Sourcewise represented Green’s function of the circular waveguide
Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a problem for diffraction of potential and rotational components el...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/110417 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Sourcewise represented Green’s function of the circular waveguide / S.D. Prijmenko, L.A. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 137-140. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110417 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1104172017-01-05T03:02:43Z Sourcewise represented Green’s function of the circular waveguide Prijmenko, S.D. Bondarenko, L.A. Теория и техника ускорения частиц Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a problem for diffraction of potential and rotational components electric field intensity of a point current source on the circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source enables to develop an effective algorithm of Green’s function calculation at any distance between the source point and observation point in a circular waveguide. Cінгулярна частина функції Гріна круглого хвилеводу у формі функції Гріна необмеженого простору виділена в явному вигляді й містить всі особливості, включаючи дельта-подібну особливість. Задача побудови функції Гріна для поля розв'яза як задача дифракції потенційної й вихрової частин напруженості електричного поля крапкового джерела струму на стінках круглого хвилеводу. Виділення особливості напруженості електричного поля в явному вигляді в околиці джерела дозволило розробити ефективний алгоритм розрахунку електричної функції Гріна при довільній відстані між крапками джерела й спостереження в круглому хвилеводі. Cингулярная часть функции Грина круглого волновода в форме функции Грина неограниченного пространства выделена в явном виде и содержит все особенности, включая дельта-образную особенность. Задача построения функции Грина для поля решена как задача дифракции потенциальной и вихревой частей напряженности электрического поля точечного источника тока на стенках круглого волновода. Выделение особенности напряженности электрического поля в явном виде в окрестности источника позволило разработать эффективный алгоритм расчета электрической функции Грина при произвольном расстоянии между точками источника и наблюдения в круглом волноводе. 2007 Article Sourcewise represented Green’s function of the circular waveguide / S.D. Prijmenko, L.A. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 137-140. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 29.17 + w, 02.30.Rs, 84.40.Sr http://dspace.nbuv.gov.ua/handle/123456789/110417 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Prijmenko, S.D. Bondarenko, L.A. Sourcewise represented Green’s function of the circular waveguide Вопросы атомной науки и техники |
description |
Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities, including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a problem for diffraction of potential and rotational components electric field intensity of a point current source on the circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source enables to develop an effective algorithm of Green’s function calculation at any distance between the source point and observation point in a circular waveguide. |
format |
Article |
author |
Prijmenko, S.D. Bondarenko, L.A. |
author_facet |
Prijmenko, S.D. Bondarenko, L.A. |
author_sort |
Prijmenko, S.D. |
title |
Sourcewise represented Green’s function of the circular waveguide |
title_short |
Sourcewise represented Green’s function of the circular waveguide |
title_full |
Sourcewise represented Green’s function of the circular waveguide |
title_fullStr |
Sourcewise represented Green’s function of the circular waveguide |
title_full_unstemmed |
Sourcewise represented Green’s function of the circular waveguide |
title_sort |
sourcewise represented green’s function of the circular waveguide |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2007 |
topic_facet |
Теория и техника ускорения частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110417 |
citation_txt |
Sourcewise represented Green’s function of the circular waveguide / S.D. Prijmenko, L.A. Bondarenko // Вопросы атомной науки и техники. — 2007. — № 5. — С. 137-140. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT prijmenkosd sourcewiserepresentedgreensfunctionofthecircularwaveguide AT bondarenkola sourcewiserepresentedgreensfunctionofthecircularwaveguide |
first_indexed |
2025-07-08T00:35:30Z |
last_indexed |
2025-07-08T00:35:30Z |
_version_ |
1837036921856983040 |
fulltext |
SOURCEWISE REPRESENTED GREEN’S FUNCTION
OF THE CIRCULAR WAVEGUIDE
S.D. Prijmenko∗, L.A. Bondarenko
Institute for Plasma Electronics and New Methods of Acceleration,
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received March 15, 2007)
Singular part of the Green’s function of unbounded space is singled out in explicit form and contains all singularities,
including a delta-shaped singularity. The problem of construction of Green’s function for a field is solved, as a
problem for diffraction of potential and rotational components electric field intensity of a point current source on the
circular waveguide walls. The singling out of the electric field intensity singularity in an explicit form about a source
enables to develop an effective algorithm of Green’s function calculation at any distance between the source point
and observation point in a circular waveguide.
PACS: 29.17 + w, 02.30.Rs, 84.40.Sr
1. INTRODUCTION
Singular and hypersingular integral equations [1]
with a kernel in the form of Green’s function are a
highly efficient apparatus of mathematical physics.
These equations are applied in problems of the mi-
crowave electronics and accelerating engineering, for
example, for calculation of electromagnetic fields in
a coaxial girotron [2], an accelerating structure of H-
type [3] and a bunch accumulator of the charged par-
ticles [4] (p.80).
Advantages of singular and hypersingular equa-
tions are connected with the use of well stipulated
matrixes providing a high accuracy and stability of
calculations. However, then the Green’s function is
to be calculated at short distances between the source
points and the observation points.
Let the accelerating structure is a system of metal
radio-frequency (rf) electrodes in a circular waveg-
uide. Then the integral equations use the electric
Green’s function of a circular waveguide for the field
Ĝe(k, r, r′) relative to the surface density of the force
of the electric current which flows only on the elec-
trode surface. Upon expansion using the system TE
and TH waves, Ĝe(k, r, r′) is described by double se-
ries which diverge. This is because Ĝe(k, r, r′) in an
implicit form includes the electric Green’s function of
unbounded space for a field ĜS
e (k, r, r′) which has sin-
gularities 1/|~r − ~r′|, 1/|~r − ~r′|2,1/|~r − ~r′|3, δ(~r − ~r′).
The problem of construction of Green’s function
for a field is solved, as a problem for diffraction of po-
tential and rotational components of a tensor spheri-
cal wave of the electric field intensity of the point cur-
rent source (a current point source is delta-shaped lo-
cation current) on the circular waveguide walls. Thus
the singularity of electric field intensity was singled
out in an explicit form about a current source that
allowed us to create an effective algorithm of electric
Green’s function calculation at any electric length of
nonhomogeneities in the circular waveguide.
The use of the Green’s function Ĝe(k, r, r′) with
an explicit singularity enables the numerical solution
of two-dimensional hypersingular integral equations
instead of the three-dimensional equations. Hyper-
singularity and two-dimensionality of the equations
can provide an increased accuracy and reduced time
of calculations respectively.
2. THE BASIC PART
2.1. ANALYTICAL RELATIONS
The Green’s electric function for a field is defined
by the formula of [5],[6]
ĜS
e (k, r, r′) =
(
Î +
1
k2
grad(r)div(r)
)
ĜE(k, r, r′),
(1)
where ĜE(k, r, r′) is the Green’s function for a vector
potential.
In case of a circular waveguide the function
Ĝe(k, r, r′) is constructed by the system TE and TH
waves in [7].
The Green’s function of a circular waveguide for
a field is obtained in the form of TE and TH waves
and in the form of superpositions
Ĝe(k, r, r′) = Ĝp
e(k, r, r′) + Ĝr
e(k, r, r′), (2)
Ĝe(k, r, r′) = ĜS
e (k, r, r′) + ĜR
e (k, r, r′), (3)
where
Ĝp
e(k, r, r′) = Ĝsp
e (k, r, r′) + ĜRp
e (k, r, r′), (4)
Ĝr
e(k, r, r′) = Ĝsr
e (k, r, r′) + ĜRr
e (k, r, r′), (5)
∗Corresponding author. E-mail address: sprijmenko@kipt.kharkov.ua
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5.
Series: Nuclear Physics Investigations (48), p.137-140.
137
ĜS
e (k, r, r′) = ĜSp
e (k, r, r′) + ĜSr
e (k, r, r′), (6)
ĜR
e (k, r, r′) = ĜRp
e (k, r, r′) + ĜRr
e (k, r, r′). (7)
Here Ĝp
e(k, r, r′) and Ĝr
e(k, r, r′) are, respectively, the
potential and rotational components of the electric
field intensity of the point current source in the cir-
cular waveguide, ĜS
e (k, r, r′) and ĜR
e (k, r, r′) are, re-
spectively, the intensity of the electric field in the un-
bounded space and of the field reflected from the walls
of the circular waveguide of the point current source;
ĜSr
e (k, r, r′) and ĜSr
e (k, r, r′) are, respectively, the
potential and rotational components of the electric
field intensity of the point current source in the un-
bounded space; ĜRp
e (k, r, r′) and ĜRr
e (k, r, r′) are, re-
spectively, the potential and rotational components
of the intensities of the electric field of the point cur-
rent source reflected from the waveguide walls. The
potential and rotational components of the electric
field intensity are stipulated by the scalar and vec-
tor potentials, respectively or by the distributions of
charges and currents in the source point.
The tensor function ĜS
e (k, r, r′) in an explicit form
describes singularities of intensity of an electric field
of a current point source. It is found 9 components
of Ĝe(k, r, r′) in the form of TE and TH waves of a
waveguide and in the form of (2)- (7).
In particular,, by the system of TE and TH waves
of a circular waveguide, Ĝe11′ (k, r, r′) is
Ĝe11′ (k, r, r′) =
+∞∑
m=−∞
+∞∑
n=−∞
eim(φ−φ′)×
(Amn
(
1− (kh
mn)2
k2
)
J ′m(kh
mnρ)J ′m(kh
mnρ′)×
fmn(z, z′) + Bmn
m2
(ke
mn)2ρρ′
Jm(ke
mnρ)×
Jm(ke
mnρ′)lmn(z, z′)) , (8)
where
Amn =
1
πJ2
m+1(ke
mnR)R2
,
Bmn =
1
πJ2
m(ke
mnR)R2
(
1− m2
(ke
mnR)2
) ,
lmn(z, z′) = e−γmn|z−z′|/2γmn ,
γmn =
√
(ke
mn)2 − k2 ,
ke
mn =
µmn
R
,
fmn(z, z′) = e−βmn|z−z′|/2βmn ,
βmn =
√
(kh
mn)2 − k2 ,
kh
mn =
νmn
R
,
γmn, µmn are the roots of the equations Jm(z) = 0
and J ′m(z) = 0, respectively, and R is the waveguide
radius.
It is shown, that
div(r⊥)ĜE(ke
mn, r⊥, r′⊥; z, z′) = 0, (9)
i. e. TE or TH waves in the circular waveguide are ro-
tational waves relative to the transverse coordinates.
The singular components of GS
e11′
(k, r, r′),
Gsp
e11′
(k, r, r′), Gsr
e11′
(k, r, r′) are described in the form
of (2-7) by the formulas
GS
e11′
(k, r, r′) = Gsp
e11′
(k, r, r′) + Gsr
e11′
(k, r, r′) , (10)
Gsp
e11′
(k, r, r′) = Gsp
exx′
(k, r, r′) cos ϕ cos ϕ′+
Gsp
eyx′
(k, r, r′) sin ϕ cos ϕ′ + Gsp
exy′
(k, r, r′)×
cos ϕ sin ϕ′ + Gsp
eyy′
(k, r, r′) sin ϕ sin ϕ′, (11)
Gsr
e11
(k, r, r′) = Gsr
exx′
(k, r, r′) cos ϕ cosϕ′+
Gsr
eyy′
(k, r, r′) sin ϕ sin ϕ′ = Gsr
E11
(k, r, r′) =
1
4π
eik|~r−~r′|
|~r − ~r′| cos(ϕ− ϕ′) , (12)
Gsp
exx′
(k, r, r′) =
1
4πk2
eik|~r−~r′|×
{
3(ρ cosϕ− ρ′ cosϕ′)2
|~r − ~r′|5 − 1
|~r − ~r′|3−
4π
3
δ(r, r′)− 3ik(ρ cosϕ− ρ′ cos ϕ′)
|~r − ~r′|4 −
k2(ρ cos ϕ− ρ′ cosϕ′)2
|~r − ~r′|3 +
ik
|~r − ~r′|2
}
, (13)
Gsr
exx′
(k, r, r′) =
1
4π
eik|~r−~r′|
|~r − ~r′| , (14)
Gsp
exy′
(k, r, r′) = Gsp
eyx′
(k, r, r′) =
1
4πk2
eik|~r−~r′|×
(ρ cos ϕ− ρ′ cos ϕ′)(ρ sin ϕ− ρ′ sin ϕ′)×{
3
|~r − ~r′|5 −
3ik
|~r − ~r′|4 −
k2
|~r − ~r′|3
}
, (15)
Gsp
eyy′
(k, r, r′) =
1
4πk2
eik|~r−~r′|×
{
3(ρ sin ϕ− ρ′ sin ϕ′)2
|~r − ~r′|5 − 1
|~r − ~r′|3−
4π
3
δ(r, r′)− 3ik(ρ sin ϕ− ρ′ sin ϕ′)2
|~r − ~r′|4 −
k2(ρ sin ϕ− ρ′ sin ϕ′)2
|~r − ~r′|3 +
ik
|~r − ~r′|2
}
, (16)
Gsr
exx′
(k, r, r′) = Gsr
eyy′
(k, r, r′) =
1
4π
eik|~r−~r′|
|~r − ~r′| , (17)
The potential GRp
e11′
(k, r, r′) and rotational
GRr
e11′
(k, r, r′) components of the regular Green’s func-
tion of a circular waveguide are in the form of (2)-(7)
GRp
e11′
(k, r, r′) =
i
8π
+∞∑
m=−∞
eim(ϕ−ϕ′)×
+∞∫
−∞
eiη(z−z′)ν2(η)
k2
J ′m(ν(η)ρ)J ′m(ν(η)ρ′)
H
(1)
m (ν(η)R)
Jm(ν(η)R)
dη ,
(18)
138
GRr
e11′
(k, r, r′) = − i
8π
+∞∑
m=−∞
eim(ϕ−ϕ′)×
+∞∫
−∞
eiη(z−z′)J ′m(ν(η)ρ)J ′m(ν(η)ρ′)
H
(1)
m (ν(η)R)
J ′m(ν(η)R)
+
m2
ν2ρρ′
Jm(ν(η)ρ)Jm(ν(η)ρ′)
H
(1)′
m (ν(η)R)
J ′m(ν(η)R)
dη . (19)
Notice, that the problem of construction of the
Green’s function for a field is solved, as a problem
of diffraction of the potential and rotational com-
ponents of the intensity of electric field divergent
spherical wave of a point current source on the circu-
lar waveguide walls. As this takes place, the potential
and rotational components correspond to the scalar
and vector potentials, respectively. We used the
representation of a spherical wave in the form of a
spectrum of non-uniform cylindrical waves diverging
in two opposite directions along the radius, i.e. the
sourcewise representation of a spherical wave in the
radial direction of [8](p.42)
2.2. NUMERICAL RESULTS
0 10 20 30 40 50
0
2
4
6
8
10
R
e
G
E1
1'
m
1
2
Fig.1. Rotational component of Green’s function
Re Gr
e11′
(k, r, r′) of a circular waveguide
(k = 12.56 m−1; R = 0.0755 m; |~r − ~r′|/λ = 0, 02)
The algorithm of calculation of Ĝe(k, r, r′) in the
form of TE and TH waves of a circular waveguide
and in the form of (2)- (7) is developed. Singulari-
ties of the tensor Green’s function are singled out in
an explicit form for representation of (2)- (7). The
efficiency of calculations of Ĝe(k, r, r′) in the form of
(2)- (7) is illustrated by the plots in Fig.1-4.
The real part of the rotational component
Re Gr
e11′
(k, r, r′) of the Green’s function and its
derivative ∂ReGr
e11′
(k, r, r′)/∂x1 (x1 is the radial
coordinate) for the cutoff circular waveguide ver-
sus the number of an azimuthal harmonic m is
shown in Fig.1 and Fig.3 for k = 12.56 m−1;
R = 0.0755 m; ρ = 0.07 m; ρ′ = 0, 08 m; z = z′;
ϕ = ϕ′; |~r − ~r′|/λ = 0, 02, and in Fig.2 and Fig.4
for k = 12, 56 m−1; R = 0, 0755 m; ρ = 0.07 m;
ρ′ = 0.08 m; z = z′; ϕ = ϕ′ + π; |~r − ~r′|/λ = 0.26.
10 20 30 40 50
-0,8
-0,6
-0,4
-0,2
0,0
0,2
0,4
R
e
G
E1
1/
m
1
2
Fig.2. Rotational component of Green’s function
Re Gr
e11′
(k, r, r′) of a circular waveguide
(k = 12.56 m−1; R = 0.0755 m; |~r − ~r′|/λ = 0, 26)
0 10 20 30 40 50
0
400
800
1200
1600
2000
d(
R
e
G
E
11
/)/
dx
1
m
1
2
Fig.3. Rotational component of Green’s function
Re∂Gr
e11′
(k, r, r′)/∂x1 of a circular waveg-
uide (k = 12.56m−1; R = 0.0755m; |~r −
~r′|/λ = 0, 2)
0 10 20 30 40 50
-120
-80
-40
0
40
80
d(
G
E
11
/)/
dx
1
m
1
2
Fig.4. Rotational component of Green’s function
Re∂Gr
e11′
(k, r, r′)/∂x1 of a circular waveg-
uide (k = 12.56m−1; R = 0.0755m; |~r −
~r′|/λ = 0, 26)
The cases when the singularity is singled out and
not singled out are described by curves 1 and 2 re-
spectively. As follows from Fig.1-4 curves of 1 flat-
tens out at m > 20 as for ReGr
e11′
(k, r, r′) and for a
derivative of ∂ReGr
e11′
(k, r, r′)/∂x1., i.e. series con-
verges good at m > 20. Week oscillations take place
for curves of 2 at m > 20 for Re Gr
e11′
(k, r, r′) , i.e.
series converges worse than for curves of 1. A siz-
able oscillations take place for curves of 2 at m > 20
for a derivative of ∂ReGr
e11′
(k, r, r′)/∂x1, i.e. series
diverge.
139
3. CONCLUSIONS
For the first time the problem of construction of
Green’s function for a field is solved as a problem
of diffraction of potential and rotational parts of the
electric field intensity of a point current source on
circular waveguide walls.
The potential and rotational components of the
electric field intensity are conditioned by the scalar
and vector potentials or distributions of a charge and
a current, respectively, in the source point.
By singling out the singularity of the electric field
intensity in an explicit form about of a source it is
possible to develop the effective algorithm of calcu-
lation of the electric Green’s function at any electric
length of nonhomogeneities in a circular waveguide.
REFERENCES
1. S.O. Dovgij, I.K. Lifanov. A method of singu-
lar integral equations. Theory and an application
// Kyiv: ” Naukova dumka”, 2004, 510 p. (in
Ukrainian).
2. J.V. Gandel’, G.I. Zaginajlov, S.A. Steshenko.
The rigorous electrodynamic analysis of cavity
systems of coaxial girotrons // Journal of techni-
cal physics. 2004, v.74, N.7, p.81-89. (in Russian).
3. S.D. Prijmenko, N.A. Khizhnyak. To calculation
of electrodynamical characteristics of the H-type
accelerating structure // Radiotechniques. 2001,
N117, p.85-87.
4. R.S. Dikanskij, D.V. Pestrikov. Physics of inten-
sive bunches in stores // Novosibirsk: ”Nauka”,
Sib. Branch, 1989, 336 p. (in Russian).
5. H. Levin, J. Schwinger. On the theory of electro-
magnetic wave diffraction by an aperture in an
infinite plane conducting screen // Communica-
tion on pure and appl. Mathematics. 1950, v.3,
p.355-368.
6. C. Tai, P. Rozenfeld. Different representation of
dyadic Grren’s functions for a rectangular cavity
// IEEE Trans. Microwave Theory Tech. 1976,
v.24, p.597-601.
7. S.D. Prijmenko, V.G. Papkovich, N.A. Khizh-
nyak. Electric tensor Green’s functions of cylin-
drical waveguides. // The review. M.: Atomin-
form. 1988, 27 p. (in Russian).
8. G.T. Markov , E. N. Vasil’ev Mathematical meth-
ods of applied electrodynamics //”Sov. Radio”.
1970, 120 p. (in Russian).
ИСТОКООБРАЗНАЯ ФУНКЦИЯ ГРИНА КРУГЛОГО ВОЛНОВОДА
С.Д. Прийменко, Л.А. Бондаренко
Cингулярная часть функции Грина круглого волновода в форме функции Грина неограниченного
пространства выделена в явном виде и содержит все особенности, включая дельта-образную особен-
ность. Задача построения функции Грина для поля решена как задача дифракции потенциальной и
вихревой частей напряженности электрического поля точечного источника тока на стенках круглого
волновода. Выделение особенности напряженности электрического поля в явном виде в окрестности
источника позволило разработать эффективный алгоритм расчета электрической функции Грина при
произвольном расстоянии между точками источника и наблюдения в круглом волноводе.
ДЖЕРЕЛОПОДIБНА ФУНКЦIЯ ГРIНА КРУГЛОГО ХВИЛЕВОДУ
С.Д. Прийменко, Л.О.Бондаренко
Ciнгулярна частина функцiї Грiна круглого хвилеводу у формi функцiї Грiна необмеженого про-
стору видiлена в явному виглядi й мiстить всi особливостi, включаючи дельта-подiбну особливiсть.
Задача побудови функцiї Грiна для поля розв’яза як задача дифракцiї потенцiйної й вихрової частин
напруженостi електричного поля крапкового джерела струму на стiнках круглого хвилеводу. Видi-
лення особливостi напруженостi електричного поля в явному виглядi в околицi джерела дозволило
розробити ефективний алгоритм розрахунку електричної функцiї Грiна при довiльнiй вiдстанi мiж
крапками джерела й спостереження в круглому хвилеводi.
140
|