Point-kernel method for radiation fields simulation

Point-kernel source method for radiation field calculation using Mercure-3 code is considered. Calculation results are shown to be in perfect agreement with those obtained using MCNP code.

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Prokhorets, M.I., Prokhorets, S.I., Khazhmuradov, M.A., Rudychev, E.V., Fedorchenko, D.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110400
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Point-kernel method for radiation fields simulation / I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, E.V. Rudychev, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 106-109. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110400
record_format dspace
spelling irk-123456789-1104002017-01-05T03:02:27Z Point-kernel method for radiation fields simulation Prokhorets, M.I. Prokhorets, S.I. Khazhmuradov, M.A. Rudychev, E.V. Fedorchenko, D.V. Ядернo-физические методы и обработка данных Point-kernel source method for radiation field calculation using Mercure-3 code is considered. Calculation results are shown to be in perfect agreement with those obtained using MCNP code. На прикладі програмного коду Mercure-3 розглянуто застосування метода точкового джерела для розрахунку радіаційних полів. Показано, що результати розрахунків добре узгоджуються з розрахунками за методом Монте-Карло, які виконано за допомогою програмного коду MCNP. На примере программного кода Mercure-3 рассмотрено применение метода точечного источника для расчета радиационных полей. Показано, что результаты расчетов хорошо согласуются с расчетами по методу Монте-Карло, выполненными при помощи программного кода MCNP. 2007 Article Point-kernel method for radiation fields simulation / I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, E.V. Rudychev, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 106-109. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 02.60.Cb, 28.41.Te, 28.52.Av http://dspace.nbuv.gov.ua/handle/123456789/110400 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Prokhorets, M.I.
Prokhorets, S.I.
Khazhmuradov, M.A.
Rudychev, E.V.
Fedorchenko, D.V.
Point-kernel method for radiation fields simulation
Вопросы атомной науки и техники
description Point-kernel source method for radiation field calculation using Mercure-3 code is considered. Calculation results are shown to be in perfect agreement with those obtained using MCNP code.
format Article
author Prokhorets, M.I.
Prokhorets, S.I.
Khazhmuradov, M.A.
Rudychev, E.V.
Fedorchenko, D.V.
author_facet Prokhorets, M.I.
Prokhorets, S.I.
Khazhmuradov, M.A.
Rudychev, E.V.
Fedorchenko, D.V.
author_sort Prokhorets, M.I.
title Point-kernel method for radiation fields simulation
title_short Point-kernel method for radiation fields simulation
title_full Point-kernel method for radiation fields simulation
title_fullStr Point-kernel method for radiation fields simulation
title_full_unstemmed Point-kernel method for radiation fields simulation
title_sort point-kernel method for radiation fields simulation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/110400
citation_txt Point-kernel method for radiation fields simulation / I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, E.V. Rudychev, D.V. Fedorchenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 106-109. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT prokhoretsmi pointkernelmethodforradiationfieldssimulation
AT prokhoretssi pointkernelmethodforradiationfieldssimulation
AT khazhmuradovma pointkernelmethodforradiationfieldssimulation
AT rudychevev pointkernelmethodforradiationfieldssimulation
AT fedorchenkodv pointkernelmethodforradiationfieldssimulation
first_indexed 2025-07-08T00:34:07Z
last_indexed 2025-07-08T00:34:07Z
_version_ 1837036836714708992
fulltext POINT-KERNEL METHOD FOR RADIATION FIELDS SIMULATION I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, E.V. Rudychev, D.V. Fedorchenko∗ National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received January 6, 2007) Point-kernel source method for radiation field calculation using Mercure-3 code is considered. Calculation results are shown to be in perfect agreement with those obtained using MCNP code. PACS: 02.60.Cb, 28.41.Te, 28.52.Av 1. INTRODUCTION Design and maintenance of nuclear cycle facilities mandatory imply implementation of efficient radia- tion protection. Radiation environment assessment and shielding optimization require a considerable amount of numerical calculations. Nowadays math- ematical modelling methods and corresponding soft- ware are widely used for such kind of problems. All the software used for radiation fields modelling falls into two main groups. To the first belongs software based on Monte Carlo methods, such as MCNP [1], Geant [2], Penelope, Fluka, etc. Modern implementa- tions of Monte Carlo method provide consistent ac- counting of radiation transport effects. This leads to perfect accuracy of the calculated values even for complex models. At the same time Monte Carlo cal- culations require considerable amount of computing time. Computation burden increases rapidly for com- plex geometries, multiple sources and thick shielding. Another group contains software implementing analytical methods. The examples of such programs are Microshield, QAD, Mercure. All this programs use point-kernel method for doze calculations. This method is much more less computationally intensive than Monte Carlo method. Series of calculations nec- essary for shielding optimization could be conducted at reliable time using point-kernel method. But due to macroscopic approach to radiation transport this methods lucks consistency. The main problem point- kernel method encounters is account for scattered ra- diation which is usually implemented through semi- empirical approximation. Additional ”build-up” fac- tor must be introduced as a multiplier to the atten- uated doze. Determination of the appropriate build- up factor can be rather complex as it depends upon the energy, the thickness and type of material. Un- certainties in determining build-up factor essentially limit the accuracy of point-kernel method. In our paper we considered some aspects of point- kernel method and its implementation by Mercure-3 program code [4]. Results of doze calculations for some typical cases are presented. Also point-kernel method verification by the MCNP code [1] is dis- cussed. 2. POINT-SOURCE KERNEL METHOD Point-kernel method is macroscopic approach used for gamma radiation exposure rate calculations. Within this approach gamma radiation propagation is assumed beam-like. Effects of radiation interaction in matter are described using macroscopic linear at- tenuation factors. Consistent scattered radiation ac- counting could not achieved within macroscopic ap- proach. So common practice is to use semi-empirical relations, such as Berger formula, Taylor formula [3], etc. According to the main idea of point-kernel method radiation source volume is cut up into ele- mentary cells (point kernels). Each point kernel gives contribution to the doze rate at the detecting point for radiation energy E A(~r, ~r′, E) = C(E)B(t, E) exp(−t(E)) 4π(~r − ~r′)2 , (1) where C(E) is gamma flux density to doze rate con- version factor, B(E) – build-up factor, t(E) – path length along ~r−~r′ line measured in mean free pathes (mfp) t = n∑ i=1 µi(E)Xi, (2) where i is index of the space region, n – number of regions, µi(E) – linear attenuation factor for i-th re- gion and Xi – length of the section of ~r − ~r′ line in i-th space region. Geometry used for point-kernel calculations is shown on the Fig.1. Relation (1) corresponds to beam-like radiation propagation similar to that used in geometrical op- tics. Factors µi describe radiation attenuation along ∗Corresponding author. E-mail address: d.fedorchenko@gmail.com 106 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5. Series: Nuclear Physics Investigations (48), p.106-109. the given path. From the microscopic theory it fol- lows that attenuation coefficients µi depend on mat- ter composition and on photon energy. Build-up factor B(E) accounts for scattered radi- ation. Mercure-3 implements Taylor formula B(t) = β(E) exp(−α1(E)t(E))+ + (1− β(E)) exp(−α2(E)t(E)), (3) where α1, α2, β – parameters of Taylor for- mula [3, 4]. This parameters depend on material composition and on radiation energy E. Mercure-3 code contains its own library of build-up factors for commonly used materials. Fig.1. Geometry of point-source kernel method Point-source kernels are assumed to be indepen- dent. So total doze rate at detection point is obtained by integration of (1) over the source volume and sum- mation over the energies Ek of radiation spectrum A(~r) = N∑ k=1 ∫∫∫ V d~r′A(~r, ~r′, Ek). (4) For simple geometries integration in (4) could be carried out analytically. A number of corresponding relations could be found in handbook [3]. In general case this integration is performed numerically. Spatial integration in (4) presents a problem for detection points located too close to source. This is a common drawback of point-source kernel meth- ods due to integral divergence at such points. One of the possible solutions is to exclude from integra- tion kernel points that fall within some predefined region near the detection point. This procedure pro- vides stabilization of integration procedure in (4) but leads to some loss of accuracy. At the same time for the most cases concerning radiation protection this problem does not arise at all. The matter is that de- tection points are usually separated from the source by shielding layers and no divergence take place. 3. CALCULATION RESULTS AND DISCUSSION There exist several software implementations of point-kernel method. Our choice of Mercure-3 code was stipulated by several reasons. The main was the highly verified code, as the program kernel has been developed as early as in 1967 for three dimensional gamma shielding calculations on IBM mainframes and due to sufficient accuracy has been recommended by EURATOM for general use [5]. Another valuable feature of Mercure-3 code is rather powerful and flex- ible geometry module capable of handling complex structures with multiple sources or inhomogeneous source. Also Mercure-3 contains gamma cross sec- tion library for commonly used materials and a set of Taylor coefficients of buildup factor (3). Addition of new materials to the library is possible. One of the nuclear cycle most important compo- nents is radioactive waste management and storage. Effective personnel radiation protection is necessary during spent fuel processing. So we have considered a problem of doze rate calculations for VVER-1000 nuclear reactor fuel assembly. Technological operations with spent fuel assem- bly are usually performed after cooling period. Photon spectra of the spend fuel assembly de- pends on cooling period duration. For our cal- culations photon spectrum of spent fuel assembly for 3 year cooling period was used (see table). Fuel assembly photon spectra after 3 year cooling period Energy, MeV Activity, ph/s 0.015 3.27 · 1011 0.02 1.04 · 1011 0.03 1.96 · 1014 0.04 2.09 · 1014 0.05 9.27 · 1012 0.06 8.35 · 1012 0.08 3.73 · 1012 0.1 6.28 · 1013 0.15 1.60 · 1014 0.2 1.51 · 1013 0.3 1.05 · 1013 0.4 2.57 · 1013 0.5 3.33 · 1014 0.6 3.88 · 1015 0.8 1.43 · 1015 1.0 1.61 · 1014 1.5 1.59 · 1014 2.0 1.15 · 1013 Real fuel assembly is constituted by a number of construction elements with 312 fuel elements in- side. Detailed description of the fuel assembly inter- nal structure is a rather complicated procedure. At the same time the very common considerations show details of internal structure do not influence signifi- cantly on doze calculations. Thus for modelling pur- poses we have neglected assembly internal structure. Fuel assembly geometry was described by cylindrical volumes - one for steel shank and another for bun of fuel elements. Model geometry of fuel assembly used for calculations is shown on the Fig.2. Bun of fuel ele- 107 ments was replaced by homogenous media composed by uranium dioxide, zirconium and air. Volumetric concentrations were chosen in accordance to assem- bly technical specification: 0.3186(Zr), 0.205(UO2), 0.477(air). Exposure doze rate calculations results are shown on the Fig.3. Exponential doze rate attenuation with distance is observed. Doze rate values are close to those obtained earlier using Microshield code, which is verified commercial product for such calculations. Fig.2. Fuel source assembly geometry Monte Carlo calculations for fuel assemblies and similar objects are impeded by strong photon absorp- tion in UO2 contained in fuel elements. Another im- portant factor is large geometrical size of the VVER fuel assembly. An intensive calculations are neces- sary to achieve appropriate accuracy in this case. Fig.3. Exposure doze rate for fuel assembly In order to decrease computational burden re- quired for Monte Carlo simulation a small VVER-M assembly was taken as a source for verification calcu- lations. Photon spectrum was the same as in previous case (see table). Problem geometry included VVER- M fuel assembly placed inside concrete shielding (see Fig.4). Exposure doze rate was calculated for points outside the shield to avoid computational instability of point-kernel method. Calculations for this geometry were carried out both with Mercure-3 code and MCNP (Monte- Carlo method). The results are shown on the Fig.5. Perfect agreement between calculations us- ing Mercure-3 and Monte-Carlo method (MCNP) proves reliability of point-kernel method for radia- tion fields modelling. At the same time computing speed of Mercure-3 code is considerably higher than those of MCNP (and other Monte-Carlo methods). Fig.4. VVER-M assembly in concrete well Fig.5. Exposure doze rate for VVER-M fuel assembly So we can consider point-kernel method imple- mented by Mercure-3 code an efficient instrument for various dose rate calculations, including shield- ing optimizations. We have shown correct software implementation of this method provides accurate re- sults for practical needs. More over, optimization scheme may include preliminary calculations using point-kernel method with consequent Monte-Carlo simulation. This work was supported by STCU project 3511. REFERENCES 1. J. Breismeister, Ed. MCNP - A General Monte- Carlo N-Particle Transport Code. LA-13709-M. Los Alamos National Laboratory: Los Alamos. NM, 2000. 2. GEANT4 Physics Reference Manual. GEANT4 Working Group. CERN, June 21, 2004. 108 3. V.P. Mashkovich Protection for ionizing radia- tion. Handbook., Moscow: ”Energoizdat”, 1982, 296p. (in Russian) 4. C. Devillers Programme MERCURE-3. Rapport C. E. A. - R. 3264, Fontenay-aus-Roses, 1967. 5. ESIS Newsletter 5 (April 1973) 1. EURATOM European Shielding Information Service, Ispra, Italy. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАДИАЦИОННЫХ ПОЛЕЙ МЕТОДОМ ТОЧЕЧНОГО ИСТОЧНИКА И.М. Прохорец, С.И. Прохорец, М.А. Хажмурадов, Е.В. Рудычев, Д.В. Федорченко На примере программного кода Mercure-3 рассмотрено применение метода точечного источника для расчета радиационных полей. Показано, что результаты расчетов хорошо согласуются с расчетами по методу Монте-Карло, выполненными при помощи программного кода MCNP. МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ РАДIАЦIЙНИХ ПОЛIВ МЕТОДОМ ТОЧКОВОГО ДЖЕРЕЛА I.М. Прохорець, С.I. Прохорець, М.А. Хажмурадов, Є.В. Рудичев, Д.В. Федорченко На прикладi програмного коду Mercure-3 розглянуто застосування метода точкового джерела для розрахунку радiацiйних полiв. Показано, що результати розрахункiв добре узгоджуються з розрахун- ками за методом Монте-Карло, якi виконано за допомогою програмного коду MCNP. 109