Control system of storage ring NESTOR linac
NESTOR (New-generation Electron STOrage Ring) consisting of electron storage ring, injector and linac with beam energy 60-100 MeV was developed for X-rays source creating based on the use Compton laser radiation scattering on relativistic electrons. Linac control system was developed for linac opera...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/110587 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Control system of storage ring NESTOR linac / Y.I. Akchurin, V.N. Boriskin, V.A. Momot, A.V. Ivahnenko, M.V. Ivahnenko, S.F. Nescheret, S.K. Romanovsky, A.N. Savchenko, A.A. Sarvilov, S.V. Shelepko, V.I. Tatanov, G.N. Tsebenko, L.V. Yeran// Вопросы атомной науки и техники. — 2007. — № 5. — С. 196-199. — Бібліогр.: 3 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110587 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1105872017-01-05T03:03:59Z Control system of storage ring NESTOR linac Akchurin, Y.I. Boriskin, V.N. Momot, V.A. Ivahnenko, A.V. Ivahnenko, M.V. Nescheret, S.F. Romanovsky, S.K. Savchenko, A.N. Sarvilov, A.A. Shelepko, S.V. Tatanov, V.I. Tsebenko, G.N. Yeran, L.V. Теория и техника ускорения частиц NESTOR (New-generation Electron STOrage Ring) consisting of electron storage ring, injector and linac with beam energy 60-100 MeV was developed for X-rays source creating based on the use Compton laser radiation scattering on relativistic electrons. Linac control system was developed for linac operating control, which ensures electron beam current, energy and position control, linac systems parameters monitoring, modulator and klystron amplifier in abnormal operation modes blocking, current control in power supplies of magnetic system, phase and power of HF signals in injecting system control. Program and technical complex includes PC equipped with quick 4-channel ADC, synchronizing unit, microprocessor complexes for thermostatic system operating control, alarm system and magnets power supplies. Комплекс НЕСТОР, що включає в себе накопичувач, інжектор, та прискорювач електронів з енергією пучка 60 - 100 МеВ був розроблений для створення джерела рентгенівського випромінювання на базі Комптонівського лазера на релятивистських електронах. Щоб керувати роботою лінійного прискорювача електронів розроблена система керування, яка забезпечить контроль струму та положення пучка електронів, контроль параметрів систем прискорювача, блокування модулятора та підсилювача на клістронах при неприпустимих режимах роботи, регулювання струмів у джерелах живлення магнітної системи, регулювання фази та потужності ВЧ-сигналів у системі інжекції. Програмно-технічний комплекс складається з ПК, зі швидким чотирьох-канальним АЦП, блока синхронізації, мікропроцесорних комплексів управління роботою системи термостабілізації та джерелами струму магнітів. Комплекс НЕСТОР, включающий в себя накопитель, инжектор, и ускоритель электронов с энергией пучка 60 - 100 МэВ был разработан для источника рентгеновского излучения на базе Комптоновского лазера на релятивистских электронах. Для управления работой ускорителя электронов разработана система управления, которая обеспечивает контроль тока, энергии и положения пучка электронов, контроль параметров систем ускорителя, блокировку модулятора и усилителя на клистронах при недопустимых режимах работы, регулирования тока в источниках питания магнитов, регулирования фазы и мощности ВЧ-сигналов в системе инжекции. Программно-технический комплекс состоит из ПК, оснащенного быстродействующим четырехканальным АЦП, блока синхронизации, микропроцессорных комплексов управления работой системы термостабилизации, УБС и источников питания магнитов. 2007 Article Control system of storage ring NESTOR linac / Y.I. Akchurin, V.N. Boriskin, V.A. Momot, A.V. Ivahnenko, M.V. Ivahnenko, S.F. Nescheret, S.K. Romanovsky, A.N. Savchenko, A.A. Sarvilov, S.V. Shelepko, V.I. Tatanov, G.N. Tsebenko, L.V. Yeran// Вопросы атомной науки и техники. — 2007. — № 5. — С. 196-199. — Бібліогр.: 3 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/110587 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Akchurin, Y.I. Boriskin, V.N. Momot, V.A. Ivahnenko, A.V. Ivahnenko, M.V. Nescheret, S.F. Romanovsky, S.K. Savchenko, A.N. Sarvilov, A.A. Shelepko, S.V. Tatanov, V.I. Tsebenko, G.N. Yeran, L.V. Control system of storage ring NESTOR linac Вопросы атомной науки и техники |
description |
NESTOR (New-generation Electron STOrage Ring) consisting of electron storage ring, injector and linac with beam energy 60-100 MeV was developed for X-rays source creating based on the use Compton laser radiation scattering on relativistic electrons. Linac control system was developed for linac operating control, which ensures electron beam current, energy and position control, linac systems parameters monitoring, modulator and klystron amplifier in abnormal operation modes blocking, current control in power supplies of magnetic system, phase and power of HF signals in injecting system control. Program and technical complex includes PC equipped with quick 4-channel ADC, synchronizing unit, microprocessor complexes for thermostatic system operating control, alarm system and magnets power supplies. |
format |
Article |
author |
Akchurin, Y.I. Boriskin, V.N. Momot, V.A. Ivahnenko, A.V. Ivahnenko, M.V. Nescheret, S.F. Romanovsky, S.K. Savchenko, A.N. Sarvilov, A.A. Shelepko, S.V. Tatanov, V.I. Tsebenko, G.N. Yeran, L.V. |
author_facet |
Akchurin, Y.I. Boriskin, V.N. Momot, V.A. Ivahnenko, A.V. Ivahnenko, M.V. Nescheret, S.F. Romanovsky, S.K. Savchenko, A.N. Sarvilov, A.A. Shelepko, S.V. Tatanov, V.I. Tsebenko, G.N. Yeran, L.V. |
author_sort |
Akchurin, Y.I. |
title |
Control system of storage ring NESTOR linac |
title_short |
Control system of storage ring NESTOR linac |
title_full |
Control system of storage ring NESTOR linac |
title_fullStr |
Control system of storage ring NESTOR linac |
title_full_unstemmed |
Control system of storage ring NESTOR linac |
title_sort |
control system of storage ring nestor linac |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2007 |
topic_facet |
Теория и техника ускорения частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110587 |
citation_txt |
Control system of storage ring NESTOR linac / Y.I. Akchurin, V.N. Boriskin, V.A. Momot, A.V. Ivahnenko, M.V. Ivahnenko, S.F. Nescheret, S.K. Romanovsky, A.N. Savchenko, A.A. Sarvilov, S.V. Shelepko, V.I. Tatanov, G.N. Tsebenko, L.V. Yeran// Вопросы атомной науки и техники. — 2007. — № 5. — С. 196-199. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT akchurinyi controlsystemofstorageringnestorlinac AT boriskinvn controlsystemofstorageringnestorlinac AT momotva controlsystemofstorageringnestorlinac AT ivahnenkoav controlsystemofstorageringnestorlinac AT ivahnenkomv controlsystemofstorageringnestorlinac AT nescheretsf controlsystemofstorageringnestorlinac AT romanovskysk controlsystemofstorageringnestorlinac AT savchenkoan controlsystemofstorageringnestorlinac AT sarvilovaa controlsystemofstorageringnestorlinac AT shelepkosv controlsystemofstorageringnestorlinac AT tatanovvi controlsystemofstorageringnestorlinac AT tsebenkogn controlsystemofstorageringnestorlinac AT yeranlv controlsystemofstorageringnestorlinac |
first_indexed |
2025-07-08T00:49:01Z |
last_indexed |
2025-07-08T00:49:01Z |
_version_ |
1837037772990316544 |
fulltext |
CONTROL SYSTEM OF STORAGE RING
NESTOR LINAC
Yu.I. Akchurin, V.N. Boriskin∗, V.A. Momot, A.V. Ivahnenko,
M.V. Ivahnenko, S.F. Nescheret, S.K. Romanovsky, A.N. Savchenko,
A.A. Sarvilov, S.V. Shelepko, V.I. Tatanov, G.N. Tsebenko, L.V. Yeran
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received May 15, 2007)
NESTOR (New-generation Electron STOrage Ring) consisting of electron storage ring, injector and linac with beam
energy 60−100 MeV was developed for X-rays source creating based on the use Compton laser radiation scattering
on relativistic electrons. Linac control system was developed for linac operating control, which ensures electron
beam current, energy and position control, linac systems parameters monitoring, modulator and klystron amplifier
in abnormal operation modes blocking, current control in power supplies of magnetic system, phase and power of HF
signals in injecting system control. Program and technical complex includes PC equipped with quick 4-channel ADC,
synchronizing unit, microprocessor complexes for thermostatic system operating control, alarm system and magnets
power supplies.
PACS: 29.17.+w
1. CONTROL SYSTEM STRUCTURE
The special system (Fig.1) was developed for linac
control. It controls the electron beam current, en-
ergy and position, defends accelerating and scanning
systems from the damage caused by beam, blocks the
modulator and klystron amplifier in the case of ab-
normal operation modes, controls phase and power of
HF signals in injecting system and also controls power
supplies currents of magnetic system [1]. The pro-
gram and technical complex consists of PC equipped
with quick 4-channel ADC (Fig.1), synchronizing
unit, microprocessor complexes (ADAM-5510E) for
thermostatic system operating control and magnets
power supplies.
Fig.1. Control system functional diagram of the
”Nestor” linac. 1 - linac(LA) central control panel
(synchronizing unit), PC, zone alarm unit (ZA),
4-channel ADC with multiplexer); 2 - magnetic
elements power supply (PS); 3,4 -modulators and
klystrons alarm system; 5- thermostatic system panel
The multiplexer (MP) and 8-digits ADC receive sig-
nals from analog pulse sensors with 50 nsec period
over 4 of 40 switching channels simultaneously. Linac
system and beam parameters state data are trans-
mitted to local unit terminals and color graphics
display. Operator controls linac operation using PC
keyboard and local control panels. Program modules
ensure momentary or repeated system parameters
check out or issue operating commands if necessary.
Parameters of several systems are checked simulta-
neously and only one of them is controlled. Software
operates in Windows environment. It was developed
using visual object-oriented programming system
C++Builder 5.
2. CURRENT AND POSITION OF
ELECTRON BEAM OPERATIVE
MONITORING
Linac is equipped with 3 magneto inductance sen-
sors installed on linac input and output sections for
value and beam pulse current geometry measure-
ment. Sensors signals are used in control system for
rating of amplitude and average current value. Sen-
sors calibration is carried out periodically with help
of test pulses trains from a special current genera-
tor. Position sensor with 4 windings is also installed
on output of each section. This sensor detects beam
center position [2].
The system includes:
- magneto inductance sensors;
- current pulse signals and beam center position am-
plifier;
∗Corresponding author. E-mail address: boriskin@kipt.kharkov.ua
196 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, N5.
Series: Nuclear Physics Investigations (48), p.196-199.
- cable signalling links;
- unit for connection unit with information and mea-
suring system;
- amplifiers power supply.
Specifications:
- pulse duration - 1,5 µs;
- repetition frequency - 6−50 Hz;
- dynamic range - 20−100 µA;
- amplifiers power supply - 15V, +27V;
- channel number - 11;
- calibration - 3 channels.
Fig.2. System structure diagram. 1 - injector; 2 -
linac sections; 3 - power supply; 4 -connection unit;
5 - curr ent sensor; 6 - current and beam center
position sensors; 7 - current signal amplifier; 8 -
5-channel signal amplifiers
Fig.3. Sensor appearance
Main channel characteristics:
- measuring range 15-150 µA/pulse, ±10 mm along
coordinates;
- current sensitivity 62.5 V/A;
- beam deviation sensitivity 1.75 mV/mA∗mm;
- sag of a pulse 3%/ µs;
- rise time ≤0.15µs;
- noise threshold measurement 5.5 mA∗mm;
- sensor center binding accuracy ±0.35 mm.
3. SYNCHRONIZING SYSTEM
Synchronizing system of NESTOR linac forms
frequency scale of pedestal pulses f0 = 100, 50,
25, 12.5, 6.25, 3.125 or 1Hz. Operation startup
frequency of EGM (electron generating modulator)
modulator like of KPA modulator is f0. KPA modula-
tor starts twice at the pulse width 2.5 ± 0.5 µs, delay
range from 0 to 10 µs with step 0.1 µs. The first 20 µs
earlier pulse ensures KPA modulator preparation,
second – operating pulse. Synchronizing unit forms
frequency scale over 8 channels. Pulse amplitude is
not more than 15 V, pulse width is 2.5 ± 0.5 µs, de-
lay range is from 0 to 10 µs with step 0.1 µs. At syn-
chronizing unit switching off operation delays data is
not saved. When “Beam switching off ” alarm signal
is received, the beam is to be switched off by addi-
tional delay of modulator startup pulse for 15±3 µs
by alarm system or PC. At KPA breakdowns, ”0”
signal of ignition units startup CI blocking for signal
duration time is transmitted to synchronizing unit.
Synchronizing unit operates in continuous mode.
Fo-frequency pulses are synchronized with power sup-
ply frequency 220V, 50±0,5 Hz. Synchronizing unit
was developed using “ALTERA” PLD.
4. THERMOSTATIC SYSTEM
NESTOR linac thermostatic system ensures ther-
mal stabilization of two accelerating sections and ac-
celerating resonator. It consists of 11 temperature
sensors (3 sensors – standby), 4 water flow through
the object being cooled sensors and 2 water pressure
sensors. ADAM5510E microprocessor and POT-63
triac controllers are used for sensors signals analysis
and temperature control. Parameters data is trans-
ferred to local control panel and also via RS-485 in-
terface to controlling PC, lock signals are transmitted
in alarm system.
NESTOR linac thermostatic system is aimed at
accelerating sections optimal sizes control. Unlike
the previous developments, the described system has
automatic control system and acquires data using
PC - compatible ADAM-5510E controller. HMI-
430 operator’s board is used for data readout and
thermostatic system modes change. There are 11
temperature sensors, 3 water flow through the ob-
jects been cooled sensors and tank water level sen-
sor in thermostatic system. Proportional-integro-
differential (PID) law is used to improve optimal sizes
accuracy of accelerated sections during temperature
control. This permits to maintain accelerated section
temperature accuracy up to ± 0.5 degree when linac
operation modes change stepwise and in stationary
mode at long-term fluctuations - up to ± 0.2 degree.
For PID algorithm realization next formula is ap-
plied [3]:
CO = KP × ((TP − SP )× (1 + Ts/T i)+
+Sn−0 + KD × (TP − PV−0)/Ts),
where:
CO – PID controller output value;
KP – proportional factor;
KD – derivative factor;
Ti – integration time;
TP – measured temperature;
SP – temperature setting;
Ts – sampling time;
197
Sn−0 – integral component value at preceding step;
PV−0 – temperature value at preceding step. Data
acquisition mode at temperature change of ob-
ject under monitoring is provided for operator PC.
Fig.4. Thermostatic system support
5. ALARM SYSTEM
Linac alarm system is aimed at linac systems con-
trol and malfunction shutdown in case of equipment
failure. It is provided with PC-compatible ADAM-
5510E controller based control and automatic data
acquisition system and quick blocking unit. Linac
local control is conducted from klystron room HMI-
430 operator’s board and from operator’s PC. The
developed alarm system tests up to 64 incremental
transducers of each linac section and has 16 discrete
control signals.
In order to improve linac systems safe protection
quick blocking module is used in alarm system,which
ensures quick hight voltage switch off by sync pulses
blocking. Conventional system de-energizes finally.
Alarm system operates in automatic mode without
operator interference, except linac parameters con-
trol, and in case of failure issues blocking signals.
Linac parameters are to be set by operator depending
on the task.
Linac operator controls alarm system from klystron
room or from operator’s PC. System service program
operates in DOS 6.22 environment. It starts au-
tomatically at power supply switch on. This pro-
gram checks and carries ADAM-5510E controller pe-
ripheral equipment (series modules 5000, serial ports
RS232 and RS485 and others) initializing out. At
failure detection the program goes to sleep in case
of possible failure operational elimination, in others
cases the program is aborted.
ZA is a self-contained system, which ensures linac
accident-proof operation. It acquires room sensors
data, switches linac systems off, switches audible and
light signaling.
Fig.5. Zone alarm unit appearance
6. MAGNETIC POWER SUPPLY
CONTROL
Marathon CAN DC power source is used for linac
magnetic elements power supply, which are intended
for distributed electric power supply system genera-
tion, the control is conducted over network with CAN
interface, and also for stand-alone use with control
over RS232 interface, or in manual mode.
DC power supply is developed in two versions:
Marathon CAN-100/1 (voltage from -100V up
+100V, current up to 1A) and Marathon CAN-30/5
(voltage from -30V to +30V, current up to 5A).
General performances:
- Output voltage and current for:
i. Marathon CAN-100/1 - from -100V up +100V,
current up to 1A,
ii. Marathon CAN-30/5 - from -30V up +30V, cur-
rent up to 5A
- Output voltage increment– 1µV;
- Output current increment– 1µA;
- Stability – 0.05%;
- Current stabilized mode;
- Output current limiting at voltage regulation;
- Current and voltage digital indication;
- AC power supply 220V;
- Operating temperature range: +5, +40◦ C.
Power supplies control is carried out in automatic
and manual modes.
Control commands:
- Status poll (display monitoring of set voltage or cur-
rent value, and also resistance of load);
- Set current and voltage stabilized mode;
- Set current or voltage value;
- Change current value for ±1, ±10, ±50 (current
value controls in voltage regulation mode or voltage
value control in current stabilized mode);
- To restore permitted voltage or current value devi-
ation from the value,which was preset by operator
- Output voltage polarity change.
Automatic breakdown is anticipated at load resis-
tance variation or at permissible voltage or current
value exceeding.
Rack panel with power supplies is mounted in
klystron room at 30 meters distance from operator’s
198
control panel. Power supplies number :
- Marathon CAN-100/1 (voltage - from -100V to
+100V, current - up to 1A) -10,
- Marathon CAN-30/5 (voltage - from -30V to +30V,
current - up to 5A) –2.
REFERENCES
1. A.N. Dovbnya, M.I. Ayzatsky , V.N. Boriskin et
al. Beam Parameters of the S-Band Electron Linac
with Beam Energy of 30 - 100 MeV // PAST. Se-
ries: Nuclear Physics Investigation. 2006, 2(46),
p. 11-13.
2. V.N. Boriskin, V.A. Gurin, L.V. Reprincev et al.
Channel of the control of the beam position in the
high-current LEA // Digest of the XV meeting on
the accelerated particles. Dubna, Russia, 1996.
3. www.geocities.com/oleg−kaliberda/pid−
СИСТЕМА УПРАВЛЕНИЯ ИНЖЕКТОРА НАКОПИТЕЛЯ НЕСТОР
Ю.И.Акчурин, В.Н.Борискин,В.А.Момот, А.В.Ивахненко, М.В.Ивахненко,
С.Ф.Нещерет, С.К.Романовский, А.Н.Савченко,
А.А.Сарвилов,С.В.Шелепко,В.И.Татанов, Г.Н.Цебенко, Л.В.Еран
Комплекс НЕСТОР, включающий в себя накопитель, инжектор, и ускоритель электронов с энер-
гией пучка 60−100 МэВ был разработан для источника рентгеновского излучения на базе Комптонов-
ского лазера на релятивистских электронах. Для управления работой ускорителя электронов разра-
ботана система управления, которая обеспечивает контроль тока, энергии и положения пучка элек-
тронов, контроль параметров систем ускорителя, блокировку модулятора и усилителя на клистронах
при недопустимых режимах работы, регулирования тока в источниках питания магнитов, регулирова-
ния фазы и мощности ВЧ-сигналов в системе инжекции. Программно-технический комплекс состоит
из ПК, оснащенного быстродействующим четырехканальным АЦП, блока синхронизации, микропро-
цессорных комплексов управления работой системы термостабилизации, УБС и источников питания
магнитов.
СИСТЕМА КЕРУВАННЯ IНЖЕКТОРА НАКОПИЧУВАЧА НЕСТОР
Ю.I.Акчурiн, В.М.Борискiн, В.О.Момот, О.В.Iвахненко, М.В.Iвахненко,
С.Ф.Нещерет, С.К.Романовський, А.М.Савченко,
О.А.Сарвiлов,С.В.Шелепко,В.I.Татанов, Г.М.Цебенко, Л.В.Єран
Комплекс НЕСТОР, що включає в себе накопичувач, iнжектор, та прискорювач електронiв з енер-
гiєю пучка 60−100 МеВ був розроблений для створення джерела рентгенiвського випромiнювання на
базi Комптонiвського лазера на релятивистських електронах. Щоб керувати роботою лiнiйного при-
скорювача електронiв розроблена система керування, яка забезпечить контроль струму та положення
пучка електронiв, контроль параметрiв систем прискорювача, блокування модулятора та пiдсилювача
на клiстронах при неприпустимих режимах роботи, регулювання струмiв у джерелах живлення магнiт-
ної системи, регулювання фази та потужностi ВЧ-сигналiв у системi iнжекцiї. Програмно-технiчний
комплекс складається з ПК, зi швидким чотирьох-канальним АЦП, блока синхронiзацiї, мiкропроце-
сорних комплексiв управлiння роботою системи термостабiлiзацiї та джерелами струму магнiтiв.
199
|