A technique for the selective detection of neutrons in geological applications

We present a new, combined technique for the detection of fast and thermal neutrons in the presence of accompanying gamma radiation, for geological and radioecological applications. To separate the slow neutron pulses and fast gamma pulses of organic scintillators, we used the method of particle ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Baker, J.H., Galunov, N.Z., Kostin, V.G., Martynenko, E.V., Tarasenko, O.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут сцинтиляційних матеріалів НТК "Інститут монокристалів" НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/110403
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A technique for the selective detection of neutrons in geological applications / J.H. Baker, N.Z. Galunov, V.G. Kostin, E.V. Martynenko, O.A. Tarasenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 126-130. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110403
record_format dspace
spelling irk-123456789-1104032017-01-05T03:02:31Z A technique for the selective detection of neutrons in geological applications Baker, J.H. Galunov, N.Z. Kostin, V.G. Martynenko, E.V. Tarasenko, O.A. Ядернo-физические методы и обработка данных We present a new, combined technique for the detection of fast and thermal neutrons in the presence of accompanying gamma radiation, for geological and radioecological applications. To separate the slow neutron pulses and fast gamma pulses of organic scintillators, we used the method of particle identification by radioluminescence pulse shape. The device has been tested by the combined neutron and gamma radiation sources ²⁵²Cf and ²³⁹Pu-Be, and by a 14.2 MeV D-T source of fast neutrons both in the laboratory, and under real, field conditions as applied at selected sites of the European Union. Розглянуті основні принципи та апаратура для реєстрації швидких і теплових нейтронів для сучасних задач геології й радіоекології. Роздільна реєстрація повільних нейтронних імпульсів і швидких імпульсів гама-випромінювання органічних сцинтиляторів здійснювалася шляхом дискримінації іонізуючого випромінювання за формою сцинтиляційного імпульсу. Атестація апаратури проводилася за допомогою джерел ²⁵²Cf та ²³⁹Pu-Be , а також D-T джерела швидких нейтронів з енергією 14.2 МеВ, як у лабораторних умовах, так і в реальних умовах її застосування в ряді країн Європейського Союзу. Изложены основные принципы и аппаратура для регистрации быстрых и тепловых нейтронов для современных задач геологии и радиоэкологии. Раздельная регистрация медленных нейтронных импульсов и быстрых импульсов гамма-излучения органических сцинтилляторов осуществлялась путем дискриминации ионизирующего излучения по форме сцинтилляционного импульса. Аттестация аппаратуры производилась с помощью источников ²⁵²Cf и ²³⁹Pu-Be , а также D-T источника быстрых нейтронов с энергией 14.2 МэВ, как в лабораторных условиях, так и в реальных условиях ее применения в ряде стран Европейского Союза. 2007 Article A technique for the selective detection of neutrons in geological applications / J.H. Baker, N.Z. Galunov, V.G. Kostin, E.V. Martynenko, O.A. Tarasenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 126-130. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 07.88.+y, 29.40.Mc, 29.25.Dz http://dspace.nbuv.gov.ua/handle/123456789/110403 en Вопросы атомной науки и техники Інститут сцинтиляційних матеріалів НТК "Інститут монокристалів" НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Baker, J.H.
Galunov, N.Z.
Kostin, V.G.
Martynenko, E.V.
Tarasenko, O.A.
A technique for the selective detection of neutrons in geological applications
Вопросы атомной науки и техники
description We present a new, combined technique for the detection of fast and thermal neutrons in the presence of accompanying gamma radiation, for geological and radioecological applications. To separate the slow neutron pulses and fast gamma pulses of organic scintillators, we used the method of particle identification by radioluminescence pulse shape. The device has been tested by the combined neutron and gamma radiation sources ²⁵²Cf and ²³⁹Pu-Be, and by a 14.2 MeV D-T source of fast neutrons both in the laboratory, and under real, field conditions as applied at selected sites of the European Union.
format Article
author Baker, J.H.
Galunov, N.Z.
Kostin, V.G.
Martynenko, E.V.
Tarasenko, O.A.
author_facet Baker, J.H.
Galunov, N.Z.
Kostin, V.G.
Martynenko, E.V.
Tarasenko, O.A.
author_sort Baker, J.H.
title A technique for the selective detection of neutrons in geological applications
title_short A technique for the selective detection of neutrons in geological applications
title_full A technique for the selective detection of neutrons in geological applications
title_fullStr A technique for the selective detection of neutrons in geological applications
title_full_unstemmed A technique for the selective detection of neutrons in geological applications
title_sort technique for the selective detection of neutrons in geological applications
publisher Інститут сцинтиляційних матеріалів НТК "Інститут монокристалів" НАН України
publishDate 2007
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/110403
citation_txt A technique for the selective detection of neutrons in geological applications / J.H. Baker, N.Z. Galunov, V.G. Kostin, E.V. Martynenko, O.A. Tarasenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 126-130. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bakerjh atechniquefortheselectivedetectionofneutronsingeologicalapplications
AT galunovnz atechniquefortheselectivedetectionofneutronsingeologicalapplications
AT kostinvg atechniquefortheselectivedetectionofneutronsingeologicalapplications
AT martynenkoev atechniquefortheselectivedetectionofneutronsingeologicalapplications
AT tarasenkooa atechniquefortheselectivedetectionofneutronsingeologicalapplications
AT bakerjh techniquefortheselectivedetectionofneutronsingeologicalapplications
AT galunovnz techniquefortheselectivedetectionofneutronsingeologicalapplications
AT kostinvg techniquefortheselectivedetectionofneutronsingeologicalapplications
AT martynenkoev techniquefortheselectivedetectionofneutronsingeologicalapplications
AT tarasenkooa techniquefortheselectivedetectionofneutronsingeologicalapplications
first_indexed 2025-07-08T00:34:23Z
last_indexed 2025-07-08T00:34:23Z
_version_ 1837036852878508032
fulltext A TECHNIQUE FOR THE SELECTIVE DETECTION OF NEUTRONS IN GEOLOGICAL APPLICATIONS J.H. Baker1, N.Z. Galunov2∗, V.G. Kostin2, E.V. Martynenko2, O.A. Tarasenko2 1SELOR eeig, Amsterdam, the Netherlands 2Institute for Scintillation Materials of Scientific Technology Center ”Institute for Single Crystals” of NAS of Ukraine, Kharkiv, Ukraine (Received March 14, 2007) We present a new, combined technique for the detection of fast and thermal neutrons in the presence of accompanying gamma radiation, for geological and radioecological applications. To separate the slow neutron pulses and fast gamma pulses of organic scintillators, we used the method of particle identification by radioluminescence pulse shape. The device has been tested by the combined neutron and gamma radiation sources 252Cf and 239Pu-Be, and by a 14.2 MeV D-T source of fast neutrons both in the laboratory, and under real, field conditions as applied at selected sites of the European Union. PACS: 07.88.+y, 29.40.Mc, 29.25.Dz 1. INTRODUCTION Environmental site surveys require accurate, in depth analysis of potential contaminants in the sub-surface. Currently this is done by sampling boreholes, sending samples for analysis, and then interpreting the data, which often are time consuming. There is a need for a logging tool, which can rapidly provide this data so that site assessment can be carried out quickly and efficiently. Geological research and mineral investigations on site also involve time delays between sampling rocks and getting analytical data. Therefore, the analysis has to be made on site, thus guiding exploration and research in a more effective manner. Currently no such device is available commercially. A number of electric logging tools exist for water and soil analysis, but these are not multi-purpose, and the number of parameters, which can be measured is limited. Pre- vious neutron logging devices required a radioactive source, which made them impracticable due to han- dling and storage safety considerations, and only gave qualitative analyses of parameters. In neutron measurements, a scintillator detects both neutrons and accompanying background gamma radiation because the neutron detectors based on solid and liquid scintillators have a high efficiency of gamma radiation detection. Therefore, a highly ac- curate experiment is impossible without using a tech- nique with the selective detection of different types of radiations. The problem of selective detection of ionizing ra- diation, especially the problem of separation of the neutron spectrum and gamma background is very important in nuclear experiments. The most effec- tive method for detection of fast neutrons is based on the production in organic material of recoil protons. Therefore, organic detectors with a high content of hydrogen are the most useful for fast neutron spec- troscopy. This work is devoted to the new applied technique of geological research based on using a combined scin- tillation method in the detection of fast and ther- mal neutrons in the presence of accompanying, in- duced gamma radiation. We have mounted the cir- cuitry and controlling software with photomultiplier and other components on a unit that allows operat- ing the detector system in the research phase of this work. 2. THEORY Ionizing radiation in an organic scintillator gen- erates two types of luminescence referred to as the prompt radioluminescence and the delayed radio- luminescence. The formation of the fast compo- nent of the radioluminescence pulse essentially takes place outside the region of particle tracks. It has an exponential decay with time constant of about 10−9 − 10−8 s [1]. The process of scintillation pulse fast component formation takes place within ”the op- tical approximation” and practically does not depend on the specific energy losses dE/dx of a particle. The slow component of the scintillation pulse arises due to a triplet-triplet annihilation process that results in the delayed radioluminescence of the scintillator. These processes take place only in the regions of high activation density (e.g. a track of a particle) where ∗Corresponding author. E-mail address: galunov@isc.kharkov.com 126 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5. Series: Nuclear Physics Investigations (48), p.126-130. the concentration of ionized and exited molecules is high, and therefore the influence of dE/dx on the slow component of scintillation pulse formation is of primary importance. Due to annihilation nature of such a process, hyperbolical functions describe the shape of slow component and its intensity depends on dE/dx [2]. It is the physical base of the technique of particle identification by radioluminescence pulse shape. 3. EXPERIMENT Js SIR PMT D INT AMP INV PFA C-S PA а d + - n γ Spectral Jf S AMP SUM INT Fig.1. Block diagram of the set-up for selec- tive detection the ionizing radiation with different dE/dx: SIR is a source of ionizing radiation; S is a Ø40 mm×40 mm stilbene scintillator; PMT is a 9272B ETL photomultiplier tube (a is the an- ode output and d is the next to the last dynode output); D is a discriminator; INT is an inte- grator; INV is an inverter; AMP are amplifiers with adjusted gain; SUM is a summer; C-S PA is a charge-sensitive preamplifier; PFA is a pulse former amplifier; n is the neutron spectrum con- trol output; γ is gamma spectrum control output; spectral output is the spectrometric output Fig.1 illustrates the measuring set-up that is used for above-mentioned method. We used Ø(40×40) mm stilbene detector optically coupled with a 52 mm type 9272B Electron Tubes Ltd. pho- tomultiplier. The signal from the anode output of the photomultiplier is transmitted to the electronic part that separates a charge in time intervals from 0 to 50 ns after an excitation and from 50 to 2000 ns, i.e. the time of the fast and the slow signals, re- spectively. The electronics integrates the charge ac- cumulated in the interval from 0 to 50 ns and ob- tains the Jf -value, as well as integrates the charge accumulated in the interval from 50 to 2000 ns and inverts to obtain Js-value. The signals proportional to Jf and Js are summed in such a way that the detection of scintillation pulses initiated by neutrons results in the formation of the positive pulse on the summation output, whereas the detection of photons of gamma radiation results in the formation of the negative pulse. The digital signal appears on a sepa- rate ”neutron” or ”gamma” output according to the polarity of the previous signal. The charge-sensitive preamplifier, followed by the pulse former amplifier, forms the signal from the next to the last dynode of a photomultiplier for amplitude analysis. This instru- ment can work for measurements with separation of combined spectra of α- and β- scintillations, α- and γ- scintillations, etc. using the same principle of dis- crimination analysis. According to [3], the quality of the discrimi- nation procedure based on the technique described above depends on time interval tf of ”complete” de- cay of the fast component of the radioluminescence pulse. Single-photon measurements of the radiolumi- nescence pulse shape give the tf -value. In our experiments, we used a high output neu- tron emitting tube that generates 14.2 MeV mono- energetic neutrons by deuterium-tritium (D-T) reac- tion. The frequency of bursts is 20 Hz and this source emits 108 neutrons per second in 4π-geometry. Accel- erating potential for deuterons was equal to 120 keV that allows obtaining practically isotropic diagram of neutrons in a burst [4]. Additionally, for laboratory tests we used a Pu-Be radionuclide source with neu- tron flux equal to ∼ 105 neutrons per second, and a radionuclide 252Cf as fission type source with neutron flux ∼ 104 neutrons per second. The dominant type of radiation determines the choice of scintillation material. Our previous investi- gations indicate that detectors based on stilbene scin- tillators are the most effective for the required tasks of neutron spectrometry. Notwithstanding that, it is necessary to take into account, that scintillators based on p-terphenyl have better strength and oper- ating characteristics [3]. For the detection of thermal neutrons we used a Ø(20×3) mm detector on the basis of a LiI(Eu) crys- tal. It contains an element with a high value of ther- mal neutron absorption cross-section, e.g. 6Li. For penetrative gamma radiation, a material with high density is required. Characteristics of some in- organic materials usually used for the detection of photons of gamma radiation have been previously discussed (see [5], for example). Detectors based on NaI(Tl) crystals have the best characteristics for high resolution gamma-spectroscopy. The combina- tion of two of above mentioned scintillation materials (NaI(Tl) and LiI(Eu), or stilbene and NaI(Tl)) allows us to detect simultaneously different types of ionizing radiation. We have chosen a 25 mm type 9110FLA ETL pho- tomultiplier for the detection of thermal neutron and a 52 mm type 9272B ETL photomultiplier for the de- tection of background gamma radiations. The signal d (see Fig.1) from the next to the last dynode out- put was formed for amplitude analysis according to above-mentioned procedure. In this case the anode (control) output a did not used. 4. RESULTS AND DISCUSSION To test the proposed technique of selective de- tection neutron and gamma radiation (see Fig. 1) we have carried our a series of measurements of amplitude spectra from a Ø(40×40) mm stilbene detector irradiated by the combined neutron and gamma source (Pu-Be), the mono-energetic D-T neu- tron source and standard sources of gamma radiation 22Na, 60Co, 137Cs, 152Eu and 232Th. 127 1 2 3 4 5 10 0 10 1 10 2 10 3 10 4 4 2 1 N u m b er o f p u ls es E γ * , MeV 3 Fig.2. Scintillation amplitude spectra of a Ø40 mm×40 mm stilbene detector irradiated by the sources of ionizing radiation: 239Pu- Be (curves 1 and 2), 252Eu (curves 3 and 4). Curves 1 and 3 have been measured without the neutron control signal, but curves 2 and 4 have been measured with the neutron control signal Curve 1 on Fig.2 shows the total recoil protons and recoil electrons spectrum of stilbene irradiated by Pu-Be (discrimination is not used). Curve 2 shows the proton spectrum of Pu-Be (control from neutron output). Curve 3 shows the recoil electrons spectrum of stilbene irradiated by 252Eu measured without the neutron control signal, and curve 4 shows this spec- trum measured with the neutron control signal, re- spectively. A negligible number of pulses for curve 4 confirm that discrimination procedure discussed here is clearly effective. The X-axis is calibrated in the scale of scintillation amplitudes obtained from pho- tons of gamma radiation of energy E∗ γ . Compton edge energies Ecomp for sources with energies Eγ has been obtained according to a well-known formula [6]. The following expression can used to regenerate the neutron spectrum with energies En [7] in scale of scintillation amplitudes: ϕ (En) = − En ε (En) × du (Ep) dEp ∣∣∣∣ Ep=En , (1) where u(Ep) is a recoil proton spectrum (measured for Ep ≤ En), ε(Ep) is an efficiency of detection of dif- ferent energy neutrons. Expression (1) does not take into account the non-linearity of scintillation response to recoil protons [5]. Expression (1) gives the neutron spectra ϕ(En) in non-linear En scale. Therefore the results obtained still hold the information concerning features of scintillator response, as well as the infor- mation about ”specific quenching”. The calculation (1) is inapplicable to the case of study a spectrum of unknown neutron source, because the non- linear- ity of scintillation response has to be considered in such a case. It allows obtaining the scintillation re- sponse when the neutron source with know spectrum is used [7]. Therefore we used a radionuclide 239Pu- Be source. It spectrum is thoroughly studied. See i.e. the theoretical calculations of the energy spectrum of Pu-Be neutron source [8], experimental works in which such a source was tested by stilbene scintilla- tors and nuclear emulsions [9, 10], etc. The peaks 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 on Fig. 3 correspond to well-known energies of neutrons (0.85, 2.0, 3.1, 4.2, 4.9, 6.4, 6.7, 7.3, 7.9, 8.6 and 9.7 MeV respectively [7-10]) emitted by a 239Pu-Be source. 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 11 1 2 3 4 65 7 8 9 N u m b e r o f d e te c te d n e u tr o n s Channel number 10 Fig.3. Neutron spectra reconstructed from the recoil proton spectra (see Fig.2, curve 2) of 239Pu-Be source for a Ø(40×40) mm stilbene detector We investigated the spectrum of scintillation am- plitudes of stilbene detector irradiated by a D- T mono-energetic neutron source using the above- mentioned procedure of n/γ-discrimination. Fig.4 shows the results of these measurements. 5 10 15 20 25 30 0 250 500 750 1000 1250 1500 1750 2000 b 2 Reactions (n,n') E n = 14.2 MeV N u m b er o f p u ls es E n , MeV 1 a Fig.4. Scintillation amplitude spectra of a Ø(40×40) mm stilbene detector irradiated by a D-T neutron source: curve 1 is the scintil- lation spectrum of recoil protons, curve 2 is derived spectrum of 14.2 MeV neutrons Curve 1 on Fig.4 shows the experimental scintil- lation spectrum of recoil protons generated by fast neutrons in the detector. Curve 2 is the neutron spectrum of a D-T source obtained by the procedure of numerical differentiation followed by smoothing of experimental data of curve 1 (see expression 1). The high-energy peak of curve 2 is the reconstructed neu- tron signal from 14.2 MeV neutrons. One can see it splitting on two peaks, a and b. The amplitude rela- tionship between these peaks is about 1.2 that is in a good agreement with the value of anisotropy of stil- 128 bene signals obtained during an excitation along and perpendicular to crystallographic plane ab [3]. In our experiments, the measuring system was excited along crystallographic plane ab and this type of excitation was more probable. The neutrons were scattered by the neutron shielding excited the crystal perpendicu- lar to crystallographic plane ab. Fig.5 shows the scintillation spectra obtained dur- ing 6LiI(Eu) detectors irradiation by thermal neu- trons (the sources of fast neutrons in paraffin sphere) and photons of gamma radiation from a 137Cs ra- dionuclide source. Neutrons generate monochromatic α-particles and therefore an α-scintillation spectrum is obtained. It is accompanied by a γ-spectrum of background radiation. Amplitude discrimination is enough to separate these two spectra, because for thin 6Li(Eu) crystals a γ-scintillation spectrum is narrow and located in the range of low amplitudes. 500 1000 1500 2000 2500 3000 3500 0 50 100 150 200 250 300 1 2 Neutrons Threshold range Photons of γ - radiation T h er m o n eu tr o n s N u m b er o f p u ls es Channel number 3 Fig.5. Scintillation amplitude spectra from a Ø20 mm×3 mm LiI(Eu) detector irradiated by neutron sources have been introduced inside moderator (a paraffin sphere 15 cm in diame- ter): 239Pu-Be (curve 1), 252Cf (curve 2) and irradiated by a source of photons of gamma radiation 137Cs (curve 3) 5. CONCLUSIONS We have tested and optimized the set of devices for fast and thermal neutron detection that can be used as the basis for measuring a range of parame- ters including hydrocarbons, heavy metals and other elements in both geological and environmental ap- plications. The technique of discrimination of ioniz- ing radiation by their pulse shape allows the separate detection and with high degree of accuracy both of thermal neutrons scattering from the material under investigation and secondary photons of gamma ra- diation. These photons are generated in reactions of inelastic scattering of fast neutrons or radiative capturing of thermal neutrons, and give information about the chemical composition of a material [5]. It should be noted that in geological applications the content of water (one of the most effective mod- erator of neutrons in nature), difference in density, porosity of soil, and some other factors might have a significant effect on the results of any measurements, especially in the case of quantitative analysis. So, for complex systems, data processing and interpretation is a separate task, and therefore has been discussed separately. ACKNOWLEDGEMENTS The Science and Technology Centre in Ukraine supported this work through grant No. P-130. Addi- tional financial support was also provided to SELOR through the Nu-Pulse project of the GROWTH pro- grammer contract G1RD-CT-200200714 (EU DG- RTD). REFERENCES 1. N.Z. Galunov, B.V. Grinyov, O.A. Tarasenko. Features of scintillation process in organic scintil- lators // Problems of Atomic Science and Tech- nology. 2005, N5 (88), p.176-181 (in Russian). 2. N.Z. Galunov, B.V. Grinyov, O.A. Tarasenko, E.V. Martynenko. Some aspects of scintillation mechanism in organic molecular dielectrics // Journal of the Korean Association for Radiation Protection. 2005, v.30, p.85-89 (in Russian). 3. N.Z. Galunov, V.P. Seminozhenko. Theory and Application of the Radioluminescence of Organic Condensed Media. Kiev: ”Naukova Dumka”, 1997, 280 p. (in Russian). 4. K.H. Beckurts, K. Wirtz. Neutron Physics. Berlin, Gottingen, Heidelberg, New York: ”Springer-Verlag”, 1964, 456 p. 5. N.Z. Galunov, A.M. Stepanenko, O.A. Tarasenko. Some aspects of discrimination techniques for the measurement of neutrons and photons of gamma radiation in geological applications // Rad. Meas. 2004, v.38, p.817-820. 6. J.B. Birks. The Theory and Practice of Scintilla- tion Counting, London, ”Pergamon Press”, 1964, 662 p. 7. N.Z. Galunov, E.V. Martynenko. Ionizing radia- tion energy exchange in the regions of high acti- vation density of organic scintillators // 6th Eu- ropean Conference on Luminescencent Detectors and Transformers of Ionizining Radiation.Lviv, Ukraine, 2006, p.31. 8. K.W. Gieger,L. Van der Zwan. Radioactive neu- tron source spectra from 9Be(α, n) cross sec- tion data // Nucl. Instr. and Meth. 1975, v.131, p.315-321. 9. M.E. Anderson,R.A. Neff. Neutron energy spec- tra of different size 239Pu-Be(α, n) sources // Nucl. Instr. and Meth. 1972, v.99, p.231-235. 10. I.V. Goryachev, Ya.I. Kovalevatov, L.A. Trykov. Integral Experiments in the Problem of the Trans- fer of Ionizing Radiations. Moscow: ”Energoat- omizdat”, 1985, 274 p. (in Russian). 129 АППАРАТУРА ДЛЯ РАЗДЕЛЬНОЙ РЕГИСТРАЦИИ НЕЙТРОНОВ ДЛЯ ГЕОЛОГИЧЕСКИХ ПРИМЕНЕНИЙ Д.Х. Бэйкер, Н.З. Галунов, В.Г. Костин, Е.В. Мартыненко, О.А. Тарасенко Изложены основные принципы и аппаратура для регистрации быстрых и тепловых нейтронов для современных задач геологии и радиоэкологии. Раздельная регистрация медленных нейтронных им- пульсов и быстрых импульсов гамма-излучения органических сцинтилляторов осуществлялась путем дискриминации ионизирующего излучения по форме сцинтилляционного импульса. Аттестация ап- паратуры производилась с помощью источников 252Cf и 239Pu-Be , а также D-T источника быстрых нейтронов с энергией 14.2 МэВ, как в лабораторных условиях, так и в реальных условиях ее примене- ния в ряде стран Европейского Союза. АПАРАТУРА ДЛЯ РОЗДIЛЬНОЇ РЕЄСТРАЦIЇ НЕЙТРОНIВ ДЛЯ ГЕОЛОГIЧНИХ ЗАСТОСУВАНЬ Д. Х. Бейкер, М.З. Галунов, В.Г. Костiн, Є.В. Мартиненко, О.А. Тарасенко Розглянутi основнi принципи та апаратура для реєстрацiї швидких i теплових нейтронiв для су- часних задач геологiї й радiоекологiї. Роздiльна реєстрацiя повiльних нейтронних iмпульсiв i швидких iмпульсiв гама-випромiнювання органiчних сцинтиляторiв здiйснювалася шляхом дискримiнацiї iонi- зуючого випромiнювання за формою сцинтиляцiйного iмпульсу. Атестацiя апаратури проводилася за допомогою джерел 252Cf та 239Pu-Be , а також D-T джерела швидких нейтронiв з енергiєю 14.2 МеВ, як у лабораторних умовах, так i в реальних умовах її застосування в рядi країн Європейського Союзу. 130