Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing
It is shown, that in electromagnetic plasma lenses moment aberrations obey the conservation law of the moment of the ion generalized momentum; they disappear when an ion source is placed in a zero magnetic field. Geometrical aberrations can be removed by choice of the optimal electric field intensit...
Gespeichert in:
Datum: | 2003 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2003
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/110539 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing / V.I. Butenko, B.I. Ivanov // Вопросы атомной науки и техники. — 2003. — № 1. — С. 121-124. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110539 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1105392017-01-05T03:03:50Z Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing Butenko, V.I. Ivanov, B.I. Plasma electronics It is shown, that in electromagnetic plasma lenses moment aberrations obey the conservation law of the moment of the ion generalized momentum; they disappear when an ion source is placed in a zero magnetic field. Geometrical aberrations can be removed by choice of the optimal electric field intensity distribution along the radius that have been calculated. As a result, the ion current density and beam compression can achieve in the focus a value up to 10³ A/cm², and 10⁵, accordingly. Then influence of discrete distribution of the external (boundary) electrical potential upon ion focusing was studied, and an example of two-lens achromatic system have been investigated as well. Досліджується плазмова лінза Морозова, у котрої магнітні поверхні є еквіпотенціалями електричного поля. Магнітне поле створюється центральним струмовим витком і двома бічними витками, включеними назустріч центральному. У роботі приведені результати комп'ютерного моделювання фокусування іонів з урахуванням їх поздовжнього, радіального й азимутального руху. Розглянуто засоби усунення моментних, геометричних і хроматичних аберацій. Проводиться оптимізація магнітного й електричного полів по величині і розподілу в просторі. Промодельоване вплив дискретного розподілу потенціалу на фокусування іонів і розглянуті пов'язані з цим аберації. Розглянуто комп'ютерну модель двухлінзової ахроматичної системи. Исследуется плазменная линза Морозова, в которой магнитные поверхности являются эквипотенциалями электрического поля. Магнитное поле создается центральным токовым витком и двумя боковыми витками, включенными навстречу центральному. В работе приведены результаты компьютерного моделирования фокусировки ионов с учетом их продольного, радиального и азимутального движения. Рассмотрены способы устранения моментных, геометрических и хроматических аберраций. Проводится оптимизация магнитного и электрического полей по величине и распределению в пространстве. Промоделировано влияние дискретного распределения потенциала на фокусировку ионов и рассмотрены связанные с этим аберрации. Рассмотрена компьютерная модель двухлинзовой ахроматической системы. 2003 Article Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing / V.I. Butenko, B.I. Ivanov // Вопросы атомной науки и техники. — 2003. — № 1. — С. 121-124. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 52.40.Mj http://dspace.nbuv.gov.ua/handle/123456789/110539 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Plasma electronics Plasma electronics |
spellingShingle |
Plasma electronics Plasma electronics Butenko, V.I. Ivanov, B.I. Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing Вопросы атомной науки и техники |
description |
It is shown, that in electromagnetic plasma lenses moment aberrations obey the conservation law of the moment of the ion generalized momentum; they disappear when an ion source is placed in a zero magnetic field. Geometrical aberrations can be removed by choice of the optimal electric field intensity distribution along the radius that have been calculated. As a result, the ion current density and beam compression can achieve in the focus a value up to 10³ A/cm², and 10⁵, accordingly. Then influence of discrete distribution of the external (boundary) electrical potential upon ion focusing was studied, and an example of two-lens achromatic system have been investigated as well. |
format |
Article |
author |
Butenko, V.I. Ivanov, B.I. |
author_facet |
Butenko, V.I. Ivanov, B.I. |
author_sort |
Butenko, V.I. |
title |
Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing |
title_short |
Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing |
title_full |
Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing |
title_fullStr |
Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing |
title_full_unstemmed |
Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing |
title_sort |
aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2003 |
topic_facet |
Plasma electronics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110539 |
citation_txt |
Aberrations in electromagnetic plasma lenses proposed for intense large-aperture ion beam focusing / V.I. Butenko, B.I. Ivanov // Вопросы атомной науки и техники. — 2003. — № 1. — С. 121-124. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT butenkovi aberrationsinelectromagneticplasmalensesproposedforintenselargeapertureionbeamfocusing AT ivanovbi aberrationsinelectromagneticplasmalensesproposedforintenselargeapertureionbeamfocusing |
first_indexed |
2025-07-08T00:43:19Z |
last_indexed |
2025-07-08T00:43:19Z |
_version_ |
1837037414928875520 |
fulltext |
ABERRATIONS IN ELECTROMAGNETIC PLASMA LENSES PROPOSED
FOR INTENSE LARGE-APERTURE ION BEAM FOCUSING
V.I. Butenko, B.I. Ivanov
NSC KIPT, Kharkov, 61108, Ukraine (E-mail: butenko@kipt.kharkov.ua)
It is shown, that in electromagnetic plasma lenses moment aberrations obey the conservation law of the moment of
the ion generalized momentum; they disappear when an ion source is placed in a zero magnetic field. Geometrical aber-
rations can be removed by choice of the optimal electric field intensity distribution along the radius that have been cal-
culated. As a result, the ion current density and beam compression can achieve in the focus a value up to 103 A/cm2 , and
105 , accordingly. Then influence of discrete distribution of the external (boundary) electrical potential upon ion focus-
ing was studied, and an example of two-lens achromatic system have been investigated as well.
PACS: 52.40.Mj
1. INTRODUCTION
The problems of intense ion beam focusing are
important for the controlled fusion, nuclear physics, beam
technologies, etc. [,]. The essential feature of intense ion
beams is that they should be charge compensated during
the focusing to prevent their destruction. In this case, the
application of plasmaoptic focusing systems which
development is initiated by A.I. Morozov and co-workers
[-, 8] and recently mainly developed by A.A. Goncharov
group [–] is expedient.
In the plasma lens of Morozov type the magnetic sur-
faces are the equipotentials of the electrical field. In prac-
tice the electrical potentials are entered in plasma by a
discrete manner, using "basic" ring electrodes. The exper-
imental researches [–7] confirm the theoretical model [-,
8] but some problems remain, in particular, aberrations
and methods of their elimination. For this aim, computer
modeling of plasma-optic focusing devices is considered
in the proposed paper.
2. THE PROBLEM DEFINITION, MAIN
EQUATIONS
Following [], we enter function of a magnetic flow:
( ) ( )zrrAzr ,, ϕ=Ψ , (1)
where Aϕ is the azimuth component of vector potential.
The equation of magnetic surfaces have the form:
constrA =ϕ . (2)
The connection between Ψ(r, z) and magnetic flow Ν
passing through cross-section (r,z) is (see []):
Ψ==⋅=Ν ∫ ππ ϕ 2),(2 zrrAdSnH
S
(3)
In a Morozov lens equipotentiality of magnetic sur-
faces is determined by a relation [-]
( ) ( )Ψ=Φ Fzr , (4)
where Φ is a potential of an electric field.
Let's express components of an electric and magnetic
fields through Ψ:
zr
B r ∂
Ψ∂−= 1
rr
B z ∂
Ψ∂= 1
(5)
zr B
d
dFr
rd
dF
r
E
Ψ
−=
∂
Ψ∂
Ψ
−=
∂
Φ∂−= (6)
rz B
d
dFr
zd
dF
z
E
Ψ
=
∂
Ψ∂
Ψ
−=
∂
Φ∂−= . (7)
Substituting these expressions in the equations of par-
ticle motion in the form of Newton, with account of
Lorentz force, we have:
r
V
d
dFrV
crmr
q
dt
dVr
21 ϕ
ϕ +
Ψ
−
∂
Ψ∂= (8)
r
VV
r
V
z
V
mcr
q
dt
dV r
rz
ϕϕ −
∂
Ψ∂+
∂
Ψ∂−= (9)
−
Ψ∂
Ψ∂−= ϕV
cd
dFr
zmr
e
dt
dV z 1
(10)
In experimental works [–] the configuration of a mag-
netic field with counter connection of solenoids is pro-
posed, that allows to locate basic electrodes near to the
central plane of a lens. In the given work the lens is simu-
lated by three coils with opposite currents. The central
coil is located at z = 0, lateral ones at z=±5.0 cm. In the
central part of the lens (-2.8 cm < z < 2.8 cm) the poten-
tials of basic ring electrodes are applied to magnetic sur-
faces, and the magnetic surfaces at the left and right of the
central area are considered as grounded.
The magnetic field of a ring current Jn (at radius of a
coil aс and coordinate l on an axis z) is described by az-
imuth component of vector potential:
−−= )()()21(4 2
, nn
nc
n
n
n kEkKk
r
a
ck
JAϕ (11)
22
2
)()(
4
nc
c
n lzra
rak −++=
where c is the light velocity, K and E are the complete el-
liptic integrals of 1-st and 2 kind, n is a ring number. The
sum field is ∑=
n
nAA ,ϕϕ
Further we used the case of Jcenter=-1.5Jside. The equipoten-
tial surfaces topography is presented in Fig. 1.
Fig. 1. (1-central coil, 2-side coils, 3-electrodes)
3. MOMENT ABERRATIONS
Computer modeling and analysis of ion trajectories,
carried out in [], show that along the calculated ion trajec-
tory, the conservation law for the ion moment of the gen-
eralized momentum, and the conservation law for the total
ion energy are both satisfied to within five significant
decimal digits.
Problems of Atomic Science and Technology. 2003. № 1. Series: Plasma Physics (9). P. 121-124 121
mailto:butenko@kipt.kharkov.ua
If we are interested not by trajectories but only condi-
tions at which moment aberrations are negligible, they
can be obtained directly from the initial equations. To this
effect, the equation of azimuth motion (9) after some
transformations can present as:
dt
d
c
q
dt
rVd
m Ψ−=ϕ )(
, (12)
whence follows the conservation law for the moment Μϕ
of the generalized momentum of a particle Pϕ:
( ) constcqAmVrrP =+==Μ ϕϕ /ϕϕ . (13)
With account of (3), it is follows from (12), that for
Morozov axysimmetric static lenses the Busch theorem
is valid as well as for vacuum magnetic ones:
000 22
Ν+=Ν+ ϕϕ mc
qVr
mc
qrV
ππ
, (14)
where Ν corresponds to a magnetic flow which is passing
through a circle of radius r, on which at the given moment
of time there is a particle. Functions Ν(r,z) and Ψ(r, z)
can be measured with help of the electromagnetic induc-
tion law and suitable diagnostics.
As follows from (13), (14), in order for a parallel par-
ticle beam to be focused into the focal point of a lens, it
suffices that the initial azimuth velocities of the particles
be zero and that the magnetic field vanish in the injection
region and in the focal plane. The lenses used in of [5–7]
satisfy these conditions. Further we can consider mini-
mization of geometrical aberrations.
4. GEOMETRICAL ABERRATIONS AT CON-
TINUOUS DISTRIBUTION OF POTENTIAL
4.1. PARALLEL BEAM FOCUSING
Initial conditions of particle injection in a lens are:
at t = 0 - Vz = V0, Vr = Vϕ = 0, z = zi, r = ri, (15)
where zi is the injector coordinate, ri is the radius at which
an ion is injected; ri is varied from zero to a value some-
what smaller than the radius R of the basic electrodes,
which, in turn, is smaller than the radius ac of the current-
carrying coils.
The calculations of ions trajectory were made at pa-
rameters comparable to the Kiev lens [–]: energy of pro-
tons W=20 keV, initial beam radius r0=3.5 cm, beam is
parallel, radii of current rings ra=6.5 cm, coordinate of
protons injector zi=-30 cm, current of protons 1 A.
The distribution of potential 2)0,( rr ∝Φ is applied to
minimization geometrical aberrations in [5]. But, as it is
shown in [10], at focusing large-aperture beams it does
not give satisfactory results. In works [-] the distribution
Φ∝Ψ is considered also. In Fig. 2 at distribution Φ = KrA
ϕ, where K = 4.8⋅10-4 V/Gs cm2 the trajectories of protons
are submitted. Thus maximal density of a current of pro-
tons reaches only 5 A/cm2 at zf =17.5 cm.
r, cm
1.510.50
j,
A
/c
m
^2
4
3
2
1
0
Fig. 2.
For reduction geometrical aberrations we will set the
optimized distribution of potential on radius (in GS) as
polynomial in which denominate factors are picked up
such that the focusing will be best:
Φ(r,0) = 0.75 r 2 – 0.0143 r 4 + 0.00014 r 6 (16)
For this case the trajectories of protons and distribution of
current density of protons on radius in focal plane are cal-
culated. As a result of optimization the current density has
increased up to 9 kA/cm2 (see Fig. 3), and compression
factor of a beam (i.e., ratio between initial current density
to final) - up to 3.6·105. In work [] best focusing (with
compression factor about 30 at a total ion current 0.24 А)
was experimentally obtained at distribution of potential
proportional to intensity of a longitudinal magnetic field
on the lens axis.
r, cm
0.020.0150.010.005
j,
A
/c
m
^2
8,000
6,000
4,000
2,000
0
Fig. 3.
For such distribution the trajectories of protons and cur-
rent density distribution on radius in focal plane have
been modeling by us. In this case the current density in
focus Jmax=4.2 A/cm2 is obtained at average beam radius
0.5 cm and compression factor about 50. These values
considerably concede the calculated results, see above.
4.2. FOCUSING OF IONS EMERGING FROM
POINT SOURCE
As an example, it have been simulated the focusing of
protons emerging from a point source at zi = -30 cm.
Beam divergence is 0.1 rad, so at the lens center the beam
radius not exceeds 3.0 cm. Optimum distribution of po-
tential is Ф (r, 0) =1.20r2-0.0180r4+0.000228r6. The tra-
jectories of protons and current density in focal plane zf =
27.18 cm are designed up to 75 кА/cm2 at the spot aver-
age radius 0.002 cm (see Fig.4). So, in this case spherical
aberrations are negligible (see also [2]).
Fig. 4.
122
5. GEOMETRICAL ABERRATIONS AT
DISCRETE DISTRIBUTION OF FOCUSING
POTENTIALS
Till now in calculations we accepted continuous distri-
bution of potential on coordinates. As against it, in experi-
ments [–] potentials in plasma are entered with the help of
finite number (5 or 9) cylindrical electrodes.
Let's consider a case of 9-electrode lens, that corre-
sponds to the preset of 6 discrete values of potential on
half of lens (6-th potential corresponds to zero potential
on an axis). If these 6 values to set on the optimized curve
corresponded to Fig. 3, and then to smooth by the splines,
the satisfactory concurrence of these curves will turn out.
However in experiments the electrodes of finite length
specifying step distribution of potential were applied
which in plasma smoothed out. Characteristics of this
smoothing are not yet investigated experimentally. In cal-
culations this smoothing was simulated by B-splines of 3-
rd order, and the degree of smoothing was defined by a
ratio of an effective length of electrodes and an effective
gap between them. At the effective gap between elec-
trodes of 2 mm (that is close to the real experimental val-
ue) the distribution with smoothed stairs is obtained (Fig.
5). The trajectories of protons which correspond to this
case are submitted on Fig. 6 and current density in the fo-
cus region on Fig. 7. Current density (about 0.1 A/cm2)
and half width of a focal spot (about 1 cm) under the or-
der coincide with the experimental results [–]. In this case
because of step distribution of potential in plasma bad fo-
cusing of a beam takes place. The current density (∼
0.3 A/cm2) and the focal spot half length (∼1 cm, see Fig.
7) are correspond to the experimental results by the order of
the values. More details for this problem see in [11].
z, cm
2.521.510.50
Φ
,
G
S
8
7
6
5
4
3
2
1
Fig. 5.
z, cm
26242220181614121086420
r,
cm
6
4
2
0
Fig. 6.
r, cm
21.510.50
j,
A
/c
m
^2
0.3
0.2
0.1
0
Fig. 7.
6. CHROMATIC ABERRATIONS
Accordingly to [4], in Fig. 8 it is presented the system
of two Morozov lenses for study and removing chromatic
aberrations at a tube ion beam focusing. (It is used the
rule: before joining, it's necessary to separate).
z, cm
9080706050403020100-10
r, c
m
6
4
2
0
Fig. 8.
The first lens parameters: current circle radii 6.5 cm,
center circle current 30 kA, electrodes radii 5 cm, maxi-
mal potential 3 kV, central circle coordinate z = 0, half
length of the lens is 5 cm. The second lens parameters:
current circle radii 4 cm, center circle current 30 kA, elec-
trodes radii 2 cm, maximal potential 1.5 kV, central circle
coordinate z = 3.5 cm, half length of the lens is 5 cm. In-
jector coordinate z = -70 cm, initial radius of the tube pro-
ton beam 3.5 cm. In Fig. 9 it is presented the potential dis-
tribution in 2-nd lens that was selected from the condition
of minimum dependence of focal distance on proton ener-
gy in the range 16–21 keV. In this case it was used the ap-
proximation of potential distribution by B-splanes of third
order in the left half length of the electrodes system with
control points amount n = 11. Trajectories of protons at fo-
cus region are shown on Fig. 10.
The authors would like to thank A.A. Goncharov and
I.M. Protsenko for consultations on their lenses.
z, cm
0.80.70.60.50.40.30.20.10
U
,
G
S
0.5
0.4
0.3
0.2
0.1
0
Fig. 9.
z, cm
848382818079
r,
cm
0.08
0.06
0.04
0.02
Fig. 10.
REFERENCES
1.M.D.Gabovich, N.V.Pleshivtsev, N.N.Semashko, Ion
and Atom Beams for Controlled Thermonuclear Fusion
and Technology. M.: Energoatomizdat, 1986.
2.A.I.Morozov // Encyclopedia of Low-temperature Plas-
mas /Ed. V.E. Fortov, Entry Volume, Book III,M.: Nau-
ka, 2000, p.435-443.
3.A.I.Morozov // DAN SSSR. 1965. V.163. P.1363.
123
4.A.I.Morozov, S.V.Lebedev// Plasma Theory Problems,
M.: Atomizdat, 1974, V. 8, P.247.
5.A.A.Goncharov, A.N.Dobrovolskii, A.N.Kotsarenko
e.a. // Plasma Physics. 1994. V.20. p.499.
6.A.Goncharov, A.Dobrovolskii, I.Litovko e.a. // IEEE
Trans. Plasma Sci. 1997. V. 25. p.709.
7.A.A.Goncharov, I.M.Protsenko, G.Yu. Yushkov, I.G.
Brown // Appl. Phys. Lett. 1999. V.75, p.911.
8.A.I.Morozov, L.S.Solov'ev // Plasma Theory Problems,
M.: Gosatomizdat, 1963, V. 2, p. 3.
9.W.R.Smithe, Electrostatics and Electrodynamics, Ch. 7,
Oxford, 1950.
10.V.I.Butenko, B.I.Ivanov // Plasma Physics. 2002.
V.28. No.7. p.651.
11.V.I.Butenko // Problems of Atomic Science and Tech-
nology, 2001. No.5. p.74.
АБЕРАЦІЇ У ЕЛЕКТРОМАГНІТНІЙ ПЛАЗМОВІЙ ЛІНЗІ, ЗАПРОПОНОВАНОЇ ДЛЯ ФОКУСУВАННЯ
ІНТЕНСИВНИХ ШИРОКОАПЕРТУРНИХ ІОННИХ ПУЧКІВ
В.І. Бутенко, Б.І. Іванов
Досліджується плазмова лінза Морозова, у котрої магнітні поверхні є еквіпотенціалями електричного поля.
Магнітне поле створюється центральним струмовим витком і двома бічними витками, включеними назустріч
центральному. У роботі приведені результати комп'ютерного моделювання фокусування іонів з урахуванням їх
поздовжнього, радіального й азимутального руху. Розглянуто засоби усунення моментних, геометричних і
хроматичних аберацій. Проводиться оптимізація магнітного й електричного полів по величині і розподілу в
просторі. Промодельоване вплив дискретного розподілу потенціалу на фокусування іонів і розглянуті пов'язані
з цим аберації. Розглянуто комп'ютерну модель двухлінзової ахроматичної системи.
АБЕРРАЦИИ В ЭЛЕКТРОМАГНИТНОЙ ПЛАЗМЕННОЙ ЛИНЗЕ, ПРЕДЛОЖЕННОЙ ДЛЯ ФОКУСИ-
РОВКИ ИНТЕНСИВНЫХ ШИРОКОАПЕРТУРНЫХ ИОННЫХ ПУЧКОВ
В.И. Бутенко, Б.И. Иванов
Исследуется плазменная линза Морозова, в которой магнитные поверхности являются эквипотенциалями
электрического поля. Магнитное поле создается центральным токовым витком и двумя боковыми витками,
включенными навстречу центральному. В работе приведены результаты компьютерного моделирования фоку-
сировки ионов с учетом их продольного, радиального и азимутального движения. Рассмотрены способы устра-
нения моментных, геометрических и хроматических аберраций. Проводится оптимизация магнитного и элек-
трического полей по величине и распределению в пространстве. Промоделировано влияние дискретного рас-
пределения потенциала на фокусировку ионов и рассмотрены связанные с этим аберрации. Рассмотрена
компьютерная модель двухлинзовой ахроматической системы.
124
ABERRATIONS IN ELECTROMAGNETIC PLASMA LENSES PROPOSED FOR INTENSE LARGE-APERTURE ION BEAM FOCUSING
1. Introduction
2. The problem definition, main equations
3. Moment aberrations
4. Geometrical aberrations at continuous distribution of potential
4.1. Parallel beam focusing
4.2. Focusing of ions emerging from point source
5. Geometrical aberrations at discrete distribution of focusing potentials
6. Chromatic aberrations
References
АБЕРАЦІЇ У ЕЛЕКТРОМАГНІТНІЙ ПЛАЗМОВІЙ ЛІНЗІ, ЗАПРОПОНОВАНОЇ ДЛЯ ФОКУСУВАННЯ ІНТЕНСИВНИХ ШИРОКОАПЕРТУРНИХ ІОННИХ ПУЧКІВ
В.І. Бутенко, Б.І. Іванов
АБЕРРАЦИИ В ЭЛЕКТРОМАГНИТНОЙ ПЛАЗМЕННОЙ ЛИНЗЕ, ПРЕДЛОЖЕННОЙ ДЛЯ ФОКУСИРОВКИ ИНТЕНСИВНЫХ ШИРОКОАПЕРТУРНЫХ ИОННЫХ ПУЧКОВ
В.И. Бутенко, Б.И. Иванов
|