Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons

Amorphous and microcrystalline silicon are well known materials for thin film large area electronics. The defects in the material are an important issue for the device quality and the manufacturing process optimization. We study defects in thin film silicon with electron spin resonance (ESR). In ord...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Astakhov, O., Finger, F., Carius, R., Lambertz, A., Neklyudov, I., Petrusenko, Yu., Borysenko, V., Barankov, D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110646
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons/ O. Astakhov, F. Finger, R. Carius, A. Lambertz, I. Neklyudov, Yu. Petrusenko, V.Borysenko, D. Barankov // Вопросы атомной науки и техники. — 2007. — № 2. — С. 39-42. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110646
record_format dspace
spelling irk-123456789-1106462017-01-06T03:02:47Z Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons Astakhov, O. Finger, F. Carius, R. Lambertz, A. Neklyudov, I. Petrusenko, Yu. Borysenko, V. Barankov, D. Физика радиационных повреждений и явлений в твердых телах Amorphous and microcrystalline silicon are well known materials for thin film large area electronics. The defects in the material are an important issue for the device quality and the manufacturing process optimization. We study defects in thin film silicon with electron spin resonance (ESR). In order to vary the defect density in a wide range 2 MeV electron bombardment at 100 K was applied with dose as high as 10¹⁸ e*cm⁻². Samples were investigated after deposition, after irradiation and between the annealing steps. The spin density (Ns) in the material was varied over 3 orders of magnitude. Strong satellites with g≈2.010 and g≈2.000 were observed on the shoulders of the dangling bond line. The initial Ns and the shape of the resonance line were restored after annealing. Аморфний і мікрокристалічний кремній є широко відомими матеріалами для виробництва тонкоплівкової електроники великої площі. Дефекти у даних матеріалах відіграють вирішальну роль для якості пристроїв і оптимізації виробничих процесів. Ми досліджували тонкоплівковий гідрогенований кремній методом вимірів електронного парамагнитного резонансу (ЕПР). Для зміни щільності дефектів у широкому диапазоні зразки було опромінено електронами з енергією 2 МеВ. Зразки було досліджено після осадження, після опромінення і між етапами відпалу. Щільність спинів (Ns) в матеріалі змінювалась в межах 3-х порядків величини. З обох боків від центрального резонансу, що характеризує обірвані зв’язки кремнію, спостеригались потужні додаткові резонансні лінії (g≈2.010 и g≈2.000). Після відпалу форма резонансних ліній і щільність спинів поверталися до вихідних показників. Аморфный и микрокристаллический кремний являются широко известными материалами для производства тонкопленочной электроники большой площади. Дефекты в данных материалах играют решающую роль для качества приборов и оптимизации производственных процессов. Мы исследовали тонкопленочный гидрогенированный кремний методом измерений электронного парамагнитного резонанса (ЭПР). Для изменения плотности дефектов в широких пределах образцы облучались электронами с энергией 2 МэВ. Образцы исследовались после осаждения, после облучения и между стадиями отжига. Плотность спинов (Ns) в материале изменялась в пределах 3-х порядков величины. По обе стороны от центрального резонанса, характеризующего оборванные связи кремния, наблюдались мощные дополнительные резонансные линии (g≈2.010 и g≈2.000). После отжига форма резонансных линий и плотность спинов возвращались к исходным значениям. 2007 Article Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons/ O. Astakhov, F. Finger, R. Carius, A. Lambertz, I. Neklyudov, Yu. Petrusenko, V.Borysenko, D. Barankov // Вопросы атомной науки и техники. — 2007. — № 2. — С. 39-42. — Бібліогр.: 16 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/110646 538.279:537.533.9 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
spellingShingle Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
Astakhov, O.
Finger, F.
Carius, R.
Lambertz, A.
Neklyudov, I.
Petrusenko, Yu.
Borysenko, V.
Barankov, D.
Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons
Вопросы атомной науки и техники
description Amorphous and microcrystalline silicon are well known materials for thin film large area electronics. The defects in the material are an important issue for the device quality and the manufacturing process optimization. We study defects in thin film silicon with electron spin resonance (ESR). In order to vary the defect density in a wide range 2 MeV electron bombardment at 100 K was applied with dose as high as 10¹⁸ e*cm⁻². Samples were investigated after deposition, after irradiation and between the annealing steps. The spin density (Ns) in the material was varied over 3 orders of magnitude. Strong satellites with g≈2.010 and g≈2.000 were observed on the shoulders of the dangling bond line. The initial Ns and the shape of the resonance line were restored after annealing.
format Article
author Astakhov, O.
Finger, F.
Carius, R.
Lambertz, A.
Neklyudov, I.
Petrusenko, Yu.
Borysenko, V.
Barankov, D.
author_facet Astakhov, O.
Finger, F.
Carius, R.
Lambertz, A.
Neklyudov, I.
Petrusenko, Yu.
Borysenko, V.
Barankov, D.
author_sort Astakhov, O.
title Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons
title_short Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons
title_full Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons
title_fullStr Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons
title_full_unstemmed Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons
title_sort paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 мev electrons
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Физика радиационных повреждений и явлений в твердых телах
url http://dspace.nbuv.gov.ua/handle/123456789/110646
citation_txt Paramagnetic centers in amorphous and microcrystalline silicon irradiated with 2 МeV electrons/ O. Astakhov, F. Finger, R. Carius, A. Lambertz, I. Neklyudov, Yu. Petrusenko, V.Borysenko, D. Barankov // Вопросы атомной науки и техники. — 2007. — № 2. — С. 39-42. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT astakhovo paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT fingerf paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT cariusr paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT lambertza paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT neklyudovi paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT petrusenkoyu paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT borysenkov paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
AT barankovd paramagneticcentersinamorphousandmicrocrystallinesiliconirradiatedwith2mevelectrons
first_indexed 2025-07-08T00:55:43Z
last_indexed 2025-07-08T00:55:43Z
_version_ 1837038196268990464
fulltext UDC 538.279:537.533.9 PARAMAGNETIC CENTERS IN AMORPHOUS AND MICROCRYSTALLINE SILICON IRRADIATED WITH 2 MeV ELECTRONS A. Astakhov1,2, F. Finger2, R. Carius2, A. Lambertz2, I. Neklyudov1, Yu. Petrusenko1, V. Borysenko1, D. Barankov1 1National Science Center “Kharkov Institute of Physics & Technology”, Institute of Material Science & Technology, 1, Akademicheskaya st., 61108, Kharkov, Ukraine; 2Forschungszentrum Jülich, Institute of Photovoltaics, 52425 Jülich, Germany Amorphous and microcrystalline silicon are well known materials for thin film large area electronics. The de- fects in the material are an important issue for the device quality and the manufacturing process optimization. We study defects in thin film silicon with electron spin resonance (ESR). In order to vary the defect density in a wide range 2 MeV electron bombardment at 100 K was applied with dose as high as 1018 e*cm-2. Samples were investigat- ed after deposition, after irradiation and between the annealing steps. The spin density (Ns) in the material was var- ied over 3 orders of magnitude. Strong satellites with g≈2.010 and g≈2.000 were observed on the shoulders of the dangling bond line. The initial Ns and the shape of the resonance line were restored after annealing. INTRODUCTION Amorphous hydrogenated silicon (a-Si:H) is a wide- ly used material for production of large area electronics, TFTs and photovoltaics [1]. Microcrystalline hydro- genated silicon (µc-Si:H) is a new promising material for this area of applications, providing high carrier mo- bility and effective doping. Low substrate temperature during deposition (200...300 oC) together with possibili- ty of large area depositions make these materials attrac- tive for commercial thin films electronics. Great progress has been made in the last decades in under- standing of the properties of the silicon based disordered semiconductors [2, 3]. Nevertheless many questions still have to be answered in order to improve nowadays tech- nologies. In particular, clear understanding of the role of defects in the electronic properties of a-Si:H and µc- Si:H is crucial. The Electron Spin Resonance (ESR) technique was long ago found to be a suitable tool for investigation of defects in thin film silicon [2, 3]. ESR being sensitive to the nearest neighborhood of the elec- tron in paramagnetic state could give valuable informa- tion on the nature and configuration of the given defect [4]. Unfortunately natural disorder in the investigated material smears out fine structure of the spectrum [2, 3]. Slightly asymmetric ESR lines at g-values in the range of 2.0045...2.0055 with the width of 6-8 gauss charac- terize the intrinsic thin film silicon [2, 3, 5, 6, 7, 8]. The resonance is commonly assigned to the silicon dangling bonds (db) in different environments [5], but a more ac- curate identification of the defects in the material is still missing. Defect density management with the post- preparation treatment is required to gain more informa- tion on the defect structure. Low temperature bombard- ment with high-energy electrons was shown to be suit- able tool for the reversible enhancement of the defect density in the hydrogenated silicon samples with a mi- crostructure ranging from microcrystalline to amor- phous [9]. In the report we present results on a-Si:H and µc-Si:H material were the defect density is varied by electron irradiation and subsequent annealing. EXPERIMENT SAMPLE PREPARATION Samples were prepared using Very High Frequen- cy Plasma Enhanced Chemical Vapour Deposition (VHF-PECVD) (95 MHz) from silane-hydrogen mix- tures. The deposition parameters were constant for all samples in the series: gas pressure 300Torr, discharge power 0.1W/cm2, and substrate temperature 200 oC. Only the silane to hydrogen ratio (SC = [SiH4]/[SiH4]+[H2]) was varied in the gas mixture from run to run in a range of 3...100% leading to structure variation from highly crystalline to com- pletely amorphous. Several samples were deposited with a supplement of PH3 in the deposition gas mix- ture in order to achieve n-type doping as high as 5...13 ppm. The crystalline volume fraction (ICRS) was semi- quantitatively determined from Raman measurements as a ratio between intensities of the Raman signals at 520 cm-1 and 500 cm-1 (attributed to the crystalline phase) and the Raman signal at 480 cm-1 (attributed to the disordered phase), i.e. ICRS = (I500 + I520)/(I480 + I500 + I520) [10]. Films with 4...7 µm thickness were deposited on the Mo substrate. The substrate was bent after deposi- tion and peeled off flakes of the deposited films were collected and sealed in quartz tubes at 0.5bar He at- mosphere for ESR measurements. The ESR was measured in X-band (F≈9,3GHz) at temperature of 40 K using lock-in detection tech- nique. The samples preparation and ESR measure- ments were carried out in the Institute of Photo- voltaics (Forschungszentrum Juelich, Germany). _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 2. 39 Серия: Физика радиационных повреждений и радиационное материаловедение (90), с. 39-42. IRRADIATION The electron bombardment was carried out using the ELIAS Van de Graaf electron accelerator in National Science Center “Kharkov Institute of Physics & Tech- nology” (Ukraine) with energy of 2 MeV and beam cur- rent density of 5µA*cm-2. A dose of 1018 e*cm-2 was ap- plied for all samples in the present experiment. The irra- diation was carried out at a temperature of around 100K in order to reduce self-annealing and exclude the heat damage to the sample. During irradiation samples were cooled with the flow of high-purity N2. Note, that after irradiation samples were transported to the Institute of Photovoltaics (Germany). Therefore to exclude room temperature annealing, samples were stored in the LN2-cooled dry transport cryostat. Hence the room temperature exposure was minimized to 2...5 minutes. After the measurements of the irradiated samples an annealing procedure was applied in a step- wise manner with the following sequence: 50, 80, 120, 160 oC, each step was 30 minutes long. The maximum annealing temperature was chosen well below the depo- sition temperature (Ts=200 oC) in order to avoid changes of the microstructure of the samples. RESULTS We investigated ESR of the intrinsic thin film sili- con with different structural composition extensively before the electron irradiation experiment [6, 11, 12, 13]. Fig. 1 shows the dependence of the Ns and g-value on the SC during sample preparation. Fig. 1. g-value and the spin density of the samples pre- pared at various SC. Dashed line approximately indi- cates the transition from microcrystalline to amorphous structure according to the Raman data The transition from the microcrystalline to amor- phous growth at our deposition conditions is found at SC≈7% according to the Raman data i.e. samples with SC>7% do not show a crystalline peak in the Raman spectra (Raman amorphous). There is a clear systematic shift of the g-value between microcrystalline and amorphous material. The g-value increases in the vicin- ity of transition (with increase of the amorphous phase fraction) from g≈2.0047 to g≈2.0050. Note, that the g– value increases further beyond the transition to amorph- ous structure (SC=8…15%). The saturation was found only at SC>50% at g≈2.0054. The g-value shift is ex- pected due to the difference of the dangling bond envir- onment in μc-Si:H and a-Si:H. The shift of the g-value after transition to amorphous growth, where no crystal- line peak could be seen in the Raman spectra, however is surprising. The region is interesting because the Ns has a minimum here and the material prepared within the region is known to be the best absorber layer for the amorphous thin film silicon solar cells. The Fig. 2,a shows the ESR spectra before and after irradiation. Note that all spectra are normalized to the same peak-to-peak height for the lineshape comparison. Fig. 2,b is a plot of the spin density vs. silane concentration before and after irradiation. The spin density after irradiation increases by 3 orders of magnitude and qualitatively repeats the Ns vs. SC dependence before irradiation. No significant shift of the resonance line from the initial position of the db line was detected after irradiation, but significant change of the lines shape is clearly seen (Fig. 2,a). Remarkable additional features appear on the shoulders of the central db line at g-values around 2.000 and 2.010. These features were found in the spectra of all irradiated samples having different configuration for different material structures. Fig. 2. ESR spectra of a-Si:H and c-Si:H withμ different silane concentration before (thin) and after (bold) irradiation (a); Spin density of the material prepared with different SC before and after irradiation (b) After irradiation annealing was applied to the samples. In Fig. 3,a spin densities of the intrinsic samples after annealing steps are presented. The Ns of the db line was increased after irradiation as was mentioned above. During annealing all samples show return of the Ns close to as-deposited value. _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 2. 40 Серия: Физика радиационных повреждений и радиационное материаловедение (90), с. 39-42. Fig. 3. Spin density of the intrinsic samples with different structure vs. treatment steps (a); Spin density of the PH3-doped material vs. treatment steps (b) In Fig. 4 (a&b) some of the spectra are shown for intrinsic µc-Si:H and a-Si:H. As one can see the satellites being pronounced after irradiation are more sensitive to the annealing and already at 50 oC their relative contribution is clearly reduced. In the majority of cases spectra of annealed material return to the initial line shape. In the Fig. 3,b Ns of n-doped samples are presented. One has to mention, that in the initial state the db resonance in the n-doped material is reduced or not detectable at all, but the conduction electron (CE) line arises with doping level increase [12], as shown on the Fig. 4,c (top line). Fig. 4. Spectra after deposition, after irradiation and on two annealing points: a – intrinsic μc-Si:H; b – intrinsic a-Si:H; c – 10 ppm PH3-doped μc-Si:H The reduction of the db line is caused by the shift of the Fermi level towards the conduction band. In this situation the db states become doubly occupied and are not detectable any more in the ESR experiment. Instead tail states of the conduction band get populated. After irradiation the resonance of the n-doped sample is identical to the intrinsic samples i.e. only db line (with above mentioned satellites) was observed (Fig. 4,c bold line). During annealing the CE resonance re-appears and after annealing at 120 oC becomes dominant again in the spectrum. Therefore we can observe a minimum of Ns when the position of the Fermi level is already above the midgap but is still below the level where majority of the donor states are situated. After annealing the return of the lineshape and the spin density was observed for the n-doped samples as well as for the intrinsic ones. DISCUSSION The increase of the defect density in the middle of the gap in the same sample was the central idea of the irradiation experiment. One of the important requirements for this approach is maintenance of the material microstructure during the whole experiment. From the reversibility of the irradiation effect we can conclude that the structure of the samples was not significantly affected by the treatment. Another important issue is that the position of the created defects is within the bandgap of the material. The fact is supported with two observations: (i) the resonance of the intrinsic samples was not shifted after irradiation (ii) the observation of the db resonance in the n-doped samples indicates the Fermi level shift in the middle of the gap. One should consider now the appearance of the new features in the resonance of irradiated samples (Fig. 2,a). This observation was not reported by other groups and was an unexpected outcome of the experiment. The structure of the features is different for μc-Si:H and a-Si:H. For the a-Si:H samples prepared with different SC there is no significant difference in the structure of satellites but their relative contribution is different. The origin of the satellites is not identified at the moment therefore the line shape of these satellites could not be evaluated unambiguously. There are number of possible origins of the satellites: hyperfine interaction with hydrogen nuclei, creation of centres with high anisotropy which lead to a complex powder spectrum line, the spin-spin interaction in the local areas with high Ns, creation of the new defects in a special environment, and of course the combination of these reasons could not be excluded. The choice of the model will affect the estimation of the contribution of satellites. We have estimated the contribution of the satellites for the a-Si:H after irradiation assuming, for simplicity, the constancy of the central line shape. The simulation procedure is presented in Fig. 5. Fig. 5. The simulation of the satellites contribution with two approaches: contributions assumed to be Gaussian lines (a); additional spectrum assumed to be the powder pattern of the anisotropic state (b) CONCLUSIONS _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 2. 41 Серия: Физика радиационных повреждений и радиационное материаловедение (90), с. 39-42. The first important outcome of the work is the suc- cessful application of MeV electron bombardment as a tool for reversible increase of the defect density in μc- Si:H and a-Si:H. The defects were created in the band gap of the material and likely have the same origin as defects before irradiation. The experiment being applied for the single layers of μc-Si:H and a-Si:H as well as to devices on their basis could result in new information on the role of defects in the electronic properties of the material. New features were observed in the irradiated materi- al appearing as satellites on the central (db) line. Their shape and contribution is dependent on the particular material structure. The origin of the satellites is cur- rently not identified. The states responsible for the satel- lites are less stable at elevated temperatures than the db like defects thus the low temperature irradiation and sample storage is critical for the observation of the satellites. Possibly due to this reason no reports on the satellite appearance was found despite many irradiation experiments were done by other groups [15, 16]. REFERENCES 1. R. Schropp, M. Zeman. Amorphous and microcrys- talline silicon solar cells: modeling, materials and device technology. Boston, Mass. Kluwer Academic Publ. 1998, ISBN 0-7923-8317-6. 2. R.A. Street. Hydrogenated amorphous silicon. Cam- bridge University Press, 1991. 3. R.A. Street, D.K. Biegelsen //Topics in applied physics. 1984, v. 56, p. 198–208. 4. C. Poole. Electron spin resonance: a comprehensive treatise on experimental techniques. New York: Wi- ley, 1983. 5. M. Stutzmann, D. Biegelsen //Phys. Rev. B. 1989, v. 40, p. 14. 6. J. Müller, F. Finger, R. Carius, H. Wagner //Phys. Rev. B 60. 1999, p. 16. 7. M.M. de Lima, P.C. Taylor, S. Morrison, A. LeGeune, F.C. Marques //Phys. Rev. B 65. 2002, p. 235324. 8. S. Yamasaki, T. Umeda, J. Isoya, J.H. Zhou, K. Tanaka //J. Non-Cryst. Solids. 1998, v. 227-230, p. 332–337. 9. O. Astakhov, F. Finger, R. Carius, A.Lambertz, Yu. Petrusenko, V. Borysenko, D. Barankov //J. Non-Cryst. Sol. 2006, v. 352, p. 1020–1023. 10.L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger, H. Wagner //Philos. Mag. 1998, v. A 77, p. 1447. 11.F. Finger, A.L.B. Neto, R. Carius, T. Dylla, S. Klein //Phys. Stat. Solidi C. 2004, v. 1, p. 1248–1254. 12.T. Dylla, R. Carius, F. Finger //Mat. Res. Soc. Symp. Proc. 2002, v. 715, p. A20.9.1. 13.A.L. B.Neto, T. Dylla, S. Klein, T. Repmann, A. Lambertz, R. Carius, F. Finger //J. Non-Cryst. Sol. 2004, v. 338–340, p. 168–172. 14.J.W. Corbett. Electron radiation damage in semiconductors and metals New-York. NY: Academic Pr., 1966. 15.15 R. Street, D. Biegelsen, J. Stuke //Philosophical Magazine B. 1979, v. 40, N 6, p. 451–464. 16.W. Bronner, M. Mehring, R. Brüggemann //Phys. Rev. B. 2002, v. 65, p. 165212. ПАРАМАГНИТНЫЕ ЦЕНТРЫ В АМОРФНОМ И МИКРОКРИСТАЛЛИЧЕСКОМ КРЕМНИИ, ОБЛУЧЕННОМ 2 МэВ ЭЛЕКТРОНАМИ А. Астахов, Ф. Фингер, Р. Кариус, A. Ламбертз, И. Неклюдов, Ю. Петрусенко, В. Борисенко, Д. Баранков Аморфный и микрокристаллический кремний являются широко известными материалами для производства тонко- пленочной электроники большой площади. Дефекты в данных материалах играют решающую роль для качества прибо- ров и оптимизации производственных процессов. Мы исследовали тонкопленочный гидрогенированный кремний мето- дом измерений электронного парамагнитного резонанса (ЭПР). Для изменения плотности дефектов в широких пределах образцы облучались электронами с энергией 2 МэВ. Образцы исследовались после осаждения, после облучения и между стадиями отжига. Плотность спинов (Ns) в материале изменялась в пределах 3-х порядков величины. По обе стороны от центрального резонанса, характеризующего оборванные связи кремния, наблюдались мощные дополнительные резо- нансные линии (g≈2.010 и g≈2.000). После отжига форма резонансных линий и плотность спинов возвращались к исход- ным значениям. ПАРАМАГНИТНІ ЦЕНТРИ У АМОРФНОМУ І МІКРОКРИСТАЛІЧНОМУ КРЕМНІЇ, ОПРОМІНЕНОМУ 2 МеВ ЕЛЕКТРОНАМИ O. Астахов, Ф. Фінгер, Р. Каріус, A. Ламбертз, І. Неклюдов, Ю. Петрусенко, В. Борисенко, Д. Баранков _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 2. 42 Серия: Физика радиационных повреждений и радиационное материаловедение (90), с. 39-42. Аморфний і мікрокристалічний кремній є широко відомими матеріалами для виробництва тонкоплівкової електроники великої площі. Дефекти у даних матеріалах відіграють вирішальну роль для якості пристроїв і оптимізації виробничих процесів. Ми досліджували тонкоплівковий гідрогенований кремній методом вимірів електронного парамагнитного резонансу (ЕПР). Для зміни щільності дефектів у широкому диапазоні зразки було опромінено електронами з енергією 2 МеВ. Зразки було досліджено після осадження, після опромінення і між етапами відпалу. Щільність спинів (Ns) в матеріалі змінювалась в межах 3-х порядків величини. З обох боків від центрального резонансу, що характеризує обірвані зв’язки кремнію, спостеригались потужні додаткові резонансні лінії (g≈2.010 и g≈2.000). Після відпалу форма резонансних ліній і щільність спинів поверталися до вихідних показників. _______________________________________________________________________________ ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2007. № 2. 43 Серия: Физика радиационных повреждений и радиационное материаловедение (90), с. 39-42. REFERENCES