Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials
Prediction of irradiation embrittlement of Reactor Pressure Vessel (RPV) materials is performed usually in accordance with relevant codes and standards that are based on large amount of information from surveillance and research programs. The existing Russian Code (Standard for Strength Calculations...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Ядерний науково-дослідницький інститут Чехії
2007
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/110597 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials / M. Brumovsky, M. Kytka, L. Debarberis, F. Gillemot, A. Kryukov, M. Valo // Вопросы атомной науки и техники. — 2007. — № 6. — С. 72-77. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110597 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1105972017-01-06T03:02:32Z Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials Brumovsky, M. Kytka, M. Debarberis, L. Gillemot, F. Kryukov, A. Valo, M. Материалы реакторов на тепловых нейтронах Prediction of irradiation embrittlement of Reactor Pressure Vessel (RPV) materials is performed usually in accordance with relevant codes and standards that are based on large amount of information from surveillance and research programs. The existing Russian Code (Standard for Strength Calculations of Components and Piping in Nuclear Power Plants (NPPs) – PNAE G 7-002-86) for the WWER RPV irradiation embrittlement assessment was approved more than 20 years ago and based mostly on the experimental data obtained in research reactors with accelerated irradiation. The validation of the above Code has been made without the surveillance specimen results that were produced in 1980-1990s. Thus, new analysis of all available data was required for more precise prediction of radiation embrittlement of RPV materials. Based on the fact that large amount of data from surveillance program as well as some research programs, IAEA International Database on RPV Materials (IDRPVM) has been used for the detailed analysis radiation embrittlement of WWER RPV materials. Thus, the following activities have been performed within the IAEA Co-ordinated project: Collection of complete WWER-440 surveillance and other similarly important data into the IDRPVM, Analysis of radiation embrittlement data of WWER-440 RPV materials using IDRPVM database, Evaluation of predictive formulae depending on material chemical composition, neutron fluence and neutron flux, Development of the guidelines for prediction of radiation embrittlement of operating reactor pressure vessels of WWER-440 including methodology for evaluation of surveillance data of a specific operating unit. Прогнозування радіаційного окрихчення матеріалів внутрішньо корпусних пристроїв (ВКП) зазвичай виконується у відповідності з кодами та стандартами, заснованими на численній інформації, що була накопичена на базі модельних та дослідницьких програм. Існуючий Російський Код (Стандарт для обчислення міцності компонентів і трубопроводів в атомних електростанціях (АЕС)-PNAE G 7 –002-86) для оцінки радіаційного окрихчення ВКП реакторів ВВЕР зарекомендував себе на протязі більш, ніж 20 років; він заснован на експриментальних даних, отриманих в дослідницьких реакторах з прискореним опроміненням. Оцінка вище згаданого Кода була виконана без результатів із зразків-свідків, які були отримані у 1980-1990 роках. Таким чином, необхідно провести новий аналіз усіх наявних даних для більш точного прогнозування радіаційного окрихчення матеріалів ВКП. На підставі того факту, що було використано велику кількість даних з макетних та дослідницьких програм, Міжнародна база даних МАГАТЕ по матеріалам ВКП біла використана для докладного аналізу радіаційного окрихчення ВКП матеріалів для реакторів ВВЕР. Таким чином, в межах Координаційного проекту МАГАТЕ було виконано наступне: Збирання повних даних із зразків-свідків ВВЕР-440 та інших подібних важливих даних в Міжнародну базу даних, аналіз даних по радіаційному окрихченню ВКП матеріалів ВВЕР-440 з використанням міжднародної бази даних, оцінка формули прогнозування в залежності від хімічного складу матеріалу, флюенса нейтронів та нейтронного потоку, розробка основних положень для прогнозування радіаційного окрихчення експлуатуємих внутрішньо корпусних пристроїв ВВЕР-440, включно з методологією для оцінки контрольних даних конкретної діючої установки. Предсказание радиационного охрупчивания материалов внутрикорпустных устройств (ВКУ) обычно выполняется в соотвествии с кодами и стандартами, основанными на обширной информации, накопленной в ходе модельных и исследовательских программ. Существующий Российский Код (Стандарт для вычислений прочности и компонентов и трубопроводов в атомных электростанциях (АЭС) – PNAE G 7-002-86) для оценки радиационного охрупчивания ВКУ реакторов ВВЭР хорошо зарекомендовал себя на протяжении более чем 20 лет; он основан на экспериментальных данных, полученных в исследовательских реакторах с ускоренным облучением. Оценка упомянутого выше Кода была выполнена без результатов с образцов-свидетелей, которые были получены в 1980-1990 годах. Таким образом, необходим новый анализ всех имеющихся данных для более точного прогнозирования радиационного охрупчивания материалов ВКУ. На основании того факта, что было использовано большое количество данных с макетных и исследовательских программ, Международная База данных МАГАТЭ по материалам ВКУ была использована для подробного анализа радиационного охрупчивания ВКУ материалов для реакторов ВВЭР. Таким образом, в рамках Координационного проекта МАГАТЭ были выполнено следующее: сбор полных данных с образцов-свидетелей ВВЕР-440 и других подобных важных данных в Международную базу данных; анализ данных по радиационному охрупчиванию ВКУ материалов ВВЭР-440 с использованием международной базы данных; оценка формулы прогнозирования в зависимости от химического состава материала, флюенса нейтронов и нейтронного потока, разработка основных положений для предсказания радиационного охрупчивания эксплуатируемых внутрикорпусных устройств ВВЭР-440, включая методологию для оценки контрольных данных конкретной действующей установки. 2007 Article Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials / M. Brumovsky, M. Kytka, L. Debarberis, F. Gillemot, A. Kryukov, M. Valo // Вопросы атомной науки и техники. — 2007. — № 6. — С. 72-77. — Бібліогр.: 4 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/110597 621.039.577 en Вопросы атомной науки и техники Ядерний науково-дослідницький інститут Чехії |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Материалы реакторов на тепловых нейтронах Материалы реакторов на тепловых нейтронах |
spellingShingle |
Материалы реакторов на тепловых нейтронах Материалы реакторов на тепловых нейтронах Brumovsky, M. Kytka, M. Debarberis, L. Gillemot, F. Kryukov, A. Valo, M. Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials Вопросы атомной науки и техники |
description |
Prediction of irradiation embrittlement of Reactor Pressure Vessel (RPV) materials is performed usually in accordance with relevant codes and standards that are based on large amount of information from surveillance and research programs. The existing Russian Code (Standard for Strength Calculations of Components and Piping in Nuclear Power Plants (NPPs) – PNAE G 7-002-86) for the WWER RPV irradiation embrittlement assessment was approved more than 20 years ago and based mostly on the experimental data obtained in research reactors with accelerated irradiation. The validation of the above Code has been made without the surveillance specimen results that were produced in 1980-1990s. Thus, new analysis of all available data was required for more precise prediction of radiation embrittlement of RPV materials. Based on the fact that large amount of data from surveillance program as well as some research programs, IAEA International Database on RPV Materials (IDRPVM) has been used for the detailed analysis radiation embrittlement of WWER RPV materials. Thus, the following activities have been performed within the IAEA Co-ordinated project: Collection of complete WWER-440 surveillance and other similarly important data into the IDRPVM, Analysis of radiation embrittlement data of WWER-440 RPV materials using IDRPVM database, Evaluation of predictive formulae depending on material chemical composition, neutron fluence and neutron flux, Development of the guidelines for prediction of radiation embrittlement of operating reactor pressure vessels of WWER-440 including methodology for evaluation of surveillance data of a specific operating unit. |
format |
Article |
author |
Brumovsky, M. Kytka, M. Debarberis, L. Gillemot, F. Kryukov, A. Valo, M. |
author_facet |
Brumovsky, M. Kytka, M. Debarberis, L. Gillemot, F. Kryukov, A. Valo, M. |
author_sort |
Brumovsky, M. |
title |
Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials |
title_short |
Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials |
title_full |
Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials |
title_fullStr |
Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials |
title_full_unstemmed |
Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials |
title_sort |
prediction of irradiation embrittlement in wwer-440 reactor pressure vessel materials |
publisher |
Ядерний науково-дослідницький інститут Чехії |
publishDate |
2007 |
topic_facet |
Материалы реакторов на тепловых нейтронах |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110597 |
citation_txt |
Prediction of irradiation embrittlement in WWER-440 Reactor Pressure Vessel materials / M. Brumovsky, M. Kytka, L. Debarberis, F. Gillemot, A. Kryukov, M. Valo // Вопросы атомной науки и техники. — 2007. — № 6. — С. 72-77. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT brumovskym predictionofirradiationembrittlementinwwer440reactorpressurevesselmaterials AT kytkam predictionofirradiationembrittlementinwwer440reactorpressurevesselmaterials AT debarberisl predictionofirradiationembrittlementinwwer440reactorpressurevesselmaterials AT gillemotf predictionofirradiationembrittlementinwwer440reactorpressurevesselmaterials AT kryukova predictionofirradiationembrittlementinwwer440reactorpressurevesselmaterials AT valom predictionofirradiationembrittlementinwwer440reactorpressurevesselmaterials |
first_indexed |
2025-07-08T00:49:53Z |
last_indexed |
2025-07-08T00:49:53Z |
_version_ |
1837037827311796224 |
fulltext |
УДК 621.039.577
PREDICTION OF IRRADIATION EMBRITTLEMENT
IN WWER-440 REACTOR PRESSURE VESSEL MATERIALS
M. Brumovsky1, M. Kytka1, L. Debarberis2, F. Gillemot3, A. Kryukov4, M. Valo5
1 Nuclear Research Institute Rez plc, Czech Republic;
2 EC JRC Institute of Energy, Petten, Netherland;
3 Atomic Energy Research Institute, Budapest, Hungary;
4 RRC Kurchatow Institute, Moscos, Russian Federation;
5 VTT Manufacturing Technology, Espoo, Finland
Prediction of irradiation embrittlement of Reactor Pressure Vessel (RPV) materials is performed usually in accordance
with relevant codes and standards that are based on large amount of information from surveillance and research programs.
The existing Russian Code (Standard for Strength Calculations of Components and Piping in Nuclear Power Plants
(NPPs) – PNAE G 7-002-86) for the WWER RPV irradiation embrittlement assessment was approved more than 20 years
ago and based mostly on the experimental data obtained in research reactors with accelerated irradiation. The validation of
the above Code has been made without the surveillance specimen results that were produced in 1980-1990s. Thus, new
analysis of all available data was required for more precise prediction of radiation embrittlement of RPV materials. Based
on the fact that large amount of data from surveillance program as well as some research programs, IAEA International
Database on RPV Materials (IDRPVM) has been used for the detailed analysis radiation embrittlement of WWER RPV
materials. Thus, the following activities have been performed within the IAEA Co-ordinated project: Collection of com-
plete WWER-440 surveillance and other similarly important data into the IDRPVM, Analysis of radiation embrittlement
data of WWER-440 RPV materials using IDRPVM database, Evaluation of predictive formulae depending on material
chemical composition, neutron fluence and neutron flux, Development of the guidelines for prediction of radiation embrit-
tlement of operating reactor pressure vessels of WWER-440 including methodology for evaluation of surveillance data of
a specific operating unit.
INTRODUCTION
Prediction of irradiation embrittlement of Reactor Pres-
sure Vessel (RPV) materials is performed usually in accor-
dance with relevant codes and standards that are based on
large amount of information from surveillance and re-
search programs. The existing Russian Code [1] for the
WWER RPV irradiation embrittlement assessment was ap-
proved more than 20 years ago and based mostly on the
experimental data obtained in research reactors with accel-
erated irradiation. Nevertheless, it is still in good use and
generally consistent with new data. The validation of the
above Code has been made without the surveillance speci-
men results that were produced in 1980-1990s.
Up to now a lot of surveillance data have been ob-
tained from operating WWER type reactors. Also some
years ago the IAEA International Database on RPV Ma-
terials (IDRPVM) has been created. A big amount of
RPV irradiation embrittlement data have been obtained
in the framework of national research programmes as
well. Using these data with the surveillance results
could considerably expand the WWER RPV material
database and assist in the RPV integrity assessment.
Reactor pressure vessels for WWER-440 type reactors
were manufacture from the steel of 15H2MFA(A) grade
which is of Cr-Mo-V type. Such steels are not used in any
other RPVs in other type or reactors, thus there does not
exist any other prediction formulae that could be applied
for WWER-440 materials – their chemical composition is
quite different when compared with usual LWR RPV ma-
terials – ASTM A 533-B or A 508 that are of Ni-Mo-Cr
type without any amount of vanadium.
Thus, new analysis of all available data were re-
quired for more precise prediction of radiation embrit-
tlement of RPV materials. This analysis was performed
within the IAEA Cvo-ordinated Research Program
(CRP) with these main tasks:
– Collection of complete WWER-440 surveillance
and other similarly important data into the IDRPVM;
– Analysis of radiation embrittlement data of
WWER-440 RPV materials using IDRPVM database;
– Evaluation of predictive formulae depending on
material chemical composition, neutron fluence and
neutron flux;
– Development of the guidelines for prediction of radi-
ation embrittlement of operating reactor pressure vessels of
WWER-440 including methodology for evaluation of
surveillance data of a specific operating unit.
These IAEA Guidelines were finished in 2004 and
are now in the printing procedure.
1. CURRENT PROCEDURE [1]
The similar procedure is used for the radiation em-
brittlement assessment in Russia, Bulgaria and Ukraine
and is based on Russian Code [1] for the embrittlement
assessment based on the brittle fracture temperature Tk .
Its value should be evaluated experimentally by Charpy
impact testing entirely. However, if it is not applicable,
empirical relations given next have to be used:
Weld metals:
Tk=T0 + ∆TF; (1)
∆TF=AF
270 (Fx10-22)1/3 for 1022<F<3 x1024 (2)
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 72-77.
72
AF = 15°C for weld metal Sv-10KhMFT(U) (Tirradiation =
270°C); (3)
= 800 (P + 0.07 Cu) for weld metal Sv-10KhMFT
(Tirradiation = 270 °C). (4)
Here Tk0 is the initial value of brittle fracture temper-
ature from Acceptance Tests and ∆TF is irradiation in-
duced shift in Tk, AF
270 is the irradiation embrittlement
factor for irradiation at temperature 270 °C, F is the
neutron fluence in m-2, E>0.5 MeV and P, Cu, is the
concentration in mass %. The irradiation embrittlement
factor AF is irradiation temperature dependent and its
value for irradiation at 250 °C is equal to:
AF
250 =800(P+0.07Cu) + 8. (5)
Base metals: Formulae (1.1-1.2) are used in general
to evaluate the brittle fracture temperature of the
WWER-440/230 reactor pressure vessels. In some cases
these results are being verified by testing of the material
samples, templates, cut directly from the vessel wall.
Subsized Charpy specimens are used for this purpose.
The special procedure has been developed to correlate
results of subsized and standard Charpy testing, and ob-
tained data supporting the procedure. Coefficients AF for
base metals are given in [1] as:
AF = 18 °C for steel 15Kh2MFA (Tirradiation = 270 °C) (6)
= 12 °C for steel 15Kh2MFAA (Tirradiation = 270 °C) (7)
Nor in [1] neither in other official document there is
a valid procedure for evaluation of results from the
surveillance specimen programs for WWER reactor
pressure vessels. There is also no recommendation for
the use of such data in reactor pressure vessel integrity
and lifetime assessment.
2. IRRADIATION EMBRITTLEMENT
MODELING
Relatively large Charpy-V surveillance data set for
WWER-440 pressure vessel materials was collected in
the CRP but only limited number of fracture toughness
data. Hence trend curve fitting in this report is based on
ISO Charpy-V data only. The weld data consists of 34
low flux and 87 high flux data points, i.e. of 121 weld
data points altogether, and the base metal data of 24 low
flux and 76 high flux data points, i.e. of 100 base metal
data points altogether.
2.1. PRINCIPLES OF THE TREND CURVE
DERIVATION
Basic physics research has not resulted in justification
of a unique physically based functional forms. The number
of candidate functions, which fulfill the requirements given
above, is naturally large. In the statistical fitting several
combinations of commonly issued functions are applied in
order to have a selection for choice.
The following three basic functions are used in fitting:
The power law function nFaT ∗=∆ ; (8)
The exponential function )1( Φ∗−−∗=∆ neaT ; (9)
The tanh function
)]
2
tanh(2/12/1[1 0
c
cT Φ−Φ∗+∗=∆ , (10)
where ∆T is the transition temperature shift, F is the
neutron fluence and a, n, c1, c2 and F0 are coefficients.
The acceptable values of n in the power law function (1)
are 0 < n < 1.
The power law function never saturates fully and its
derivative at zero fluence is infinite for the realistic val-
ues of n (0< n < 1). The derivate of the exponential
function at zero fluence is "a∗n" and it saturates fully to
the value of "a" at high fluences. Hence the exponential
function suits well for the characterization of early de-
velopment of embrittlement.
The embrittlement description may include also
threshold values for fluence and impurity contents.
These threshold values can be connected to real
physical phenomena. Threshold fluence can describe the
nucleation fluence, which is needed before a physical
response can be observed. Threshold on chemistry may
be linked to the amount of the chemical element
permanently bound to some structures or to solubility of
the element in the matrix at the operation temperature of
the material.
The data are characterized by the phosphorus and cop-
per contents, neutron fluence and neutron flux. The distri-
bution of these parameters in the database may limit the in-
formation, which can be derived from the data. The mea-
sured data are also compared to the prediction function
(1.4) given in the Russian Code PNAE [1].
The distribution of weld data in the copper-phospho-
rus plane is shown in Fig. 1.
Cu [wt-%]
0.00 0.05 0.10 0.15 0.20 0.25 0.30
P
[w
t-
%
]
0.00
0.01
0.02
0.03
0.04
0.05
0.06
High flux
Low fluxPVSCU1.JNB
Weld
All data
Fig. 1. Distribution of weld data in the Cu-P plane. Low
flux marks are located on the top of high flux marks, i.e.
open circles in bold include both flux values
Low and high flux data points are identified in the
figure. The measured transition temperature shifts of
weld data are shown as a function of neutron fluence in
Fig. 2.
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 72-77.
73
Φ [n/cm2, E>0.5MeV]
0 100 200 300 400 500 600 700
∆ T
42
J,
4
7J [
°C
]
0
50
100
150
200
250
300
High flux
Low flux
DTVSFLUX1.JNB
Weld
All data
Fig. 2. The measured transition temperature shifts
as a function of neutron fluence
The measured weld data compared to the prediction by
formula (1.4) are shown in Fig. 3. The formula (1.4) gives a
relatively good description of the data but at high shifts the
formula predicts on average too high shift values which can
be related to different approach for transition temperature
shifts as it was described in PNAE (47 J and 71 J) and in the
analysed data set (41 J and 47 J).
∆T-47Pred [°C]
0 50 100 150 200 250 300 350
∆ T
-4
7 M
e
a
s [
°C
]
0
50
100
150
200
250
300
Weld
All data
∆T = 800·(P+0.07·Cu)·Φ 1/3
PALLRUS.JNB
1:
1
High flux
Low flux
Fig. 3. The measured shift versus the shift calculated
from the formula (1.4), weld data
The distribution of base metal data in the copper-
phosphorus plane is shown in Fig. 4, where low and
high flux data points are indicated.
Cu [wt-%]
0.00 0.05 0.10 0.15 0.20 0.25
P
[w
t-
%
]
0.005
0.010
0.015
0.020
0.025
0.030
High flux
Low fluxPVSCUB.JNB
Base material
All data
Fig. 4. Distribution of base metal data in the Cu-P plane.
Low flux marks are located on the top of high flux marks,
i.e. open circles in bold include both flux values
The copper and phosphorus contents are concentrated
approximately around P= 0.013 mass.% and Cu =
0.10 mass.%. The measured transition temperature shifts
of base metal are shown in Fig. 5 as a function of neutron
fluence. The shifts correlate well with neutron fluence.
Cu [wt-%]
0.00 0.05 0.10 0.15 0.20 0.25
P
[w
t-
%
]
0.005
0.010
0.015
0.020
0.025
0.030
High flux
Low fluxPVSCUB.JNB
Base material
All data
Fig. 5. The measured transition temperature
shifts of base metal as a function of neutron fluence
The measured shifts of base metal are compared to
the prediction (1.4) used for weld metal in Fig. 6. For
most of the points the weld prediction formula (1.4) rep-
resents an upper boundary for base metal but there are
points in the range of ∆TPred = 80 to 140 oC, which ex-
ceed the prediction for weld.
∆ T-47Pred [°C]
0 50 100 150 200
∆T
-4
7 M
e
a
s [
°C
]
0
50
100
150
200 Base material
All data
∆ T = 800·(P+0.07·Cu)·Φ 1/3
PALLRUSB.JNB
1:
1
High flux
Low flux
Fig. 6. The measured base metal shifts versus the shifts
calculated from the formula (1.4) for weld metal
2.2. TREND CURVE FITTING
The following five types of trial functions have been
used in fitting:
Fit-1: nCuaPaT Φ∗∗+∗=∆ )21( ; (11)
Fit-2: 33)21( nn aCuaPaT Φ∗+Φ∗∗+∗=∆ ; (12)
Fit-3: 321 321 nnn aCuaPaT Φ∗+Φ∗∗+Φ∗∗=∆ ; (13)
Fit-4:
321 3)1(2)1(1 nnn aeCuaePaT Φ∗+−∗∗+−∗∗=∆ Φ∗−Φ∗− ; (14)
Fit-5:
)]
2
tanh(2/12/1[1)/(11
c
FFcFFebFaT startsatn −∗+∗+
−−∗+∗=∆ .
(15)
Fit-1 has the same form as the Russian Code formula
for weld metal.
Fit-2 is a function, where a matrix damage term has
been added to Fit-1.
Fit-3 has separate power law exponents for the phos-
phorus and the copper terms in addition to the matrix
damage term.
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 72-77.
74
Fit-4 describes the phosphorus and the copper terms
with exponential function for both terms having own ex-
ponent values. In addition, it contains the matrix dam-
age term.
Fit-5 describes the phosphorus term with tanh func-
tion.
2.3. SUMMARY OF THE FITS:
The following conclusions can be made as results of
fitting the candidate functions:
− In weld metal matrix damage term is needed. The addi-
tion of the matrix term reduces the standard deviation
of the fit by approximately 5 oC as compared to Fit-1,
which has the functional form given in the Russian
Code.
− The use of phosphorus threshold level reduces the
scatter of all fits approximately by 0.5 oC. The value
of the derived threshold is P0 = 0.015 mass.% for
weld and base metals and it is clearly the property of
the analyzed data set.
− The data can be described equally well with differ-
ent types of functions. Standard deviation of all best
fits made to the whole data set is about 18 oC.
− The early development of copper and phosphorus re-
sponse as a function of neutron fluence is fast but it
cannot be determined quantitatively from the data.
Fits were made also to low flux and high flux sub
data sets separately and the analyses is described in the
reference documents. Standard deviation of all data fits
is typically 18 oC. Fits made to low flux data sub sets
are typically 12 oC. Because the number of low flux data
points is relatively low, the derived functions are not so
well defined as the all data fits.
3. GUIDELINES FOR PREDICTION
OF RADIATION EMBRITTLEMENT
OF OPERATING WWER-440 RPVS
This Guideline should be used for assessment of irra-
diation embrittlement of RPV ferritic materials as a result
of degradation during operation. Both approaches, i.e.
transition temperatures based on Charpy impact notch
toughness as well as based on static fracture toughness
tests are to be used in RPV integrity evaluation.
Integrity and lifetime assessment of reactor compo-
nents are based, in principle, on application of fracture
mechanics approach, thus determination of fracture
toughness changes is of the main concern. Thus, two
ways can be applied, depending on the number and type
of specimens either in surveillance specimens or in the
material qualification programme and other experimen-
tal/material validation programmes:
− direct determination of fracture toughness of RPV
materials is required at certain periods during RPV
operation, i.e. with given level of degradation – in
this case, fracture toughness testing is performed and
its temperature dependence is determined directly
using either single- or multi-temperature testing ap-
proaches. Fracture toughness of the degraded materi-
als shall be determined and no initial initial proper-
ties are required;
− indirect determination of the fracture toughness of
RPV material using Charpy V-notch impact test
specimens and correlation formulae between brittle
fracture temperature and temperature dependence of
fracture toughness including their shifts. In this case,
critical temperature of brittleness from Acceptance
Tests, Tk0, must be well known, as surveillance
Charpy specimens could serve only for determina-
tion of a shift of the transition temperature
3.1. FRACTURE MECHANICS TEMPERATURES
3.1.1. MASTER CURVE APPROACH
Reference temperature T0 is determined from static
fracture toughness tests using a single- or multiple-tem-
perature „Master Curve“ approach in accordance with
the standard ASTM E 1921-02 and its application is
given in [2, 3]. Then, a chosen lower tolerance bound
(usually 5%) should be applied for determination of
fracture toughness temperature dependence to be used
in integrity/lifetime calculations.
In principle, transition temperature T0 is usually de-
termined for the required fluence for the RPV integrity
assessment, i.e. for end-of-life fluence or for extended
life fluence In addition, in special cases during RPV de-
sign or for prediction of RPV behaviour during future
operation, these temperatures could be also evaluated
using similar procedure as for critical temperature of
brittleness, together with shifts of brittle fracture tem-
perature instead of shifts ΔTJC or separately only for
trend curves of shifts ∆T0.
Similarly, this temperature could be determined also
for a given time of ageing, i.e. for characterisation of
thermal ageing of materials. The reference temperature,
T0, as determined in accordance with the standard
ASTM E 1921-02 shall be increased by a margin, equal
to a standard deviation σ (defined below) only for the
tested condition, i.e. either initial or for a given degrada-
tion state. Reference temperature T0 is defined from ex-
perimentally determined values of static fracture tough-
ness, KJC, adjusted to the thickness of 25 mm.
Margin σ1 is added to cover the uncertainty in T0 as-
sociated with using of only a few specimens to establish
T0 while margin δ TM characterizes the scatter of the
properties of forgings and welds. The total standard de-
viation σ of the estimate of T0 is given by:
σ=(σ1
2+ δ TM
2)1/2, (16)
where margin σ1 is defined as
σ1 = β / N0.5, oC, (17)
where N = total number of specimens used to establish
the value of T0,
β = + 18 °C.
If the value of δ TM is not available from Qualification
tests of given material, the use of the following fixed val-
ues is suggested:
δ TM1 = 10°C for the base material,
δ TM2 = 16°C for weld metals.
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 72-77.
75
Thus, reference temperature that will be used in RPV
integrity evaluation, RT0, is defined as:
RT0 = T0 + σ. (18)
In the case when surveillance specimens for
determination of temperature T0 were irradiated at a
different neutron fluence as required (i.e. end-of-life or
extended life), an interpolation between results from two
adjacent fluences is permitted. In this case, interpolation
can be performed using power law formula.
3.1.2. BASE CURVE APPROACH
“Base Curve” approach is approved as a national
procedure [4] in Russian Federation. It contains the fol-
lowingparts:
− A new procedure of RPV brittle fracture resistance
calculation;
− A prediction procedure of fracture toughness tem-
perature dependence on the base of testing small
specimens (Prometey Probabilistic Model).
3.2. BRITTLE FRACTURE TEMPERATURE
To determine both the initial and actual temperature de-
pendences of fracture toughness KJC, respectively, the brit-
tle fracture temperature T k has to be used. The brittle frac-
ture temperature T k is usually determined for the fluence
corresponding to the design or extended end of life. The
brittle fracture temperature T k as a result of irradiation
embrittlement is given by the following relationship:
T k = ,Fko T + T ∆ (3.4)
where T ko critical temperature of brittleness, [°C], FT∆
shift of the brittle fracture temperature due to irradiation, °C.
The values of the brittle fracture temperature Tk0 was
to be obtained from the Acceptance Tests. If such value is
unknown, then the so-called “guaranteed” value from the
corresponding Technical Requirements or from the Code
for a given material is used. When using “guaranteed” val-
ues of Tk0 in RPV integrity evaluation, then no tempera-
ture margin should be added as this value is considered to
be enough conservative.
If the experimentally determined values of the initial
brittle fracture temperature Tk0 from component Accep-
tance Tests are known (based on component Passport) these
should be increased by the temperature margin δ TM ; the
margin has to take into account the scatter of the values of
mechanical properties in forgings and welds; δ TM.
Value of δ TM is the standard deviation of Tk0 deter-
mined for the given forgings or weld metal in the frame of
Qualification Tests or in the frame of a set of identical ma-
terials established during production of the component by
the identical technology. If this value is not available the
application of the following values is suggested
δ TM1 = 10°C for the base material,
δ TM2 = 16°C for weld metals.
This margin should be applied to the temperature Tk
determined in accordance with equation (3.4).
3.3. DETERMINATION OF THE EFFECT
OF IRRADIATION EMBRITTLEMENT
3.3.1. THE SHIFT OF THE BRITTLE FRACTURE
TEMPERATURE DUE TO IRRADIATION
First method: Results of tests of the surveillance
program for specimens of the material of the vessel are
available: respectively, also results for other vessels
containing identical materials – for example, identical
heat of the welding wire and flux:
Shift of the brittle fracture temperature is determined
from the formula:
∆TF = TkF - Tki, (19)
where TkF is a value of transition temperature for a fluence
F, Tki is a value of transition temperature for initial
conditions (unirradiated).
In both cases, these temperatures are determined from
similar sets of specimens (minimum 12) using similar test
equipment and procedure. The difference in fluence
between specimens of one set should be smaller than ±
15 % of the mean value, and the difference in irradiation
temperatures of individual specimens should be within
10 °C. Finally, the mean value of irradiation temperature
should be not higher than + 10 °C above the inner wall
temperature of the reactor pressure vessel.
Obtained experimental values of KV (impact notch
energy) are evaluated using the following equation
KV = A + B tanh [(T-T0)/C], (20)
where A, B, C and T0 are constants derived by statistical
evaluation.
It is strongly recommended to set lower shelf energy at
values between 0 and 5 J to avoid incorrect fitting when a
small number of specimens are tested in the lower shelf
energy temperature region. Upper shelf energy should be
fixed to the mean value of ductile fractured specimens.
Shift of the transition temperature is determined for the
criterion or consistent with national procedures
KV = 41 J. (21)
This procedure results in valid values of ΔTF only when
the upper shelf energy, derived from the formula (3.6) -
i.e., sum of (A+B), - is greater than 68 J. The results of
determinations of the shift in the brittle fracture
temperature obtained at least for three different neutron
fluences are to be evaluated by the least squares method
using the relationship:
ΔTF = AF
exp. (F.10-22)n, (22)
where F is the fluence of fast neutrons with the energy
higher than 0.5 MeV, AF
exp and n are empirical constants
obtained by statistical evaluation of surveillance data.
Determination of shifts ΔTF is to be based on
unirradiated and irradiated test data obtained from the
same type of testing equipment and using the identical
procedures for statistically processed curves. Mean
experimentally determined fluence dependence of ΔTk
in accordance with the equation (3.8) from surveillance
tests is compared with the prediction for a given
chemical composition of the tested material. If the real
shifts are larger by more than 30 °C (approx. 1.5 SD
given in (3.9+3.10)) for end-of-life fluence than
predicted value, analysis of the difference should be
performed and evaluated.
In addition, the mean line from (3.8) should be
vertically shifted upward by the value of δ TM calculated
according to 3.2. If any experimental point exceeds this
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 72-77.
76
adjusted trend curve, the curve should be shifted further
until it bounds all data. This upper boundary of the shifts is
to be used in assessment of RPV resistance against fast
fracture. It is not allowed to extrapolate shifts of the
transient temperatures for the fluences higher than double
of the maximum fluence used for the experiment.
Second method: If there are insufficient number or
no surveillance test results: In such a case, the following
prediction formula can be used for prediction of the
shift in brittle fracture temperature:
Metal Formula SD Num-
ber
Weld
metal*
[ ] 29.03.51884 Φ∗∗+∗=∆ CuPT
= 29.0)064.011.1(800 Φ∗∗+∗∗ CuP
SD=22.6 oC (23)
Base
metal*
ΔT = 8.37* F0.43 SD=21.7 °C (24)
*Formulae are valid for neutron fluences in the range 1022 < F < 4 x 1024
m-2 SD = standard deviation
Both formulae represent the mean trend line; this
mean value with the margin should be used for RPV
integrity assessment.
3.3.2. DETERMINATION OF THE REFERENCE
TEMPERATURE T0 FOR REQUIRED TIME
OF OPERATION
If this cannot be determined directly by fracture tough-
ness testing, then the following mixed way (i.e. combina-
tion of static fracture toughness and Charpy V-notch im-
pact test results) may be conservatively used for determina-
tion of temperature T0 during operation, i.e.
T0
operation = T0
initial + 1.1 ΔTF, (25)
where ΔTF is determined by the same process as is
shown in 3.3.1, i.e. using Charpy impact specimen test-
ing and/or prediction using formula (3.8).
In this case, the same margin than for the scatter of
the material and the margin equal to standard deviation,
Δσ, in accordance with the standard E 1921-02 should
be applied for determination of T0
initial.
CONCLUSION
New Guidelines for prediction irradiation
embrittlement in reactor pressure vessel materials of
WWER-440 type reactors were prepared within the IAEA
Co-ordinated Research project. These Guidelines are
based on analysis of experimental data from irradiation of
materials of these RPVs collected in the IAEA
International Database on RPV Materials (IDRPVM).
These Guidelines contain formulae for prediction
irradiation embrittlement for base and weld metals of
this type of reactors, either based on brittle transition
temperature, Tk, or reference temperature of Master
Curve approach, T0.
Recommendation for the use of real experimental
data from testing surveillance specimens from these
RPVs was also elaborated and recommended.
REFERENCES
1. PNAE-G0002-86 – Standard for strength
calculations of components and piping in NPPs, PN
AE G-7 002-86. M.: «Energoatomizdat», 1989.
2. ASTM E 1921–Test Method for Determination of
Reference Temperature, T0, for Ferritic Steels in the
Transition Range, ASTM, West Conshohocken, PA,
(-97 version published in 1998 and -02 version pub-
lished in 2002)
3. IAEA TECDOC xxxx- IAEA Guidelines for Applica-
tion of the Master Curve Approach to Reactor Pres-
sure Vessel Integrity. IAEA TECDOC (in print).
4. Procedure for determination of residual lifetime of
WWER reactor pressure vessels during operation.
MRK-SKhR-2000. Sankt Peterburg-Moscow, 2000.
ПРЕДСКАЗАНИЕ РАДИАЦИОННОГО ОХРУПЧИВАНИЯ
ВНУТРИКОРПУСНЫХ МАТЕРИАЛОВ РЕАКТОРА ВВЕР-440
М. Брумовский, М. Куткаб Л. Дебарберис, Ф. Желлемот, А. Крайков, М. Вало
Предсказание радиационного охрупчивания материалов внутрикорпустных устройств (ВКУ) обычно выполняется в соотвествии с кодами и стандар-
тами, основанными на обширной информации, накопленной в ходе модельных и исследовательских программ. Существующий Российский Код (Стандарт
для вычислений прочности и компонентов и трубопроводов в атомных электростанциях (АЭС) – PNAE G 7-002-86) для оценки радиационного охрупчива-
ния ВКУ реакторов ВВЭР хорошо зарекомендовал себя на протяжении более чем 20 лет; он основан на экспериментальных данных, полученных в иссле-
довательских реакторах с ускоренным облучением. Оценка упомянутого выше Кода была выполнена без результатов с образцов-свидетелей, которые были
получены в 1980-1990 годах. Таким образом, необходим новый анализ всех имеющихся данных для более точного прогнозирования радиационного
охрупчивания материалов ВКУ. На основании того факта, что было использовано большое количество данных с макетных и исследовательских программ,
Международная База данных МАГАТЭ по материалам ВКУ была использована для подробного анализа радиационного охрупчивания ВКУ материалов
для реакторов ВВЭР. Таким образом, в рамках Координационного проекта МАГАТЭ были выполнено следующее: сбор полных данных с образцов-свиде-
телей ВВЕР-440 и других подобных важных данных в Международную базу данных; анализ данных по радиационному охрупчиванию ВКУ материалов
ВВЭР-440 с использованием международной базы данных; оценка формулы прогнозирования в зависимости от химического состава материала, флюенса
нейтронов и нейтронного потока, разработка основных положений для предсказания радиационного охрупчивания эксплуатируемых внутрикорпусных
устройств ВВЭР-440, включая методологию для оценки контрольных данных конкретной действующей установки.
ПРОГНОЗУВАННЯ РАДІАЦІЙНОГО ОКРИХЧЕННЯ ВНУТРІШНЬОКОРПУСНИХ МАТЕРІАЛІВ
РЕАКТОРА ВВЕР-440
М. Брумовський, М. Кутка, Л. Дебарберис, Ф. Желлемот, А. Крайков, М. Вало
Прогнозування радіаційного окрихчення матеріалів внутрішньо корпусних пристроїв (ВКП) зазвичай виконується у відповідності з кодами та
стандартами, заснованими на численній інформації, що була накопичена на базі модельних та дослідницьких програм. Існуючий Російський Код (Стандарт
для обчислення міцності компонентів і трубопроводів в атомних електростанціях (АЕС)-PNAE G 7 –002-86) для оцінки радіаційного окрихчення ВКП
реакторів ВВЕР зарекомендував себе на протязі більш, ніж 20 років; він заснован на експриментальних даних, отриманих в дослідницьких реакторах з
прискореним опроміненням. Оцінка вище згаданого Кода була виконана без результатів із зразків-свідків, які були отримані у 1980-1990 роках. Таким
чином, необхідно провести новий аналіз усіх наявних даних для більш точного прогнозування радіаційного окрихчення матеріалів ВКП. На підставі того
факту, що було використано велику кількість даних з макетних та дослідницьких програм, Міжнародна база даних МАГАТЕ по матеріалам ВКП біла
використана для докладного аналізу радіаційного окрихчення ВКП матеріалів для реакторів ВВЕР. Таким чином, в межах Координаційного проекту
МАГАТЕ було виконано наступне: Збирання повних даних із зразків-свідків ВВЕР-440 та інших подібних важливих даних в Міжнародну базу даних,
аналіз даних по радіаційному окрихченню ВКП матеріалів ВВЕР-440 з використанням міжднародної бази даних, оцінка формули прогнозування в
залежності від хімічного складу матеріалу, флюенса нейтронів та нейтронного потоку, розробка основних положень для прогнозування радіаційного
окрихчення експлуатуємих внутрішньо корпусних пристроїв ВВЕР-440, включно з методологією для оцінки контрольних даних конкретної діючої
установки.
________________________________________________________________________________
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 6.
Серия: Физика радиационных повреждений и радиационное материаловедение (91), с. 72-77.
77
УДК 621.039.577
PREDICTION OF IRRADIATION EMBRITTLEMENT
IN WWER-440 REACTOR PRESSURE VESSEL MATERIALS
INTRODUCTION
2. IRRADIATION EMBRITTLEMENT
MODELING
2.1. PRINCIPLES OF THE TREND CURVE
DERIVATION
2.2. TREND CURVE FITTING
2.3. SUMMARY OF THE FITS:
3. GUIDELINES FOR PREDICTION
OF RADIATION EMBRITTLEMENT
OF OPERATING WWER-440 RPVS
3.1. FRACTURE MECHANICS TEMPERATURES
3.1.1. MASTER CURVE APPROACH
3.1.2. BASE CURVE APPROACH
3.2. BRITTLE FRACTURE TEMPERATURE
3.3. DETERMINATION OF THE EFFECT
OF IRRADIATION EMBRITTLEMENT
3.3.1. THE SHIFT OF THE BRITTLE FRACTURE TEMPERATURE DUE TO IRRADIATION
CONCLUSION
REFERENCES
ПРЕДСКАЗАНИЕ РАДИАЦИОННОГО ОХРУПЧИВАНИЯ
ВНУТРИКОРПУСНЫХ МАТЕРИАЛОВ РЕАКТОРА ВВЕР-440
М. Брумовський, М. Кутка, Л. Дебарберис, Ф. Желлемот, А. Крайков, М. Вало
|