Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration

Electromagnetic drift instabilities in the plasma of a field reversed configuration are considered with no assumption of adiabatic response of ions and/or electrons in the range of perpendicular wave number values from k┴ < 1/ρTi up to k┴ ~ 1/ρTe (ρTi and ρTe are ion and electron thermal gyroradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Khvesyuk, V.I., Chirkov, A.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/110783
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration / V.I. Khvesyuk, A.Yu. Chirkov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 75-77. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110783
record_format dspace
spelling irk-123456789-1107832017-01-07T03:03:35Z Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration Khvesyuk, V.I. Chirkov, A.Yu. Basic plasma physics Electromagnetic drift instabilities in the plasma of a field reversed configuration are considered with no assumption of adiabatic response of ions and/or electrons in the range of perpendicular wave number values from k┴ < 1/ρTi up to k┴ ~ 1/ρTe (ρTi and ρTe are ion and electron thermal gyroradiuses). Stabilization by finite plasma length is studied. Stabilising effect of low temperature gradients on electron mode is discussed. Электромагнитные дрейфовые неустойчивости впервые рассматриваются для плазмы обращенной магнитной конфигурации без использования приближения адиабатического отклика ионов и/или электронов в диапазоне значений перпендикулярного волнового числа от k┴ < 1/ρTi до k┴ ~ 1/ρTe (ρTi и ρTe – ионный и электронный тепловые гирорадиусы). Исследуется стабилизация конечной длинной плазмы. Обсуждается стабилизирующий эффект низких градиентов температуры на электронную моду. Електромагнітні дрейфові нестійкості вперше розглядаються для плазми зверненої магнітної конфігурації без використання наближення адіабатичного відгуку іонів і/або електронів у діапазоні значень перпендикулярного хвильового числа від k┴ < 1/ρTi до k┴ ~ 1/ρTe (ρTi і ρTe – іонний і електронний теплові гірорадіуси). Досліджується стабілізація кінцевою довжиною плазми. Обговорюється стабілізуючий ефект низьких градієнтів температури на електронну моду. 2008 Article Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration / V.I. Khvesyuk, A.Yu. Chirkov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 75-77. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 52.35.Qz; 52.55.Lf; 52.25.Fi http://dspace.nbuv.gov.ua/handle/123456789/110783 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Basic plasma physics
Basic plasma physics
spellingShingle Basic plasma physics
Basic plasma physics
Khvesyuk, V.I.
Chirkov, A.Yu.
Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
Вопросы атомной науки и техники
description Electromagnetic drift instabilities in the plasma of a field reversed configuration are considered with no assumption of adiabatic response of ions and/or electrons in the range of perpendicular wave number values from k┴ < 1/ρTi up to k┴ ~ 1/ρTe (ρTi and ρTe are ion and electron thermal gyroradiuses). Stabilization by finite plasma length is studied. Stabilising effect of low temperature gradients on electron mode is discussed.
format Article
author Khvesyuk, V.I.
Chirkov, A.Yu.
author_facet Khvesyuk, V.I.
Chirkov, A.Yu.
author_sort Khvesyuk, V.I.
title Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
title_short Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
title_full Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
title_fullStr Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
title_full_unstemmed Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
title_sort electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Basic plasma physics
url http://dspace.nbuv.gov.ua/handle/123456789/110783
citation_txt Electron temperature gradient drift instability in the finite beta edge plasma of a field reversed magnetic configuration / V.I. Khvesyuk, A.Yu. Chirkov // Вопросы атомной науки и техники. — 2008. — № 6. — С. 75-77. — Бібліогр.: 14 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT khvesyukvi electrontemperaturegradientdriftinstabilityinthefinitebetaedgeplasmaofafieldreversedmagneticconfiguration
AT chirkovayu electrontemperaturegradientdriftinstabilityinthefinitebetaedgeplasmaofafieldreversedmagneticconfiguration
first_indexed 2025-07-08T01:07:10Z
last_indexed 2025-07-08T01:07:10Z
_version_ 1837038914103148544
fulltext ELECTRON TEMPERATURE GRADIENT DRIFT INSTABILITY IN THE FINITE BETA EDGE PLASMA OF A FIELD REVERSED MAGNETIC CONFIGURATION V.I. Khvesyuk, A.Yu. Chirkov Bauman Moscow State Technical University, Moscow, Russia, e-mail: khves@power.bmstu.ru Electromagnetic drift instabilities in the plasma of a field reversed configuration are considered with no assumption of adiabatic response of ions and/or electrons in the range of perpendicular wave number values from k⊥ < 1/ρTi up to k⊥ ~ 1/ρTe (ρTi and ρTe are ion and electron thermal gyroradiuses). Stabilization by finite plasma length is studied. Stabilising effect of low temperature gradients on electron mode is discussed. PACS: 52.35.Qz; 52.55.Lf; 52.25.Fi Drift waves and drift instabilities driven by gradients of plasma density, ion and electron temperatures are the most significant phenomena closely connected with turbulent transport of high temperature plasma in the magnetic confinement devises [1]. From the classical theory of drift instabilities [2], it is known that parallel component of the wave vector k|| is much less then the perpendicular wave number k⊥ (k|| << k⊥). The range of k|| in infinite plasma is determined only by the positive growth rate solutions of the dispersion equation. In finite length configuration instability satisfy the following condition: 2π/k|| < L, (1) where L is the length of plasma configuration along mag- netic field force lines. We analyze gradient-driven drift instabilities taking into account of electromagnetic effects and condition (1) for edge finite β plasma of a field reversed configuration (FRC). Ion temperature gradient/electron temperature gra- dient (ITG/ETG) instability takes into account non-adia- batic responses for ions and electrons for any k⊥. The analysis is carried out in the framework of the local elec- tromagnetic kinetic approach. The local model of low fre- quency (ω << ωci, ωci is the ion cyclotron frequency) drift instabilities is based on the linearized Vlasov equation, quasineutrality condition, and Ampere’s law for parallel and perpendicular perturbations of the magnetic field [3– 8]. Basic equations are j j j f m q t 10 )(         ∇⋅×+∇⋅+ ∂ ∂ vBvv = j j j f m q 0)( ∇⋅×+−= BvE , (2) 03 1 =∑ ∫ j jj dfq v , (3) ∑ ∫µ=×∇ j jj dfq v310 vB , (4) t∂ ∂−ϕ− ∇= AE , (5) AB ×∇= , (6) )1)((),(0 xfxf jMjj ε−= vv , (7) 0 0 0 1 = ∂ ∂ −=ε x j j j x f f . (8) Here v is the velocity of the particle (variable of integration); qj and mj are the charge and the mass of the particle of kind j (j = i, e), respectively; µ0 is the magnetic permittivity of the vacuum; f1j is perturbation of the velocity distribution function; f0j is unperturbed velocity distribution function; B0 is unperturbed static magnetic field inside the plasma; E is the electric field of the wave; B is the magnetic field of the wave; k is the wave vector; ϕ is the scalar potential; A is vector potential; Coulomb gauge 0=⋅∇ A is used; x is the coordinate along density and temperature gradients; )(vMjf is the Maxwellian velocity distribution function at x = 0. Using standard integrating procedure one can obtain the following system of equations, containing three independent variables (ϕ, A⊥, A||) 0)( 3 0 =         Λ+ ϕ ∑ ∫ j jjMj jB j dJhf Tk q v , (9) ∑ ∫ ⊥⊥⊥ Λµ−= j jjjj dJhnqAk vv 3 10 2 )( , (10) ∑ ∫ Λµ−=⊥ j jjjj dJhnqAk vv 3 ||00|| 2 )( . (11) Here kB is the Boltzmann constant; Tj is the temperature; )(0 jJ Λ and )(1 jJ Λ are the Bessel functions; cjj k ω=Λ ⊥⊥ /v ; indexes ⊥ and || indicate respectively perpendicular and parallel to static magnetic field components of vectors; ⊥v is the perpendicular velocity; ||v is the parallel velocity; ωcj is the cyclotron frequency; * || || j j Dj h k w w w w + = ґ + - v [ ] jB Mjj jj Tk fq JAJA )()()( 10|||| Λ−Λ−ϕ× ⊥⊥vv (12) is non-adiabatic portion of the velocity distribution function perturbation; DjDj Vk ⋅=ω is the magnetic drift frequency; DjV is the magnetic drift velocity of the PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. 75 Series: Plasma Physics (14), p. 75-77. particle;                 −η+ω=ω 2 3 2 1 2 ** jB j jjj Tk m v ; njj jB j LBq Tk k 0 * ⊥=ω is the diamagnetic drift frequency; Tjnjj LL /=η ; jjnj nnL ⊥∇−= / ; jjTj TTL ⊥∇−= / ; nj is the unperturbed density; A⊥ = k⊥B||, B|| is the wave magnetic field parallel to the static magnetic field. Drift frequency can be presented in the form         α−ω−=ω ⊥ 2 || 2 * 2 vv R jB j j B nj Dj Tk m L L , (13) where 00 / BBLB ⊥∇= , RLBR /=α , 1/R is the particle orbit averaged curvature of the magnetic force line. The scale of magnetic field gradient is connected with plasma density gradient according the equation ∑ βη+ = j nj jj B LL 2 )1(1 , (14) where 2 00 /2 BTkn jBjj µ=β is local beta parameter calculated by local static magnetic field in the plasma; total local β is 0 0 1 β− β =β=β ∑ j j , (15) where ∑µ=β j jBj V Tkn B2 0 0 0 2 ; B0V is external (vacuum) magnetic field; 000 1 β−= VBB . For low β plasma (β → 0) in homogeneous magnetic field effects of magnetic drift and vector potential are negligible, i.e. electrostatic approximation is available. It includes quasineutrality equation and the solution of the Vlasov equation with no perturbed magnetic field. The electrostatic approximation is available if ϕ< <ATjv , where jjBTj mTk /=v . From Ampere’s law one can estimate ∑ = µ eij jj dfqAk , 3 10 2 ~ v eB Tee Tk een ϕµ v0~ and ϕ µ ⊥ eB TjTee Tj Tkk ne A 2 2 0~ vv v . Electrostatic approximation is available at Tj Te Te eBe e k B Tkn v v2 2 0 0 )(22 ρ< <µ=β ⊥ . (16) For ions Eq. (16) is satisfied for high β at ETG range of k⊥ and for very low β at ITG range. For 1.0~>β e this condition is satisfied for electrons and ions at 1>ρ⊥ Tek . So, instability can be considered in framework elec- trostatic limit with appropriate accuracy at the ETG range. Fig. 1. Growth rates at moderate β0: ––––– – electromagnetic solution, – – – – – electrostatic approximation. k⊥ρTi = 1, Te/Ti = 1, ηi = ηe = 2 Fig. 2. Growth rates vs β0 (moderate β0): 1 – k⊥ρTi = 1, k|| Ln = 0.1; 2 – k⊥ρTi = 5, k||Ln = 0.07; 3 – k⊥ρTi = 10, k||Ln = 0.025; 4 – k⊥ρTi = 15, k||Ln = 0.05. Te/Ti = 1, ηi = ηe = 2 Fig. 3. Growth rates vs β0 (high β0): 1 – k⊥ρTi = 1, k|| Ln= 0.1; 2 – k⊥ρTi = 5, k||Ln = 0.07; 3 – k⊥ρTi = 43 (k⊥ρTe = 1), k||Ln = 0.1. Te/Ti = 1, ηi = ηe = 2 76 Fig. 4. Upper boundary of k||Ln (solid lines) and approximate down boundary (dashed lines) of instability in FRC vs k⊥ρTi: 1 – ηe = 2, ηi = 0.1, Te/Ti = 0.5; 2 – ηe = 1, ηI = 0.1, Te/Ti = 0.5; 3 – ηe = 2, ηi = 0.1, Te/Ti = 0.1 In Fig. 1, the comparison with electromagnetic and electrostatic solutions are presented for moderate values of β0 (β0 < 0.1). As a scale of the real frequency ωR and growth rate γ we use )/(0 TiniB eBLTk ρ=ω . In Figs. 2 and 3, results of electromagnetic calculations for modes with fixed k⊥ are shown. Values of k|| for presented modes are close to maximum of the growth rate at fixed k⊥. To calculate instability parameters we use typical plasma conditions in FRC experiments [9-13]: ηi ≈ 0.1, η e ≈ 1–2, Te/Ti ≈ 0.5 (for typical regimes), Te/Ti ≈ 0.1 (hot ions and cold electrons). Examples of the results of calcu- lated (k||Ln)b are presented in Fig. 4. For not very elongat- ed FRCs 2πLn/L ~ 0.3, i.e. for finite length stabilized modes (k||Ln)b < 0.3. The dashed line in Fig. 4 corresponds to this approximate condition of stabilization. CONCLUSIONS Our calculations have shown that under FRC experiment conditions typical ITG instability (k⊥ <% 1/ρTi) appears to be hardly restricted by finite size of FRC devises, but in the range of ETG instability (k⊥ >~ 1/ρTe) instability can exist. Parameters of such an instability are seems to be close to ETG mode, but ion effects for FRC experiment conditions are significant at k⊥ρTe < 1. Maximum of growth rate is located at k⊥ρTe ~ 1. Calculated values and real frequencies for the ETG range agree well with data measured by Carlson on TRX- 2 device [14]. Special calculations are shown that to decrease growth rate of ETG instability (and ETG driven turbulent transport) one can decrease ηe. To sustain of low-ηe configuration the heating of electrons in the plasma edge can be used. The work was supported by RFBR grant 08-08- 00459-a and President grant MK-2082.2008.8. REFERENCES 1. W. Horton // Rev. Mod. Phys. 1999, v. 71, p. 735. 2. N.A. Krall, A.W. Trivelpiece. Principles of Plasma Physics. New York: “Mc-Graw–Hill”, 1973. 3. W. Horton // Phys. Fluids. 1983, v. 26, p. 1461. 4. Y.-K. Pu, S. Migliuolo // Phys. Fluids. 1985, v. 28, p. 1722. 5. A.Y. Aydemir, H.L. Berk, V. Mirnov, O.P. Pogutse, M.N. Rosenbluth // Phys. Fluids. 1987, v. 30, p. 3088. 6. K.T. Tsang, C.Z. Cheng // Phys. Fluids. 1991, v. B3, p. 688. 7. M. Artun, W.M. Tang // Phys. Plasmas. 1994, v.1, p. 2682. 8. F. JenkoW. Dorland, V. Kotschenreuter, B.N. Rogers // Phys. Plasmas. 2000, v. 7, p. 1904. 9. N.A. Krall // Phys. Fluids. 1989, v. B1, p. 1811. 10. A.L. Hoffman et al. // Proc. 11th Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research/ IAEA, Vienna, 1987. v. 2, p. 541. 11. D.J. Rej et al. // Nucl. Fusion, 1990, v. 30, p. 1087; A.L. Hoffman, J.T. Slough // Nucl. Fusion. 1993, v. 33, p. 27. 12. L. Steinhauer // US-Japan Workshop on FRC. Niiga- ta, 1996. 13. K. Kitano et al. // 25th EPS Conf. on Contr. Fusion and Plasma Phys. Prague, 1998. 14. A.W. Carlson // Phys. Fluids. 1987, v. 30, p. 1497. Article received 22.09.08. ЭЛЕКТРОННАЯ ТЕМПЕРАТУРНО-ГРАДИЕНТНАЯ ДРЕЙФОВАЯ НЕУСТОЙЧИВОСТЬ В КРАЕВОЙ ПЛАЗМЕ ОБРАЩЕННОЙ МАГНИТНОЙ КОНФИГУРАЦИИ С КОНЕЧНЫМ БЕТА В.И. Хвесюк, А.Ю. Чирков Электромагнитные дрейфовые неустойчивости впервые рассматриваются для плазмы обращенной магнит- ной конфигурации без использования приближения адиабатического отклика ионов и/или электронов в диапа- зоне значений перпендикулярного волнового числа от k⊥ < 1/ρTi до k⊥ ~ 1/ρTe (ρTi и ρTe – ионный и электронный тепловые гирорадиусы). Исследуется стабилизация конечной длинной плазмы. Обсуждается стабилизирующий эффект низких градиентов температуры на электронную моду. ЕЛЕКТРОННА ТЕМПЕРАТУРНО-ГРАДІЄНТНА ДРЕЙФОВА НЕСТІЙКІСТЬ У КРАЙОВІЙ ПЛАЗМІ ЗВЕРНЕНОЇ МАГНІТНОЇ КОНФІГУРАЦІЇ З КІНЦЕВИМ БЕТА В.І. Хвесюк, О.Ю. Чирков Електромагнітні дрейфові нестійкості вперше розглядаються для плазми зверненої магнітної конфігурації без використання наближення адіабатичного відгуку іонів і/або електронів у діапазоні значень перпендикулярного хвильового числа від k⊥ < 1/ρTi до k⊥ ~ 1/ρTe (ρTi і ρTe – іонний і електронний теплові гірорадіуси). Досліджується стабілізація кінцевою довжиною плазми. Обговорюється стабілізуючий ефект низьких градієнтів температури на електронну моду. 77 REFERENCES