Simulation of radiation conditions in contaminated rooms

Method for beta and gamma radiation exposure rate calculations inside the radioactively contaminated buildings is presented. Method is based on the realistic model accounting for removable and irremovable components of the surface contamination. Exposure rate calculations for areas with considerable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Batiy, V.G., Fedorchenko, D.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/110399
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simulation of radiation conditions in contaminated rooms / V.G. Batiy, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 115-117. — Бібліогр.: 2 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110399
record_format dspace
spelling irk-123456789-1103992017-01-05T03:02:26Z Simulation of radiation conditions in contaminated rooms Batiy, V.G. Fedorchenko, D.V. Ядернo-физические методы и обработка данных Method for beta and gamma radiation exposure rate calculations inside the radioactively contaminated buildings is presented. Method is based on the realistic model accounting for removable and irremovable components of the surface contamination. Exposure rate calculations for areas with considerable level of surface contamination are presented and discussed. Представлено метод розрахунку потужності дози бета- та гамма-випромінювань всередині забруднених приміщень. Створений метод оснований на реалістичній моделі, який враховує поверхневе забруднення, що знімається та таке, що не знімається. Наведено результати розрахунків для сильно забруднених приміщень об'єкту "Укриття". Представлен метод расчета мощности дозы бета- и гамма-излучений внутри загрязненных помещений. Разработанный метод основан на реалистичной модели с учетом снимаемой и неснимаемой составляющих поверхностного загрязнения. Приведены результаты расчетов для сильно загрязненных помещений объекта "Укрытие". 2007 Article Simulation of radiation conditions in contaminated rooms / V.G. Batiy, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 115-117. — Бібліогр.: 2 назв. — англ. 1562-6016 PACS: 28.41Te http://dspace.nbuv.gov.ua/handle/123456789/110399 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Batiy, V.G.
Fedorchenko, D.V.
Simulation of radiation conditions in contaminated rooms
Вопросы атомной науки и техники
description Method for beta and gamma radiation exposure rate calculations inside the radioactively contaminated buildings is presented. Method is based on the realistic model accounting for removable and irremovable components of the surface contamination. Exposure rate calculations for areas with considerable level of surface contamination are presented and discussed.
format Article
author Batiy, V.G.
Fedorchenko, D.V.
author_facet Batiy, V.G.
Fedorchenko, D.V.
author_sort Batiy, V.G.
title Simulation of radiation conditions in contaminated rooms
title_short Simulation of radiation conditions in contaminated rooms
title_full Simulation of radiation conditions in contaminated rooms
title_fullStr Simulation of radiation conditions in contaminated rooms
title_full_unstemmed Simulation of radiation conditions in contaminated rooms
title_sort simulation of radiation conditions in contaminated rooms
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/110399
citation_txt Simulation of radiation conditions in contaminated rooms / V.G. Batiy, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 115-117. — Бібліогр.: 2 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT batiyvg simulationofradiationconditionsincontaminatedrooms
AT fedorchenkodv simulationofradiationconditionsincontaminatedrooms
first_indexed 2025-07-08T00:34:02Z
last_indexed 2025-07-08T00:34:02Z
_version_ 1837036830322589696
fulltext SIMULATION OF RADIATION CONDITIONS IN CONTAMINATED ROOMS V.G. Batiy1, D.V. Fedorchenko2∗ 1Institute for Safety Problems of Nuclear Power Plants, 07270, Chernobyl, Ukraine 2National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received March 19, 2007) Method for beta and gamma radiation exposure rate calculations inside the radioactively contaminated buildings is presented. Method is based on the realistic model accounting for removable and irremovable components of the surface contamination. Exposure rate calculations for areas with considerable level of surface contamination are presented and discussed. PACS: 28.41Te 1. INTRODUCTION Work activities inside radioactively polluted facil- ities require radiation environment assessment. Two factors contribute to the resulting radiation fields: lo- cal radiation sources and surface contamination. The first are usually removed during the preliminary de- activation activities together with the part of surface contamination. Thus in the absence of local radiation sources surface contamination solely determines inte- rior radiation environment. The remaining surface contamination is constituted by removable and irre- movable components. Existing experimental meth- ods allow efficient removable component evaluation. At the same time assessment of the irremovable con- tamination is a rather complicated procedure. So usually only removable contamination is measured. At the same time contribution of the irremovable con- tamination to the total exposure rate could be rather significant. In this paper we present the method of total (and irremovable) surface contamination recon- struction based on data on removable contamination. Assessment of radiation environment for the ”Shelter object” (SO) of Chernobyl NPP using this method is also presented and discussed. 2. REMOVABLE AND IRREMOVABLE CONTAMINATION ANALYSIS Irremovable contamination is formed mainly by radioactive sediments diffusion into construction ma- terial surface layer. Another possibility is surface de- position of the high-temperature radioactive aerosol. The last likely took place during the accident on the Chernobyl NPP in 1986. Surface contamination amount depends on a variety of factors. The most significant are radioactive aerosol initial amount and composition, surface adhesion, interior aerodynamic conditions. Usually building inner space is divided into isolated ares such as rooms, airshafts, lift shafts, etc. Surface contamination formation conditions are specific to each area. We can assume removable and irremovable contamination ratio be characteris- tic constant for every isolated area. The starting point of our analysis was statisti- cal analysis of removable contamination and expo- sure rate ratio. As an example we considered data for SO room 7001. For this area exposure rate and removable surface contamination are known for 10 surface locations. Statistical analysis of removable contamination and exposure rate ratio gives average value βr = 655± 83 (particles/(cm2 ·min))/(mR/h) with 0.95 reliability level. This value was used for further analysis. SO room 4000 is situated near room 7001 and seems to have similar contamination forma- tion conditions. Detailed data on surface con- tamination and exposure rate are available and were used for verification purposes. Calculated removable surface contamination levels fall within the 4.5 · 103 − 59 · 103 (particles/(cm2 ·min) inter- val. This is in good agreement with experimental values of 5 · 103 − 80 · 103 (particles/(cm2 ·min). Observable exposure rate for contaminated area is governed by total surface contamination. So we have developed calculation scheme for exposure rate calculations. It implemented point-source kernel method with buildup factor. Analytical expression for buildup factor was taken from handbook [1]. The final value of βt = 105 particles/(cm2 ·min)/(mR/h) for the total surface contamination and exposure rate ratio was obtained. Analytical expressions used for calculations are linear on surface contamination value. Thus total surface contamination could be eas- ily recalculated using βt factor. Factors βt and βr for the selected area al- low total and removable surface contamination ra- ∗Corresponding author. E-mail address: d.fedorchenko@gmail.com PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5. Series: Nuclear Physics Investigations (48), p.115-117. 115 tio calculation. For the SO room 7001 this ra- tio is α = βt/βr ≈ 150. Using α for the observed values of removable contamination total contami- nation level of 4 · 107 particles/(cm2 ·min) for the most polluted region near the vent was obtained. Corresponding calculations for the room 4004 hav- ing similar conditions gave maximum level of above 5 · 106 particles/(cm2 ·min) for total surface con- tamination. 3. RESULTS OF CALCULATIONS AND DISCUSSION Some work activities inside SO required personnel presence inside the vent header. Radiation environ- ment inside the vent header was unknown. Assess- ment of the exposure rate required assumption on the surface contamination inside the vent header. For the calculations we have assumed surface contamination at upper and lower ends of the vent header to be the same as that at adjacent areas of rooms 7001 and 4004 correspondingly. Contamination Height distri- bution of the surface contamination was assumed to satisfy parabolic law. Surface contamination for adjacent areas was fount using the method discussed in the previous sec- tion. Fitting this values we obtained parameters of the parabolic height distribution. So total contami- nation value for every surface point could be easily calculated. This allowed to use point-source kernel method to calculate exposure rate spatial distribution inside the vent header. Doze distribution along the horizontal section of vent header is shown on Fig.1. Fig.1. Doze rate inside the airshaft (mZv/h) High levels of surface contamination in SO room 7001 have set up problem of shielding optimization according to ALARA principle. During the optimiza- tion procedure Room 7001 was divided into square areas (2× 2)m2 in accordance with the experimental scheme of exposure rate measurements. Total surface contamination for each square was calculated using using method developed in section 2. On the next step two shielding configurations of the most contaminated areas near the vent header were considered. Shield was constituted by 10mm thick lead plates with total square of 48 m2 and 64 m2. Using data on surface contamination we calcu- lated exposure rate spatial distribution at work area. Obtained values showed shielding to be ineffective. Attenuation factor for work area was only 3.5−3.7 for both configurations while personnel irradiation dur- ing shielding mounting had increased significantly. So using ALARA principle shielding was rejected. Estimations of the total surface contamination were also used for personnel β-irradiation hazard analysis inside SO room 4004. For conservative rea- sons the highest total surface contamination value 7.5 · 106 particles/(cm2 ·min) was taken for calcula- tions. 90Sr and 90Y activities were taken according to the averaged fuel radionuclide composition. Calculations of the β-radiation exposure rate (see Fig.2) showed surface eye lens exposure doze have reached limiting value (150 mZv) in less then an hour. Skin exposure doze have reaches its limit (500 mZv) in less then 3 hours. As it follows from our calculations (see Fig.2) near the contaminated surface eye lens exposure doze reaches limiting value (150 mZv) [2] in less then an hour and open skin exposure doze reaches its limit (500 mZv) [2] in less then 3 hours. From Fig.2 it also follows that exposure rate at 3 m away from the surface decreases only by a fac- tor of 10. Such radiation environment requires obligatory usage of personnel protective equipment. Fig.2. β-radiation exposure rate attenuation in air Calculations for the same radiation conditions with plexiglass shielding of 1, 2 and 3 mm thickness showed crucial improvement of the working condi- tions. For example, even the 1 mm plexiglass shield- ing increases permissible work time from 1 to 500 hours. In this case β-radiation no longer is the limit- ing factor as γ-radiation doze limit is reached in 250 hours. The presented calculations for real-life radiation environment (”Shelter” object) have proved method effectiveness for various problems concerning radia- tion hazard in polluted facilities. This method could be successfully used for various practical tasks con- cerning nuclear energetics. 116 REFERENCES 1. V.P. Mashkovich. Protection for ionizing radia- tion. Handbook. M.: ”Energoizdat”, 1982, 296 p. 2. Norms of radiation safety of Ukraine. NRBU-97. GGN 6.6.1.-6.5.001-98. Kyiv. 1997, 121 p. МОДЕЛИРОВАНИЕ РАДИАЦИОННОЙ ОБСТАНОВКИ В ЗАГРЯЗНЕННЫХ ПОМЕЩЕНИЯХ В.Г. Батий, Д.В. Федорченко Представлен метод расчета мощности дозы бета- и гамма-излучений внутри загрязненных поме- щений. Разработанный метод основан на реалистичной модели с учетом снимаемой и неснимаемой составляющих поверхностного загрязнения. Приведены результаты расчетов для сильно загрязнен- ных помещений объекта "Укрытие". МОДЕЛЮВАННЯ РАДIАЦIЙНОЇ ОБСТАНОВКИ У ЗАБРУДНЕНИХ ПРИМIЩЕННЯХ В.Г. Батiй, Д.В. Федорченко Представлено метод розрахунку потужностi дози бета- та гамма-випромiнювань всерединi забруд- нених примiщень. Створений метод оснований на реалiстичнiй моделi, який враховує поверхневе за- бруднення, що знiмається та таке, що не знiмається. Наведено результати розрахункiв для сильно забруднених примiщень об’єкту "Укриття". 117