering events that yield to the backscattering. For normal incidence major contribution is given by single strong Rutherford scattering while for graz- ing incidence (ψin ¿ 1) substantial contribution is due to the multiple small-angle scattering that is de- scribed by boundary problems of kinetic equations of Fokker-Planck type [10]. Fig.1. The geometry of small-angle reflection of particles from the solid surface. Indicated are the incident (ψin = 90◦ − θin) and emergency (ψout, χout, φout) angles that describe the backscattering event Qualitatively the mechanisms of small-angle back- scattering at grazing incidence are described by the non-dimensional parameters σ∗ and σ [10]. The scattering parameter: σ∗(E) = R0(E) ltr(E) (1) is the ratio of particle range R0 and the transport scattering length ltr = [n · σtr(E)]−1 where n is the target atomic concentration, σtr = 2π ∫ (1 − cos θ)dσel(θ) is the transport cross-section, dσel/dθ is the differential cross-section of elastic scattering. The greater is σ∗ the stronger is scattering as com- pared with stopping. Integral albedo R, angular distributions and en- ergy spectra of reflected particles are qualitatively de- termined by the non-dimensional reflection parame- ter σ: σ(E, ψin) = σ∗(E) 1− cos ψin ≈ R0(E) · 〈θ2 MS(E)〉 ψ2 in , (2) where ψin ¿ 1 and 〈θ2 MS(E)〉 is the mean squared angle of multiple scattering per unit of range. Large σ À 1 causes large R → 1 and quasi-elastic reflec- tion. The total albedo R(E,ψin) for arbitrary an- gle of incidence is represented by the weighted sum of small-angle (R1(E,ψin)) and diffuse (R2(E,ψin)) backscattering coefficients: R ≈ R1 + (1−R1) ·R2. (3) In Ref. [10] explicit parametrizations of R1,2(E, ψin) functions are given; one should note that the reflect- ing material’s properties in these formulae are ex- pressed only via the values of reduced parameters σ∗ and σ. The correlated energy-angular distribution of re- flected particles is described by the expression [10]: Rψχ∆(ψr, χr, ∆) = 2 √ 3 · ψr (πσ∆)3/2∆ · erf ( 2 √ 3ψr σ∆ ) × exp [ − 4 σ∆ · ( ψ2 r − ψr + 1 + χ2 r 4 )] , (4) where ψr = ψout/ψin, χr = χout/ψin, and ∆ = (E − Eout)/E is the normalized energy loss. The equations (3–4) are universal in the mean- ing that they describe the incoherent reflection of either light or heavy particles of high energies pro- vided the scattering parameter σ∗ is calculated prop- erly according to the definite laws of their stopping and scattering. In Ref. [7] we have developed the Monte Carlo method of sampling of angular and energy variables from the distribution (4). Along with the sampling of reflection event with the probability (3) this method allows efficient modeling of multiple reflections of par- ticles at macroscopic level (i.e. without the require- ment to model microscopic atomic collisions). Below this method is applied to the Monte Carlo simulation of macrochanneling of electrons as well for that of ions at sufficiently large ψin. The method enhance- ments developed in order to describe coherent effects of surface semichanneling of ions at smaller ψin are introduced in Section 4. We limited ourselves with the case of planar macrochannel (collimator) formed by parallel sur- faces of Copper separated by the distance wch=3 mm that is much smaller then the lateral dimensions of the device. For simplicity the surface roughness was neglected and it was treated as a geometrical plane. In calculations the macroscopic length L of the col- limator was varied in a broad range from 10 mm up to 2 m. For each modeling case more then 106 histories of primary particles have been sampled. It allowed us to score both integral and differential character- istics of macrochanneling with acceptable statistical accuracy. We considered expedient to describe the macrochanneling within the scope of the same kinetic concept that is accepted in the conventional theory of channeling in crystals. Hence we have introduced the dechanneling function Pch(z) that represents the probability to find moving particle at depth z of beam transport through the channel. Evidently Pch(0) = 1 while T = Pch(L) is the macrochannel transmittance factor (the transparency). 91 Other quantities under investigation were the statistics of particle reflections from the walls of channel and angular distributions of particles passed through it. In toto this gives the complete descrip- tion of the effect and allows us to make conclusions concerning its mechanisms and the peculiarities of its practical applications. 3. PLANAR MACROCHANNELING OF RELATIVISTIC ELECTRONS In Fig.2 the obtained macro-dechanneling func- tions of 3 MeV monodirectional electron beam are shown. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 10 20 30 40 50 60 70 80 90 100 P ch (z /L ), % z/L L = 50 mm L = 100 mm L = 150 mm L = 200 mm L = 500 mm 3 MeV e- / Cu wch = 3 mm in=5° (a) 0 100 200 300 400 500 0 10 20 30 40 50 60 70 80 90 100 (b) P ch (z ), % z, mm in=5.0° in=2.0° in=1.0° in=0.5° 3 MeV e- / Cu wch = 3 mm Fig.2. Dechanneling functions of relativistic electrons in planar macrochannels of different length L (a) and at different incident angles ψin at the entrance (b) According to Eqs. (1-2) for E=3 MeV the scat- tering parameter σ∗ = 2.55 and for |ψin| = 5◦ the reflection parameter σ = 670 À 1. Thus the re- flection is close to elastic one but has comparatively broad angular distribution near the specular reflec- tion angle |ψout| = |ψin|. The characteristic length that describes the depth dependencies at macrochanneling is the distance z between successive collisions with surfaces: ∆z(ψ) = wch tanψ ≈ wch ψ . (5) At fixed ψ it estimates the half-wavelength of zigzag trajectory; note that in our case ∆z(5◦) = 34.3 mm. The curves of Fig.2,a are plotted at fixed ψin ver- sus the reduced depth (z/L) and in fact demonstrate different stages of the same depth dependence. It is clear that the behavior of the dechanneling func- tion considerably changes with the increase of the depth as compared with ∆z. At small z < ∆z(ψin) where the points of first collisions with surface are dis- tributed the dechanneling function decreases rapidly due to the absorption of particles by the channel wall. In our case of the single surface collision albedo R(5◦) = 0.72 the small-depth asymptotic form of Pch(z): Pch(z) ≈ 1− [1−R(ψin)] · z ∆z(ψin) (6) demonstrates much slower decrease then the rate ob- served in modeling (see the dashed line in Fig.2,a). It means that even at z < ∆z(ψin) multiple surface collisions of particles can take place due to the devi- ation of the reflection law from the specular one. At z ≈ ∆z(ψin) the dechanneling function has the discontinuity of derivative and the rate of decrease of Pch(z) is considerably reduced. According to the intuitively obvious model of specular reflection with constant absorption probability A(ψin) = 1−R(ψin) the dechanneling function becomes exponential at large z: Pch(z) = exp ( − z Rch ) ; Rch = wch ln R−1 · tan ψin . (7) Here Rch has the meaning of dechanneling length. However the calculation of Rch(z) = −z/ ln Pch(z) according to the modeled Pch(z) data has shown that at large z the dechanneling length in- creases with depth; therefore the dechanneling func- tion decreases slower then the exponent. This fact is also due to the non-specular mode of backscat- tering: certain part of electrons reflects at angles |ψout| < |ψin| and their length of free motion be- tween successive reflections increases as compared with ∆z(ψin). Just these particles form the long- range non-exponential tail of dechanneling function. The directional dependence of the dechanneling function shown in Fig.2,b for the macrochannel of fixed length L = 500 mm indicates that at smaller incident grazing angles ψin electrons are transported in the macrochannel more effectively. Mainly it is due to the increase of free path length between the walls (that is proportional to ψ−1) and to the cor- responding decrease of the number of collisions with surfaces. The distributions of the number Nrefl of reflec- tion events shown in Fig.3 indicate that at large L it becomes substantially smaller then the asymptotic estimation Nrefl ≈ (L · tan ψin)/wch that follows from the simple specular reflection model (in this model at ψin = 5◦, Nrefl ∼ 3 for L=100 mm and approaches to 14 for L=500 mm). 92 0 1 2 3 4 5 6 7 8 9 10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 (a) 3 MeV e- / Cu wch = 3 mm in = 5° f N (N re fl ), re l. un . N refl L = 10 mm L = 50 mm L = 100 mm L = 200 mm L = 500 mm 0 100 200 300 400 500 1 10 100 0 1 2 3 4 (b) 3 MeV e- / Cu wch = 3 mm in = 5° T( L) , % L, mm < N re fl > Fig.3. The distributions of electrons over the number Nrefl of reflection events (a) and the depen- dencies of the transmittance factor T and the mean number of reflections 〈Nrefl〉 (b) in collimators of various lengths The rate of increase of the mean number 〈Nrefl〉 substantially reduces with the increase of L and 〈Nrefl〉 practically saturates to the value of 4 at large L (in the specular reflection model the value Nrefl ≈ 4 corresponds to L ≈ 140 mm). Accord- ingly, the transmittance factor T becomes marginal at large L À ∆z(ψin). Therefore one can conclude that for relativistic electrons the deviation of reflection probability R from unity and the non-specular mode of backscatter- ing substantially restrict the range of depths where the particles dynamics looks like the quasi-periodic motion between the walls (that is peculiar to the pla- nar channeling in crystals). At large L macrochannels operate as conventional collimators where the trans- mittance factor is determined only by the geometric ratio of width and length. This conclusion agrees with the results of the modeling of fine structure of angular distributions of electrons at the exit of macrochannels of various lengths. These results are illustrated by Figs. 4 and 5. At sufficiently small L the maps of angular distri- butions of Fig.4,a-c are essentially asymmetric in the vertical direction that corresponds to the emergency angle ψout with respect to the channel wall. At L=10 mm that is less then ∆z(ψin) about 80% of electrons pass the channel without collisions with surfaces (their contribution shrinks to the point at the vertical axis of lower half plane of Fig.4,a). The residuary 20% of electrons form a typical an- gular distribution of single backscattering at grazing incidence [10, 7]. Fig.4. The maps (projected onto the transversal plane of planar macrochannel) of angular distributions of 3 MeV electrons passed through the macrochannels of various length L at the angle of incidence ψin = 5◦. The center of gray circle with angular aperture 20 mrad (1.15◦) indicates the direction of specular reflection of particles from the lower wall of macrochannel Fig.5. The angular distributions of 3 MeV electrons passed through the macrochannels of different length L over the grazing emergency angle ψout to the channel wall (a) and the azimuthal angle φout in the transversal plane (b, φout = 0◦ corresponds to the beam incidence plane) 93 As L increases the contribution of electrons that have experienced even numbers of reflection events arises; they form the distribution in the lower half plane of angular maps. At the same time the flux of electrons having odd numbers of reflections and emerging in the upper half plane is hardly collimated. At large L the angular distributions tend to be- come vertically symmetrical (see Fig.4,d-f). The results of statistical analysis of obtained an- gular maps are shown in Fig.5. The data depicted in Fig.5,a demonstrate the effect of beam angular split- ting first observed experimentally in Ref. [1]. The effect consists in the reduction of the trans- mittance of a planar macrochannel in directions par- allel to its walls. On the angular maps of Fig.4,c-f the splitting manifests itself as a clear band close to the horizontal axis ψout = 0 and is tracked up to large lengths of macrochannels. The separated peaks in angular distributions over the grazing angle ψout are formed by electrons expe- rienced even and odd numbers of surface collisions. The positions of angular peaks are rather close to the collimation angle ψcol = wch/L of the macrochan- nel. Azimuthal distributions of electrons depicted in Fig.5,b describe the gradual unfolding of a beam in the lateral plane of the macrochannel and its localiza- tion nearby the directions φout → ±90◦ parallel to the channel walls (however the directions φout = ±90◦ themselves remain blocked due to the same splitting effect). Hence in long planar gaps the monodirectional beam transforms into the ribbon-type one rotated azimuthally by 90◦. This effect is peculiar to pla- nar geometry only; in macrochannels of other shapes (e.g. square or cylindrical) azimuthal distributions are more axially symmetric. 4. COHERENT EFFECTS IN PLANAR MACROCHANNELING OF IONS Macrochanneling of positively charged particles (protons, heavy ions or positrons) differs qualitatively from the marcochanneling of electrons due to the fact that it can be affected by coherent effects of corre- lated interaction of particles with surface plane [4, 5]. Similarly to the description of planar channeling in crystals this interaction can be described with the repulsive continuum surface potential U(y) that de- pends only on the distance y to the surface. The continuum potential can be introduced not only for crystalline surface but also for planar surface of amor- phous medium [11]. If the grazing angle ψin of a positively charged particle does not exceed the critical angle ψp =√ Up/E of planar channeling [2] (here Up = 2πZ1Z2e 2aTF /a2 is the surface potential barrier, Z1,2 are the atomic number of incident particle and target medium with the mean interatomic distance a, aTF is the Thomas-Fermi screening length) then due to the homogeneity of U(y) along the surface the transver- sal energy of reflected particle is conserved. Thus the specular reflection occurs that is due to coher- ent interaction of a particle with surface atoms with strong correlation of impact parameters. This mode of backscattering, the planar surface semichanneling, has dynamical (but not kinetic) nature and can facili- tate the beam transportation in long macrochannels. Obviously for ψin ≥ ψp surface semichanneling be- comes impossible and the reflection mode returns to the incoherent one that is described by the distribu- tion (4). However it must be taken into account that even for ψin < ψp stochastic deviations of surface poten- tial from the averaged U(y) lead to incoherent mul- tiple scattering that results in the non-conservation of transversal energy. In the bulk of crystals this factor causes the dechanneling; for surface scatter- ing it results in non-specular reflection and has to be introduced into models designed to describe the ion macrochanneling quantitatively. The dominating dechanneling factor at planar channeling of ions is the discreteness of atomic plane [2]. The mean-squared angles of incoherent multi- ple scattering per unit of range z of a particle that moves at distance y from the discrete atomic plane with randomly distributed atoms were estimated in Ref. [12]. For the standard Lindhard potential of particle- atom interaction [2] the orthogonal (y-) and lateral (x-) components of this quantity can be written as follows: 〈 ∆θ2 y ∆z 〉 = 45ψ4 p 64π a2a2 TF y5 ; 〈 ∆θ2 x ∆z 〉 = 1 5 〈 ∆θ2 y ∆z 〉 . (8) To estimate the mean-squared angle 〈 ∆θ2 〉 of in- coherent scattering per single reflection event one has to integrate the expressions (8) upon the trajectory y(z) of unperturbed motion governed by the contin- uum surface potential. The simplest analytical esti- mation follows from the ”corner-type” trajectory rep- resentation: y(z) = ymin(ψ) + |z| · ψ, (9) where ymin is the distance of the closest approach of the particle to the surface. For the Lindhard contin- uum potential ymin(ψ) ≈ 1.5 ·aTF ·(ψ/ψp). Then the y-component of variance is expressed by the formula: σ2 y = 〈 ∆θ2 y 〉 = 45ψ4 p 128π a2a2 TF y4 min(ψ) · ψ = 5 72π a2 a2 TF ψ3 (10) and, again, the x-component is 5 times smaller. Within this model σx,y only depend on the sorts of particle and target material and on the angle of in- cidence while do not depend on particle energy. One should note that the ratio (σy/ψp)2 ∝ ψ3. Hence 94 the conditions of coherent specular reflection at pla- nar semichanneling are improved as the grazing angle of incidence decreases. At critical value ψ = ψp they are also improved with the increase of particle energy (because ψp ∝ E−1/2). At our Monte Carlo modeling of ion macrochan- neling for ψ < ψp the emergency angles of backscat- tering around the direction of specular reflection were sampled from the normal distribution with zero mean value and variances σx,y obtained above; we also ac- cepted that R(ψ < ψp) = 1 and neglected the particle energy losses. At ψ > ψp the same algorithm of inco- herent reflection was applied that has been used for electrons. To clarify the role of coherent effects we also con- sidered the case of pure incoherent reflection of ions; for such a purpose we formally set ψp = 0. The case of macrochanneling of 1 MeV protons in the same Copper collimator geometry described in Section 3 was considered. For this case the critical angle ψp of planar surface semichanneleng equals to 0.5◦. For the evaluation of reduced parameters σ∗ and σ according to Eqs. (1)-(2) the proton range Rp = 6.8 µm had been obtained using the SRIM code. Combining this value with the value of the trans- port cross-section σtr calculated within the Firsov model [10] we have calculated the scattering param- eter σ∗ = 0.017 ¿ 1. It means that these protons effectively reflect from the surface only at grazing in- cidence. However at ψin = 0.4◦ the incoherent reflec- tion parameter (2) for 1 MeV protons σ ≈ 700 À 1 is close to the value σ ≈ 670 for 3 MeV electrons at ψin = 5◦, the case discussed in Sec.3. The effect of the coherent reflection mode on the dechanneling functions is illustrated by Fig.6. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1 10 100 0 1 2 3 4 5 6 7 8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 in=1.0° L = 1 m P ch (z /L ), % z / L in=0.4° L = 2 m 1 MeV H+ / Cu w ch = 3 mm p = 0.5° N refl f N (N re fl ), r el . u n Fig.6. Dechanneling functions of 1 MeV protons in Copper macrochannels of different lengths with (solid curves) and without (dashed curves) the account of coherent reflection (planar surface semichanneling) mechanism. The inset plot represents the particle distributions over the number Nrefl of reflection events At conditions of a sub-barrier incidence of protons (ψin = 0.4◦ = 0.8·ψp) the effect of coherent reflection at planar surface semichanneling is very strong: the 2 m long macrochannel transmits about 70% particles while for pure incoherent reflection mode the trans- mittance factor is less then 4%. The most probable number of reflection events in the case of semichan- neling shifts toward the theoretical estimation of specular reflection model: Nrefl ∼ L·ψin/wch ≈ 4.65. In the case of above-barrier incidence of particles (ψin = 1◦ = 2 · ψp) the effect of volume capture of protons into the mode of surface semichanneling is observed. This effect results in sharp deceleration of the Pch(z) dependency starting from the depth z ≈ 60 cm. Angular distributions of ions (see Fig.7 and 8) also demonstrate strong qualitative effects of coher- ent reflection. At sub-barrier incidence (see Fig.7,a,d) the introduction of surface semichanneling leads to drastic changes of the distribution: the symmetri- cal gauss-shaped spots appear. As it is clear from Fig.8,a they are close to the specular reflection direc- tions |ψout| ≈ 0.4◦ and are formed by well-channeled protons. Azimuthal distribution over φout depicted in Fig.8,b also indicates the concentration of coher- ently transported protons nearby the incidence plane (φout = 0◦ and ±180◦). Horizontal bands in Fig.7,d are formed by dechanneled particles that have expe- rienced the incoherent reflection. If coherent effects are completely ignored the dis- tribution in this case is qualitatively similar to the an- gular distribution of electrons at large L (see Fig.4). At conditions of above-barrier proton incidence (see Fig.7,b,e) the characteristic effect of surface semichanneling consists in the splitting of angular distribution in the upper half plane of transversal an- gular map. It indicates the separated contributions of proton flux fractions that are either incoherently backscattered or captured into the coherent reflection mode. The formation of gauss-shaped spots is suppressed in this case because particles have time to experience substantial lateral scattering before the volume cap- ture event occurs. Fig.7. The maps of angular distributions of 1 MeV protons (a,b,d,e) and 28 keV Ne ions (c,f) passed through the 3 mm wide Copper macrochannels of different lengths at different angles of incidence. Upper maps describe the pure incoherent mode of reflection while the lower row of maps corresponds to the incorporation of the coherent surface semichanneling mode 95 -1.0° -0.8° -0.6° -0.4° -0.2° 0.0° 0.2° 0.4° 0.6° 0.8° 1.0° 0.0 0.5 1.0 1.5 2.0 (a)1 MeV H+ / Cu wch = 3 mm L = 2000 mm in = 0.4° p = 0.5° f( ou t), re l. un . out, deg -180°-150°-120° -90° -60° -30° 0° 30° 60° 90° 120° 150° 180° 0.000 0.005 0.010 0.015 0.020 1 MeV H+ / Cu wch = 3 mm L = 2000 mm in = 0.4° p = 0.5° f( ou t), re l. un . out, deg (b) Fig.8.Angular distributions over the grazing emergency angle ψout (a) and the azimuthal angle φout in the transversal plane (b) for protons passed through the 2 m long planar macrochannel. Dashed curves — incoherent reflection mode (see Fig.7a), solid curves — coherent surface semichanneling mode (see Fig.7,d) The data of Fig.7,c,f correspond to the case of macrochanneling of heavier ions (28 keV Ne) at sub- barrier incidence (ψin = 5◦). In this case ψp = 8.9◦, σ∗ = 1.2, σ ≈ 315. One can see that for heavy ions the effect of surface semichanneling is also remark- able. However due to large value of the incident angle ψin the destructive effect of surface atomic discrete- ness becomes very pronounced (this fact directly follows from Eq.(10)). Thus the incoherent multi- ple scattering results in the smearing of the spots of coherent reflection and in the relative increase of contributions of effects of geometrical collimation of ion beam. 5. CONCLUSIONS The computer simulation has shown that the macrochanneling of relativistic negatively charged particles between the planar solid surfaces differs con- siderably from the regular oscillatory motion due to substantially stochastic nature of small-angle re- flection of electrons at glancing incidence. In long channels it practically comes to the beam collima- tion within the angular range determined by the channel geometry and makes questionable the long- range transportation of electron beams without sig- nificant losses of intensity. From the other hand the macrochannels of certain optimal length can be applied for electron beam angular splitting and for the enhancement of yields of secondary processes of particle-surface interactions. It has been shown that for positively charged par- ticles (ions or positrons) the coherent effect of surface semichanneling allows to stabilize the macrochannel- ing trajectories, to reduce the particle losses and to achieve the transport and splitting of high energy beams. The methods of macroscopic mathematical mod- eling of the macrochanneling are supposed to be effec- tively applied for calculations of ion-optical systems that use the particles interaction with solid surfaces for beam control and shaping. For example one of the prospective areas of the macrochanneling appli- cations is the preparation of small-diameter focused ion beams for the solid surface microanalysis. REFERENCES 1. V.I. Bojko, V.V. Yevstigneyev, B.A. Kononov et al. Anisotropy of electron fluxes behind the ex- tended inhomogeneities in medium // Atomnaya energiya. 1976, v.41, N5, p.363-365 (in Russian). 2. J. Lindhard. Influence of crystal lattice on mo- tion of energetic charged particles // Kgl. Dan. Viden. Selsk. Mat.-Fys. Medd. 1965, v.34, N14. 3. V.I. Bojko, Ye.A. Gorbachov, V.V. Yevstigneyev et al. Turn and transportation of a beam of swift electrons based on macrochanneling effect // JTP. 1981, v. 51, N5, p.1042-1044 (in Rus- sian). 4. M.A. Kumakhov. Radiation of charged particles in crystals, Moscow: ”Energoatomizdat”, 1986, 160p. (in Russian). 5. M.A. Kumakhov, F.F. Komarov. Reflection of particles and quanta from solid surfaces and reg- ulation of their trajectories // Radiation Effects. 1985, v.90, N3-4, p.269-281. 6. N.K. Zhevhago, V.I. Glebov. Diffraction and channeling in nanotubes // JETP. 2000, v.118, N3, p.579-591 (in Russian). 7. S.V. Dyuldya, M.I. Bratchenko. Monte Carlo method of macroscopic modeling of small-angle reflection of fast changed particles from solid sur- face // Problems of Atomic Science and Technol- ogy. Series: Radiation Damage Physics and Ra- diation Material Science. 2001, N4(80), p.53-56 (in Russian). 8. V.A. Kurnayev, Ye.S. Mashkova, V.A. Molchanov. Reflection of light ions from solid surface. Moscow: ”Energoatomizdat”, 1985, 192p. (in Russian). 96 9. E.S. Parilis, N.Yu. Turayev, F.F. Umarov et al. Theory of scattering of medium energies atoms by solid surface. Tashkent: ”Fan”, 1987, 212p. (in Russian). 10. M.I. Ryazanov, I.S. Tilinin. Surface studies by particle backscattering. Moscow: ”Energoatomiz- dat”, 1985, 152p. (in Russian). 11. M.A. Kumakhov. The phenomenon of specular reflection of charged particles from amorphous and polycrystalline surfaces // DAN USSR. 1984, v.279, N4, p.862-863 (in Russian). 12. M.A. Kumakhov, H. Shirmer. Atomic collisions in crystals. Moscow: ”Atomizdat”, 1980, 192p. (in Russian). МОДЕЛИРОВАНИЕ КИНЕТИКИ МАКРОКАНАЛИРОВАНИЯ БЫСТРЫХ ЭЛЕКТРОНОВ И ИОНОВ В ЩЕЛЕВЫХ КОЛЛИМАТОРАХ С.В. Дюльдя, М.И. Братченко, М.А. Скоробогатов Оригинальным методом макроскопического математического моделирования отражения заряжен- ных частиц от поверхности твердого тела исследована кинетика плоскостного макроканалирования быстрых электронов и ионов –— ориентированного транспорта частиц между поверхностями, разде- ленными макроскопическим расстоянием. Впервые рассчитаны функции деканалирования частиц при макроканалировании. Моделирование угловых распределений подтвердило существование эффекта разделения потоков частиц. Разработан метод учета атомной дискретности поверхности при модели- ровании когерентных эффектов плоскостного полуканалирования ионов. Показано, что ввиду стоха- стичности процесса отражения макроканалирование электронов в каналах большой длины эффектив- но определяется механизмами коллимации пучка, тогда как для ионов когерентный эффект позволяет стабилизировать макроканалирование и достичь транспортировки и разделения пучка на больших рас- стояниях без существенных потерь интенсивности. МОДЕЛЮВАННЯ КIНЕТИКИ МАКРОКАНАЛЮВАННЯ ШВИДКИХ ЕЛЕКТРОНIВ ТА IОНIВ У ЩIЛИННИХ КОЛIМАТОРАХ С.В. Дюльдя, М.I. Братченко, М.О. Скоробогатов Оригiнальним методом макроскопiчного математичного моделювання вiдбиття заряджених части- нок вiд поверхнi твердого тiла дослiджена кiнетика площинного макроканалювання швидких елек- тронiв та iонiв –— орiєнтованого транспорту частинок мiж поверхнями, роздiленими макроскопiчною вiдстанню. Вперше розрахованi функцiї деканалювання частинок при макроканалюваннi. Моделюван- ня кутових розподiлiв пiдтвердило iснування ефекту роздiлення потокiв частинок. Розроблено метод урахування атомної дискретностi поверхнi в моделюваннi когерентних ефектiв площинного напiвка- налювання iонiв. Показано, що з-за стохастичностi процесу вiдбиття макроканалювання електронiв в каналах великої довжини ефективно визначається механiзмами колiмацiї пучка, тодi як для iонiв коге- рентний ефект дозволяє стабiлiзувати макроканалювання та досягти транспортування та роздiлення пучка на великих вiдстанях без значних втрат iнтенсивностi. 97