Spectrum of small-scale plasma structures in the photosphere

In this report we consider possibility of formation of small-scale plasma structures in the turbulent flows of photospheric gas on the Sun and analyse dependence of their spectrum and intensity on height and the magnetic field strength. It was shown that in the height range 150–350 km the slope of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Kyzyurov, Yu.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110409
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectrum of small-scale plasma structures in the photosphere / Yu.V. Kyzyurov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 81-83. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110409
record_format dspace
spelling irk-123456789-1104092017-01-05T03:02:39Z Spectrum of small-scale plasma structures in the photosphere Kyzyurov, Yu.V. Space plasma In this report we consider possibility of formation of small-scale plasma structures in the turbulent flows of photospheric gas on the Sun and analyse dependence of their spectrum and intensity on height and the magnetic field strength. It was shown that in the height range 150–350 km the slope of the structure spectrum decreases with increasing the altitude. Under the weak magnetic field (B = 5 G), the intensity of plasma structures is unchanged with height. The increase in the magnetic field strength results in a rise in the structure intensity and in a decrease in the spectral slope. Розглядається можливість формування дрібномасштабних плазмових структур в турбулентних потоках фотосферного газу на Сонці та аналізується залежність їх просторового спектра та інтенсивності від висоти та напруженості магнітного поля. Показано, що в інтервалі висот 150–350 км нахил спектра структур, що розглядаються, із збільшенням висоти зменшується. За умов слабкого магнітного поля (В=5 Гс) інтенсивність плазмових структур з висотою не змінюється. Збільшення напруженості магнітного поля веде до зростання інтенсивності структур та зменшення нахилу спектра. Рассматривается возможность формирования мелкомасштабных плазменных структур в турбулентных потоках фотосферного газа на Солнце и анализируется зависимость их пространственного спектра и интенсивности от высоты и напряженности магнитного поля. Показано, что в интервале высот 150‑350 км наклон спектра рассматриваемых структур с увеличением высоты уменьшается. При слабом магнитном поле (В=5 Гс) интенсивность плазменных структур с высотой не меняется. Увеличение напряженности магнитного поля приводит к росту интенсивности структур и уменьшению наклона спектра. 2007 Article Spectrum of small-scale plasma structures in the photosphere / Yu.V. Kyzyurov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 81-83. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 94.05.–a; 96.60.Mz; 47.27.–i http://dspace.nbuv.gov.ua/handle/123456789/110409 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Space plasma
Space plasma
spellingShingle Space plasma
Space plasma
Kyzyurov, Yu.V.
Spectrum of small-scale plasma structures in the photosphere
Вопросы атомной науки и техники
description In this report we consider possibility of formation of small-scale plasma structures in the turbulent flows of photospheric gas on the Sun and analyse dependence of their spectrum and intensity on height and the magnetic field strength. It was shown that in the height range 150–350 km the slope of the structure spectrum decreases with increasing the altitude. Under the weak magnetic field (B = 5 G), the intensity of plasma structures is unchanged with height. The increase in the magnetic field strength results in a rise in the structure intensity and in a decrease in the spectral slope.
format Article
author Kyzyurov, Yu.V.
author_facet Kyzyurov, Yu.V.
author_sort Kyzyurov, Yu.V.
title Spectrum of small-scale plasma structures in the photosphere
title_short Spectrum of small-scale plasma structures in the photosphere
title_full Spectrum of small-scale plasma structures in the photosphere
title_fullStr Spectrum of small-scale plasma structures in the photosphere
title_full_unstemmed Spectrum of small-scale plasma structures in the photosphere
title_sort spectrum of small-scale plasma structures in the photosphere
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Space plasma
url http://dspace.nbuv.gov.ua/handle/123456789/110409
citation_txt Spectrum of small-scale plasma structures in the photosphere / Yu.V. Kyzyurov // Вопросы атомной науки и техники. — 2007. — № 1. — С. 81-83. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kyzyurovyuv spectrumofsmallscaleplasmastructuresinthephotosphere
first_indexed 2025-07-08T00:34:51Z
last_indexed 2025-07-08T00:34:51Z
_version_ 1837036881892605952
fulltext SPACE PLASMA Problems of Atomic Science and Technology. 2007, 1. Series: Plasma Physics (13), p. 81-83 81 SPECTRUM OF SMALL-SCALE PLASMA STRUCTURES IN THE PHOTOSPHERE Yu.V. Kyzyurov Main Astronomical Observatory, National Academy of Sciences of Ukraine, Kiev, Ukraine, e-mail: kyzyurov@mao.kiev.ua In this report we consider possibility of formation of small-scale plasma structures in the turbulent flows of photospheric gas on the Sun and analyse dependence of their spectrum and intensity on height and the magnetic field strength. It was shown that in the height range 150–350 km the slope of the structure spectrum decreases with increasing the altitude. Under the weak magnetic field (B = 5 G), the intensity of plasma structures is unchanged with height. The increase in the magnetic field strength results in a rise in the structure intensity and in a decrease in the spectral slope. PACS: 94.05.–a; 96.60.Mz; 47.27.–i INTRODUCTION The structure and dynamics of the solar photosphere are very important for better understanding of basic solar phenomena such as atmospheric energy transport, turbulent diffusion of magnetic field or chaotic excitation of solar oscillations. The degree of photospheric gas ionization is quite small [1, 2]. It means that electrically charged particles in the photosphere can be considered as passive contaminants embedded in motions of the gas. Results of observations clearly show that the photospheric flows include both organized and stochastic motions [3, 4]. The spectra associated with the random velocity fields obey power laws, which are close to the spectrum of Kolmogorov turbulence [4]. Turbulent motions of the gas have to result in formation of random plasma structures in the photosphere [5]. Parameters of the photosphere and turbulent mixing depend on height [1, 2, 6]. In addition there are regions with various magnetic field strengths in the photosphere [7]. It is important to analyse possible dependence of the spectrum and intensity of plasma structures generated in turbulent photospheric flows on the height and the magnetic field strength. This analysis is the aim of the report. The present consideration will be restricted to small-scale structures with length-scales smaller than the length-scale of the mean plasma density gradient. BASIC EQUATIONS AND RELATIONS To describe turbulent mixing in the solar photosphere (which is a slow process) a three-fluid model can be used. Since the charged particles are passive contaminants, they have no influence on motions of neutral gas and the gas velocity field u(x, t) may be treated as a known function of position and time. The gas in the photosphere can be regarded as incompressible, ∇u=0. The behaviour of charged particles embedded in the gas flow can be described by the following set of equations [5]: 0)v(/ =∇+∂∂ sss NtN , (1) sssssss NNmq ∇−×Ω+=− −− 12 Tss 1 v)(/)( bvEuvτ , (2) where the variables are chosen as density Ns and velocity vs for each species (s≡i, e), τs is a characteristic time of charged particle collisions with neutrals, qs is the particle charge (qe=–qi=–e), Ωs= qsB/msc is the gyrofrequency, vTs is the thermal velocity, ms is the particle mass, b=B/B is the unit vector along the magnetic field B, E is the electric field. In the photosphere τiΩi<<1 and the assumptions of quasi-neutrality Ne=Ni=N and isothermality Te=Ti=Tn=T are valid. In the case of turbulent flows the gas velocity may be separated into mean and fluctuating parts u=u0+u1 (u0=<u>, <u1>=0, u1<u0). The same may be made for plasma density N=N0+N1 (N0=<N>, <N1>=0, N1< N0); N1 represents plasma structures generated by the turbulent velocity field u1. The way of derivation of Ψ(k,ω), the spatiotemporal spectrum of δN= N1/N0, from Eqs. (1), (2) is described in [5]. Length-scales of random gas motions were restricted to the inertial range of turbulence. In this range turbulence is homogeneous and isotropic one with known statistical properties. The spectrum tensor of the field u1 [4, 5, 8] is: 1222 )]1(4[)()()(),( −+⋅=Φ tt kEkD τωπτω αβαβ kk , (3) k0<k<kν, where Dαβ=δαβ–kαkβ /k2 is the projection operator, τt(k)=(νk2+ε1/3k2/3)–1 is the decay time of eddy with a length-scale k–1, E(k)=C1ε2/3k–5/3 is the energy spectrum function, k0 –1 is the basic energy input scale, kν=(ε/ν3)1/4 is the Kolmogorov dissipation wavenumber, ν is the kinematic viscosity of the gas, ε is the rate of turbulent energy dissipation per unit mass, the Kolmogorov constant C1 is around 1.5 [9]. To obtain Ψ(k,ω) the only electric field E considered was that required to prevent charge separation (due to E electrons tend to follow ions). In addition a contribution of the mode interaction in the process of plasma structure generation was taking into account through the coefficient of turbulent diffusion KT. For the structures with length- scales smaller than LN=N0|∇N0|–1, the length-scale of ∇N0, the following expression was derived [5] )()]1)((4[),( 2122222 kk Qkttk τττωτωπω −++1=Ψ , (4) LN –1<k<kd, here τk=(DAk2+KTk2)–1=(DAk2+ε1/3k2/3)–1, DA is the ambipolar diffusion coefficient, Q(k)= [(n×k)2/(LNk)2+ +(b×k)2/(τiΩi)2]C1ε2/3k–11/3, n=LNN0 –1∇N0 is the unit along mailto:kyzyurov@mao.kiev.ua 82 ∇N0, kd = (ε/DA 3)1/4 is the Oboukhov-Corrsin wavenumber known in the theory of passive scalar turbulent convection [9], in the present case it define the structure length-scale at which KT=DA. From Eq.(4) we can obtain the spatial spectrum of δN )()]/1(4[),()( 1 kkk QdP ktktN ττττπωω − ∞ ∞− +=Ψ= ∫ . (5) Unlike [5] the inequality DA≠ν was taken into account in the present case. Using Eq.(5) a mean-square level of δN in the range (k1, k2) may be calculated ))/(())/(()( 3/4 1 3/4 2 2 ddN kkSkkSdPN −== ∫ kkδ , (6) where +−+= −−− ]3/2Pr)3[( 8 3)( 2/322 xxkLxS dN +++− − + −− ])2/Pr)1(arctg()2/Pr)1((arctg[ Pr12 3 2/12/52/1 22 xx kL dN Pr)))]1(2/(Pr)1(ln(Pr)1())1/(ln(2[ Pr18 3 22 ++++−+ − Ω + xxxxiiτ here Pr=ν/DA is the diffusion Prandtl number. The 1D spectrum of plasma structures in the turbulent photospheric flow that may be measured along z-direction may be obtained from Eq.(5) too: == ∫ ∫⊥⊥ ζ π ϕ k NzN dPdkkkP 0 2 0 )()( k = ∫ ⊥⊥ − ⊥⊥ − Ω+ ζ θτθ k ziizN dkkkkFkkfkkkfL 0 7 2 222 1 2 )()),,(),,(( 4 1 where f(k⊥,kz,θ)=k⊥ 2+k⊥ 2cos2θ+2kz 2sin2θ, θ1 is the angle between z and n, θ2 between z and b, kζ 2=kd 2–kz 2, k2=k⊥ 2+kz 2, F(k)=[(1+(k/kd)4/3)× (2+(k/kd)4/3+(k/kν)4/3)]–1. Eqs. (6), (7) give an opportunity to estimate changeability of small-scale plasma structures with changing the height and the magnetic field strength. CHANGEABILITY OF PHOTOSPHERIC PLASMA STRUCTURES To estimate changeability of the photospheric plasma structures we shall consider the case when n and b are in vertical direction, while the possible measurement direction z is horizontal. Then θ1=θ2=π/2 and Eq.(7) takes the form ∫ ⊥⊥ − ⊥ − +Ω+= ζ τ k ziiNzN dkkkkFkkkLkP 0 72222 )()2)(( 4 1)( . (8) The plasma structures are analysed near heights of 150 and 350 km. The outer scale of turbulence k0 –1= L0=940 km is the same for both heights [6], and we suppose that LN≈L0. The mean gas velocity on L0 is u0, and then ε= u0 3/L0. Parameters of the photosphere taken from [1,2,6] together with the calculated values of kν –1 and kd –1are presented in Table 1. Characteristics of plasma structures calculated with use of Eqs.(6), (8) and the value τiΩi are shown in Table 2 (γ is the power index when PN(kz) was approximated by a simple power law kz –γ). The limits of integration in Eq.(6) are k1 = 2π/Lm, k2 = kν (Lm=300 km). Fig.1 shows the 1D spectrum PN(kz) calculated with the use of Eq.(8) for h=150 km: line 1 is for the case of the magnetic field B=5 G, line 2 for B=250 G, a straight line is the power law kz –5/3. Fig.2 represents the same for h=350 km. From the figures and Table 2 it seen that the small- scale plasma structures have to be sensitive to the change in both the height and the magnetic field strength. In the region with a weak magnetic field, dependence of the structure intensity on height is almost absent, though the spectral shape changes. An increase in the magnetic field provides a change in the rms fluctuation level and the spectral slope. Table 1. Parameters of the solar photosphere Parameter h=150 km h=350 km T, K Nn, m–3 Ne, m–3 mi, a.u.m. u0, km/s kν –1, cm kd –1, cm 5180 5.05×1022 6.04×1018 25 1.1 10.4 1.33 4670 1.01×1022 1.12×1018 26.3 2.05 20 2.5 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 WAVE NUMBER, 1/m 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1D S P EC TR U M ,m 1 2 Fig.1. Spectrum PN(kz) at h=150 km 1E-5 1E-4 1E-3 1E-2 0.1 1 1E+1 WAVE NUMBER, 1/m 1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 0.1 1 1E+1 1E+2 1D S P EC TR U M ,m 1 2 Fig.2. Spectrum PN(kz) at h=350 km (7) 83 Table 2. Characteristics of plasma structures h, km B, G τiΩi <δN2>1/2, % γ 150 150 350 350 5 250 5 250 1.98×10–5 9.9×10–4 9.4×10–5 4.7×10–3 2.5 2.6 2.5 2.8 2.22 1.41 1.94 1.23 CONCLUSIONS An analytic expression for the 1D spectrum of the plasma structures in a turbulent flow of photospheric gas Eq.(7) as well as the formula for estimation of the RMS level of their intensity Eq.(6) were presented in the report. Using the expressions it was shown that in the height range 150–350 km the slope of the structure spectrum decreases with increasing the altitude. Under the weak magnetic field (B=5 G), the intensity of plasma structures is unchanged with height. The increase in the magnetic field strength results in a rise in the structure intensity and in a decrease in the spectral slope. The obtained results seem to be important for better understanding of basic solar phenomena, such as generation of the random component of magnetic field or chaotic excitation of solar oscillations. REFERENCES 1. I.A. Krinberg. Transport coefficients of cosmic plasma. II. Outer layers of Sun// Research on Geomagnetism, Aeronomy, and Solar Physics. 1971, N.16, p. 141-147 (in Russian). 2. J.M. Fontenla, E.H. Avrett, R. Loeser. Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion// Astrophys. J. 1993, v. 406, p. 319-345. 3. E.A. Gurtovenko, V.A. Sheminova, R.J. Rutten. Velocity field in the temperature minimum region of the solar atmosphere// Astron. Zh. 1985, v. 62, p. 124-131 (in Russian). 4. A.C. Cadavid, J. K. Lawrence et. al. Spatiotemporal correlations and turbulent photospheric flows from SOHO/MDI velocity data// Astrophys. J. 1998, v. 509, p. 918-926. 5. Yu.V. Kyzyurov. Non-thermal fluctuations in plasma density near the temperature minimum of the solar atmosphere// Kinematics and Physics of Celest. Bodies. 2005, N5, p. 183-186. 6. R.I. Kostyk. Fine structure of Fraunhofer lines and the structure of the solar atmosphere // Astron. Zh. 1985, v. 62, p. 112-123 (in Russian). 7. J.O. Stenflo, C.U. Keller, A. Gandorfer. Differential Hanle effect and the spatial variation of turbulent magnetic fields on the Sun// Astron. Astrophys. 1998, v. 329, p. 319-328. 8. W.D. McComb. Theory of turbulence // Rep. Prog. Phys. 1995, v. 58, p. 1117-1206. 9. W.D. McComb, M.J. Filipiak et. al. Rederivation and further assessment of the LET theory of isotropic turbulence, as applied to passive scalar convection // J. Fluid Mech. 1992, v. 245. p. 279-300. . . , 150-350 . ( =5 ) . . . . , 150–350 , , . ( =5 ) . .