Modelling of Maxwell’s equations using uniform finite elements
The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform trial functions is developed. The proposed scheme is tested in...
Збережено в:
Дата: | 2003 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2003
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/110484 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Modelling of Maxwell’s equations using uniform finite elements / V.E. Moiseenko // Вопросы атомной науки и техники. — 2003. — № 1. — С. 82-84. — Бібліогр.: 1 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110484 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1104842017-01-05T03:02:53Z Modelling of Maxwell’s equations using uniform finite elements Moiseenko, V.E. Basic plasma physics The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform trial functions is developed. The proposed scheme is tested in cylindrical geometry and compared with the numerically stable Galerkin scheme. The tests show the evidence of numerical stability of the scheme proposed. The convergence is monotonic and corresponds to the order of approximation. It is demonstrated that, unlike the Galerkin scheme, the scheme proposed is much less sensitive to the stiffness of the Maxwell’s equations in plasma. В роботі подана теорія числової стійкості схем зважених нев’язок, що застосовані до рівнянь Максвела з виключеним магнітним полем. На її основі розроблена чисельно стійка схема, яка використовує фізичні компоненти електричного поля та однорідні пробні функції. Для цієї схеми проведено тестування у порівнянні зі схемою Гальоркіна. Воно підтвердило числову стійкість запропонованої схеми. Аналіз збігання показав, що воно є монотонне і відповідне до порядку апроксимації. Тестові розрахунки продемонстрували, що в порівнянні зі схемою Гальоркіна запропонована схема є суттєво менш чуйною до жорсткості рівнянь Максвела в плазмовому середовищі. В работе представлена теория численной устойчивости схем взвешенных невязок применительно к уравнениям Максвелла с исключенным магнитным полем. На ее основе разработана численно устойчивая схема, использующая физические компоненты электрического поля и однородные пробные функции. Для этой схемы проведено тестирование в сравнении со схемой Галеркина. Оно подтвердило численную устойчивость предложенной схемы. Анализ сходимости показал, что она является монотонной и соответствует порядку аппроксимации. Тестовые расчеты продемонстрировали, что по сравнению со схемой Галеркина предложенная схема значительно менее чувствительна к жесткости уравнений Максвелла в плазменной среде. 2003 Article Modelling of Maxwell’s equations using uniform finite elements / V.E. Moiseenko // Вопросы атомной науки и техники. — 2003. — № 1. — С. 82-84. — Бібліогр.: 1 назв. — англ. 1562-6016 PACS: 52.25.-b http://dspace.nbuv.gov.ua/handle/123456789/110484 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Basic plasma physics Basic plasma physics |
spellingShingle |
Basic plasma physics Basic plasma physics Moiseenko, V.E. Modelling of Maxwell’s equations using uniform finite elements Вопросы атомной науки и техники |
description |
The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform trial functions is developed. The proposed scheme is tested in cylindrical geometry and compared with the numerically stable Galerkin scheme. The tests show the evidence of numerical stability of the scheme proposed. The convergence is monotonic and corresponds to the order of approximation. It is demonstrated that, unlike the Galerkin scheme, the scheme proposed is much less sensitive to the stiffness of the Maxwell’s equations in plasma. |
format |
Article |
author |
Moiseenko, V.E. |
author_facet |
Moiseenko, V.E. |
author_sort |
Moiseenko, V.E. |
title |
Modelling of Maxwell’s equations using uniform finite elements |
title_short |
Modelling of Maxwell’s equations using uniform finite elements |
title_full |
Modelling of Maxwell’s equations using uniform finite elements |
title_fullStr |
Modelling of Maxwell’s equations using uniform finite elements |
title_full_unstemmed |
Modelling of Maxwell’s equations using uniform finite elements |
title_sort |
modelling of maxwell’s equations using uniform finite elements |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2003 |
topic_facet |
Basic plasma physics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110484 |
citation_txt |
Modelling of Maxwell’s equations using uniform finite elements / V.E. Moiseenko // Вопросы атомной науки и техники. — 2003. — № 1. — С. 82-84. — Бібліогр.: 1 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT moiseenkove modellingofmaxwellsequationsusinguniformfiniteelements |
first_indexed |
2025-07-08T00:39:33Z |
last_indexed |
2025-07-08T00:39:33Z |
_version_ |
1837037177465208832 |
fulltext |
MODELLING OF MAXWELL’S EQUATIONS USING UNIFORM FINITE
ELEMENTS
V.E. Moiseenko
Institute of Plasma Physics, National Science Center "Kharkov Institute of Physics and
Technology", 61108 Kharkov, Ukraine
The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric
field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform
trial functions is developed. The proposed scheme is tested in cylindrical geometry and compared with the numerically
stable Galerkin scheme. The tests show the evidence of numerical stability of the scheme proposed. The convergence is
monotonic and corresponds to the order of approximation. It is demonstrated that, unlike the Galerkin scheme, the
scheme proposed is much less sensitive to the stiffness of the Maxwell’s equations in plasma.
PACS: 52.25.-b
INTRODUCTION
The Maxwell’s equations in terms of electric field are
degenerate. This is the origin of problems for solving
them numerically. However, the numerically stable finite
element Galerkin schemes are developed (see [1]) and
used in practice. The differs from standard finite element
schemes by the following:
for different components of electric field, the finite
elements of different order should be used;
in curvilinear geometry, not physical, but covariant
components of electric field should be discretized.
For example, in cylindrical geometry with
discretization in the radial direction only, the test and trial
functions that are conjugate each to other for Galerkin
method are ( ))()()1( ,/, s
z
ss
r eree ΛΛΛ −
ϕ , where Λ is
the finite element (hat) function, s is the finite element
order. The discretized components of the electric field are
( )zr ErEE ,, ϕ .
In ion cyclotron range of frequencies (ICRF) the
dielectric response of plasma depends strongly on the
direction of steady magnetic field. First, the dielectric
response is much higher for the component of electric
field parallel to the steady magnetic field. Second, under
condition of the fundamental cyclotron resonance the
plasma response is substantially different for left and right
polarized electric field components and, only left
polarized component provides the cyclotron damping.
For numerical calculations, these features introduce
some kind if stiffness. To treat it correctly it is good to
use left polarized, right polarized and parallel to the
steady magnetic field components of electric field. This
would be possible if the physical components of electric
field are used and, all of them could be discretized with
the same finite elements. But, this is not possible in the
framework of the above-mentioned numerically stable
Galerkin approach.
WEIGHED RESIDUALS SCHEME
Consider the linear eigenvalue problem for Maxwell’s
equations:
E
c
E
⋅=×∇×∇ εω ˆ
2
2
, (1)
with 2ω as an eigenvalue and assume no dependence on
ω in the dielectric tensor ε̂ . This problem has a multiple
eigenvalue 02 =ω . To provide the numerical stability this
multiple eigenvalue should be reproduced in discretized
equations too [1]. In other words, for 02 =ω the
discretized system should be degenerate at least iN
times. Here bi NNN −= is the number of internal mesh
nodes, N is the total number of mesh nodes and, bN is
the number of nodes at the boundary of the domain. In the
framework of the weighted residuals approach the
discretization is made integrating the equations with test
functions. For internal mesh nodes and 02 =ω this
integration reads:
( ) 0=×∇⋅×∇=
=×∇×∇⋅
∫
∫
dVEef
dVEef
kk
kk
, (2)
where kf are the test functions, ke is the unit vector, i is
the index enumerating the test functions. The requirement
of the degeneration of the equation set (2) could be
written as following:
0, =×∇⋅
×∇∫ ∑ dVEefC
k
kkki
, (3)
where kiC , are the constants. Since equation (3) should be
met for different E
, the left term in scalar product must
be zero:
0, =
×∇ ∑
k
kkki efC
, (4)
or
i
k
kkki efC Φ∇=∑
, . (5)
Here iΦ , the generating function is introduced. Since our
consideration relates to Galerkin method too, its functions
should satisfy the equation (5). In fact, this is met. For
example, for one-dimensional cylindrical problem with
lowest order finite elements the finite element functions
are
ziii
iii
riii
eGef
reGef
eGef
)1(
33
)1(
2)1(32)1(3
)0(
2/11)1(31)1(3
,/
,
Λ=
Λ=
Λ=
+−+−
−+−+−
ϕ (6)
with )exp( zikimG z−−= ϕ . Here index i enumerates
mesh nodes, )0(
2/1−Λ i is the finite element of zero order
(piecewise constant function that is unity at the segment (
82 Problems of Atomic Science and Technology. 2003. № 1. Series: Plasma Physics (9). P. 82-84
ii rr ,1− ) and zero outside), )1(
iΛ is the first order finite
element (hat) function. The generating function is
Gii
)1(Λ=Φ . (7)
The explicit form of equation (5) for such functions is the
following:
iiizii
ii
ii
ii
ii
efikeimf
rr
ef
rr
ef
Φ∇=−−
−
−
−
−
+−+−
−
+−+−
+
++
332)1(32)1(3
1
1)1(31)1(3
1
1313
. (8)
Formula (5) restricts the choice of test functions and
tells nothing on trial ones. Therefore, taking an advantage
from this freedom, it is possible to use physical
components of electric field vector and represent them by
uniform finite element functions keeping test functions
the same as in Galerkin method.
NUMERICAL EXPERIMENTS
In this section we compare the numerically stable
Galerkin method and the method proposed, weighted
residuals method with uniform trial functions
(WRMUTF). For simplicity we use first order numerical
scheme in cylindrical geometry. For Galerkin method test
functions are represented by formulas (6). Trial functions
are conjugate. For WRMUTF, the test functions are the
same as for Galerkin method. The trial functions are
simply first order finite elements:
*)1()(
)1(3 Gf i
T
ji Λ=+− , (9)
where 3,2,1=j and star means conjugation. For radial
component of electric field the number of test functions is
less by one than the number of trial functions. Thus, one
more equation is necessary to make the discretized system
complete. There are a number of possibilities to do this.
We choose the simplest one providing the regularity
condition at the axis:
0=+ ϕipEEr (10)
with
≠
=
=
1,0
1,
mif
mifm
p .
We study the eigenvalue problem (1) with the
dielectric tensor modeling cold plasma in magnetic field
directed along z -axis
−= ⊥
⊥
//00
0
0
ˆ
ε
ε
ε
ε ig
ig
(11)
with the components having the parabolic radial
dependence. The ideally conducting metallic wall is
positioned at wrr = .
The example of the calculations is shown at Fig.1.
This is the eigenmode of fast magnetosonic wave with the
frequency higher than ion cyclotron. The parameters of
the calculation are the following: 0.100−=⊥ε ,
0.210−=g , 6
// 10−=ε , cmrw 10= , 3−=m ,
103.0 −= cmkz . The eigenvalue found is
-1c.172242256186933=eigω .
0 2 4 6 8 10
r [cm]E
[a
rb
. u
ni
ts
]
ImE
ReE
r
φ
Fig.1. Distribution of rEIm and ϕERe in plasma
column. All other components of electric field are
negligibly small
The convergence curves, the dependence of relative error in
frequency eigω on the number of mesh nodes, for both
methods are shown in Fig.2. Both curves are the straight lines
in logarithmic scale. This is the evidence of uniform
convergence and absence of any numerical pollution. The
slope of curves is almost the same meaning the same order of
approximation. But WRMUTF has smaller level of the
numerical error. We notice this feature in all our calculations.
This could be explained by better approximation of rE
component of the electric field and by the absence of artificial
singularities in equations that appear with introduction of ϕrE
as a quantity.
The example of calculations shown does not exhibit the
above-mentioned stiffness of Maxwell’s equations in plasma.
Since the axis of the dielectric tensor is z -axis the parallel
component of electric field coincide with the unit vector of
cylindrical geometry. Besides, the components of dielectric
tensor g+= ⊥+ εε and g−= ⊥− εε are of the same order.
10 100 1000
N
1E-5
1E-4
1E-3
1E-2
δ
WRMUTF
Galerkin
Fig.2. Relative error in eigω
eig
eig
N
eig
ω
ωω
δ
−
=
)(
as a
function of number of mesh points
83
0 2 4 6 8 10
r [cm]E
[a
rb
. u
ni
ts
]
ImE
ReE
r
φ
Fig.3. Distribution of rEIm and ϕERe in plasma
column for the eigenmode with dominantly non-hermitian
dielectric tensor
10 100 1000
N
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
1E+1
δ
WRMUTF
Galerkin
Galerkin
WRMUTF
Fig.4. Relative error in eigωRe and eigωIm as a function
of number of mesh points
To introduce the stiffness we add a big imaginary part
to the +ε component of the dielectric tensor 410i=+δ ε .
This corresponds to the case of fundamental cyclotron
resonance. Under this condition the eigenmode of fast
magnetosonic wave has almost right–polarized electric
field (see Fig.3) and, its cyclotron damping is small.
Indeed, the eigenvalue found
-1c6168439)i5736613.7-.789892005382553(=eigω has
the imaginary part small compared with the real part
regardless that non-hermitian part in dielectric tensor is
dominant.
Fig.4 displays the convergence curves for real and
imaginary part of eigenvalue. The curves for real part of
frequency are similar to those ones of Fig.2 except that
the difference between Galerkin method and WRMUTF
becomes larger. The convergence in imaginary part of
frequency is also uniform but figures of relative error for
Galerkin method are inadmissibly high. WRMUTF
demonstrates excellent convergence. The accuracy in this
calculation is even better than in previous one. So, the
introduction of stiffness has slight influence on
WRMUTF.
CONCLUSIONS
We introduced and tested weighted residuals method
with uniform trial functions (WRMUTF). As well as the
Galerkin method that is frequently used for discretization
of Maxwell’s equations in terms of electric field, it is
numerically stable. It is more efficient than Galerkin
method when the stiffness pertinent to Maxwell’s
equations in plasma is important. It is more comfortable
because all the components of electric field are
represented uniformly. Technically it is similar to the
Galerkin method and could be used in all cases in which
the Galerkin method could.
REFERENCE
[1] R.Gruber and J.Rappaz Finite Element Methods in
Linear Ideal Magnetohydrodynamic Springer-Verlag,
Berlin, 1985.
МОДЕЛЮВАННЯ РІВНЯНЬ МАКСВЕЛА З ВИКОРИСТАННЯМ ОДНОРІДНИХ
СКІНЧЕНИХ ЕЛЕМЕНТІВ
В.Є. Моісеєнко
В роботі подана теорія числової стійкості схем зважених нев’язок, що застосовані до рівнянь Максвела з
виключеним магнітним полем. На її основі розроблена чисельно стійка схема, яка використовує фізичні компоненти
електричного поля та однорідні пробні функції. Для цієї схеми проведено тестування у порівнянні зі схемою
Гальоркіна. Воно підтвердило числову стійкість запропонованої схеми. Аналіз збігання показав, що воно є монотонне і
відповідне до порядку апроксимації. Тестові розрахунки продемонстрували, що в порівнянні зі схемою Гальоркіна
запропонована схема є суттєво менш чуйною до жорсткості рівнянь Максвела в плазмовому середовищі.
МОДЕЛИРОВАНИЕ УРАВНЕНИЙ МАКСВЕЛЛА С ИСПОЛЬЗОВАНИЕМ ОДНОРОДНЫХ
КОНЕЧНЫХ ЭЛЕМЕНТОВ
В.Е. Моисеенко
В работе представлена теория численной устойчивости схем взвешенных невязок применительно к
уравнениям Максвелла с исключенным магнитным полем. На ее основе разработана численно устойчивая
схема, использующая физические компоненты электрического поля и однородные пробные функции. Для этой
схемы проведено тестирование в сравнении со схемой Галеркина. Оно подтвердило численную устойчивость
предложенной схемы. Анализ сходимости показал, что она является монотонной и соответствует порядку
аппроксимации. Тестовые расчеты продемонстрировали, что по сравнению со схемой Галеркина предложенная
схема значительно менее чувствительна к жесткости уравнений Максвелла в плазменной среде.
84
INTRODUCTION
NUMERICAL EXPERIMENTS
CONCLUSIONS
REFERENCE
|