Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are considered. It has been shown that under irradiation by high-energy pa...
Збережено в:
Дата: | 2003 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2003
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/110925 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation / V.G. Volkov, V.D. Ryzhikov, A.K. Gnap, N.I. Kovalenko, V.V. Chernikov, E.F. Khramov // Вопросы атомной науки и техники. — 2003. — № 3. — С. 154-157. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110925 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1109252017-01-08T03:02:23Z Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation Volkov, V.G. Ryzhikov, V.D. Gnap, A.K. Kovalenko, N.I. Chernikov, V.V. Khramov, E.F. Физика радиационных и ионно-плазменных технологий Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are considered. It has been shown that under irradiation by high-energy particles consumed and leakage currents of integral circuit are increased. Ways to decrease these effects are proposed. Приведено результати технічних досліджень формування світлових потоків в кремнії і інтегральних структурах на його основі. Розглянуто вилив цих світлових потоків на електричні параметри тріодних структур інтегральних схем. Показано, що під час опромінювання високоенергетичними частками збільшуються токи споживання і токи витопу інтегральних схем. Застосування запропонованих засобів дозволяє зменшити вилив цих ефектів. Приведены результаты технических исследований формирования световых потоков в кремнии и интегральных структурах на его основе. Рассмотрено влияние этих световых потоков на электрические параметры планарных триодных структур интегральных схем. Показано, что при облучении высокоэнергетическими частицами увеличиваются токи потреблений и токи утечки интегральных схем. Применение предложенных способов позволяет уменьшить влияние этих эффектов. 2003 Article Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation / V.G. Volkov, V.D. Ryzhikov, A.K. Gnap, N.I. Kovalenko, V.V. Chernikov, E.F. Khramov // Вопросы атомной науки и техники. — 2003. — № 3. — С. 154-157. — Бібліогр.: 3 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/110925 621.382 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика радиационных и ионно-плазменных технологий Физика радиационных и ионно-плазменных технологий |
spellingShingle |
Физика радиационных и ионно-плазменных технологий Физика радиационных и ионно-плазменных технологий Volkov, V.G. Ryzhikov, V.D. Gnap, A.K. Kovalenko, N.I. Chernikov, V.V. Khramov, E.F. Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation Вопросы атомной науки и техники |
description |
Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are considered. It has been shown that under irradiation by high-energy particles consumed and leakage currents of integral circuit are increased. Ways to decrease these effects are proposed. |
format |
Article |
author |
Volkov, V.G. Ryzhikov, V.D. Gnap, A.K. Kovalenko, N.I. Chernikov, V.V. Khramov, E.F. |
author_facet |
Volkov, V.G. Ryzhikov, V.D. Gnap, A.K. Kovalenko, N.I. Chernikov, V.V. Khramov, E.F. |
author_sort |
Volkov, V.G. |
title |
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation |
title_short |
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation |
title_full |
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation |
title_fullStr |
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation |
title_full_unstemmed |
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation |
title_sort |
optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2003 |
topic_facet |
Физика радиационных и ионно-плазменных технологий |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110925 |
citation_txt |
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation / V.G. Volkov, V.D. Ryzhikov, A.K. Gnap, N.I. Kovalenko, V.V. Chernikov, E.F. Khramov // Вопросы атомной науки и техники. — 2003. — № 3. — С. 154-157. — Бібліогр.: 3 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT volkovvg opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation AT ryzhikovvd opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation AT gnapak opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation AT kovalenkoni opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation AT chernikovvv opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation AT khramovef opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation |
first_indexed |
2025-07-08T01:21:24Z |
last_indexed |
2025-07-08T01:21:24Z |
_version_ |
1837039810735243264 |
fulltext |
УДК 621.382
OPTICAL PROCESSES IN SILICON
AND MICROELECTRONIC STRUCTURES BASED THEREON
UPON INTERACTION WITH HIGH-ENERGY RADIATION
1V.G. Volkov, 1V.D. Ryzhikov, 2A.K. Gnap, 2 N.I. Kovalenko, 1V.V. Chernikov, 3E.F. Khramov
1STC RI of Concern “Institute for Single Crystals”
2V.V.Dokuchaev Agrarian University, Kharkov;
3Ukrainian National Academy of Communications, Odessa
Results of technical studies are presented on formation of light fluxes in silicon and integral structures based
thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are con-
sidered. It has been shown that under irradiation by high-energy particles consumed and leakage currents of integral
circuit are increased. Ways to decrease these effects are proposed.
1. INTRODUCTION
Emission in visible and infrared spectral region has
been recorded in our experiments when silicon was
bombarded by alpha particles, protons, helium, hydro-
gen and nitrogen ions. This emission is observed when
the primarily kicked-off atom is decelerated.
The light flux starts propagating, and further course
of this process depends upon optical properties of the
crystal studied. Propagating in semiconductors and inte-
gral structures, the emerging radiation causes generation
of current carriers and photocurrent. Carrier formation
intensity depends upon optical transparence of the semi-
conductor and energy levels of the dopants.
2. METHOD OF SIMULATION
AND RESEARCH
2.1. LIGHT FLUXES IN INTEGRAL STRUC-
TURES UNDER HIGH-ENERGY IRRADIATION
We report here our experimental results on the ef-
fects of light flash formation and the accompanying
light fluxes in visible and IR ranges. This occurs when
corpuscular fluxes affect solid-state elements of elec-
tronic equipment and parameters of integral circuits.
In the defect cascade formation theory, pair interac-
tions of atoms are assumed. However, with irradiation
by high-energy particles, the liberated energy affects
large groups of atoms. The transfer of energy leads to
heating of a limited region of the substance to high tem-
peratures.
According to calculations [1] based on simple mi-
croscopic laws of thermal conductivity, energy is liber-
ated in the form of heat and is propagated by the laws of
thermal conductivity (“temperature wedge”). The tem-
perature rises and falls very quickly (τheat = 5·10-12 s, τcool
= 2·10-11s) in a small volume (diameter ~60 A) contain-
ing 103 atoms. The substance inside the “wedge” is in
overheated state with a melted zone in the center. For-
mation of the “temperature wedge” is accompanied by
expansion of the substance in it, which leads to forma-
tion of mechanical stresses around it, and to generation
of dislocation loops.
According to [2], a region containing about 104
atoms is heated up to melting (Fig.1), being intensively
mixed. Subsequent rapid cooling causes distortions of
the crystal lattice to be preserved as dislocation loops
and micro-regions with new orientation. Such regions
are called “displacement wedges”. Direct experimental
observation of thermal peaks is rather difficult, and their
studies were carried out by observing physical processes
that could be explained by heating (in particular, phase
transitions in alloys of complex composition). Difficul-
ties in interpretation of the data obtained are due to the
fact that results of these studies could be also explained
by defect migration or accumulation processes.
_________________________________________________________________________________
154 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2003. № 3.
Серия: Физика радиационных повреждений и радиационное материаловедение (83), с. 154-157.
Fig.1. Thermal peak T1, being cooled due to its short-wave emission, leads to heating and melting of the adja-
cent region (T2, Tmelt), which, in turn, transforms the energy in a region of longer wavelengths, where it goes out of
the silicon sample because of its transparence
Sputtering experiments can explain, to some extent,
the dynamic processes that proceed when ions are intro-
duced into a crystal, as the influence of ions results in
large concentrations of low-energy ions in the spectrum
of emitted particles [2]. However, explanation of this
maximum in terms of particle evaporation from the sur-
face is also rather ambiguous.
An important consequence of the formation of
“wedges” of any type is that their appearance, existence
and disappearance should lead to emerging radiation in
the light spectral region. Therefore, a question has
arisen to study light emission processes under introduc-
tion of high-energy particles.
2.2. GENERATION OF IR-RADIATION
Experimental studies have shown the existence of
radiation in the nearest IR spectral region [1]. Mi-
crophotometry of photographic plates that recorded IR
radiation coming from silicon affected by alpha-parti-
cles (with an intermediate IR light filter or without one)
have shown that approximately 1/3 of the radiation is in
the region above 1.1 μm, and nearly 2/3 – in the 0.76…
1.1 μm region.
2.3. EFFECTS OF GENERATED AND PROPA-
GATING ELECTROMAGNETIC RADIATION
ON RADIATION STABILITY OF INTEGRAL
CIRCUITS UNDER IRRADIATION
To explain the processes in the solid state under in-
troduction of high-energy particles and to calculate the
degree of illumination caused by thermal flashes, let us
consider the case of silicon being bombarded by fast
neutrons.
Assuming the energy of bombarding neutrons to be
En = 2 MeV and the conversion coefficient N = 0.5 [3],
we put that about 1 MeV will be converted into electro-
magnetic radiation.
Putting the intensity of fast neutrons under irradia-
tion in a nuclear reactor as n1 = 5.109 neutrons.cm-2.s-1,
we can obtain the energy released during deceleration of
neutrons in the semiconductor
.108105
1055,02
1241215
129
1
−−−−−
−−
⋅⋅⋅≈⋅⋅⋅=
=⋅⋅⋅⋅⋅==
sсmJsсmeV
sсmn
n
МeVNnEE nT (1)
This value is practically equivalent to the illumina-
tion of one lux.
When an atomic devise is exploded, the flux of fast
particles can reach the densities of 1012 - 5.1013 neutron-
s.cm-2.s-1 [4]. This means that internal regions of integral
circuits and semiconductor instruments (in particular, p-
n transitions) that come under such conditions will be
subject to illumination of 102 – 105 lux.
When the primarily displaced particles interact with
silicon, effects are observed that can be explained in
terms of Seitz’s “thermal peaks” and Brinkman’s “dis-
placement wedges” formation theories.
If we consider that IR radiation is caused only by en-
ergy spent for defect formation during introduction of
the particles, then it would be not exact to say that one
half of all the energy, on the average, is spent for the de-
fect formation, and the second half is lost in collisions
not accompanied by displacement of atoms. In fact,
nearly two-thirds of the energy of introduced alpha-par-
ticles or primarily displaced particles is emitted in the
IR region. In addition, it should be accounted for that in-
teraction of particles with a solid-state body not accom-
panied by displacement of atoms from the lattice sites
would also contribute to the energy of IR radiation.
Theoretical calculations have shown that parameters
of silicon semiconductor instruments (diodes, triodes,
planar structures of integral circuits) can get changed
under bombardment by fast particles not only due to de-
fects and recombination centers [5] formed by the influ-
ence of accelerated particles, but also due to IR and op-
tical illumination of p-n transition.
Silicon band gap at 300 K is 1.09 eV. When the
wavelength of the light flux generated in the integral
structure is changed from 380 nm to 1.33 μm, the ener-
gy of light quanta is dectrased from 3.5 eV to 1.2 eV,
and at 13 μm wavelength, the propagating radiation
quanta have energies of 0.1 eV.
Silicon is transparent for IR light above 1 μm and
has high reflectance in the all the light range. Silicon
oxide is transparent in visible and IR spectral ranges.
At light quantum energies above 1.09 eV, all over
the silicon volume generation of charge carriers will be
observed, which will recombinate in the region of elec-
tron-hole transitions, giving rise to photocurrent under
the flux of bombarding high-energy particles. This pro-
cess is due to the transition of silicon electrons from the
valence zone to the conductivity zone (Fig.2).
Fig.2. The emitter (E), base (B) and collector (C) metal
outlets (1,2,3) from the corresponding regions of planar
transistor structure of the integral circuit. Transparent
structure of the insulating layer (4) and carrier genera-
tion regions (7) on the boundaries of p-n transitions un-
der light fluxes (5)
In parallel with this, carrier generation is observed
due to ionization of admixture atoms in the lattice sites.
Activation energy of the carriers located on donor and
155
(1)
acceptor levels is lower than the band gap width, so the
carrier concentration will be increased due to transitions
from the donor levels to the conductivity zone and the
valence zone.
In silicon oxide, waves of both IR and visible range
can propagate. They will substantially affect the carrier
generation at the boundaries, as well as in surface-adja-
cent regions and p-n transitions coming to the surface or
adjacent to it.
In bipolar integral circuits, the emitter transition is
also within the transparence limits for the visible range
waves. Its efficiency will be decreased, as the emerging
photocurrent by-passes the electron-hole transition.
2.4. ATTENUATION OF ELECTROMAGNETIC
WAVES IN OPTICALLY TRANSPARENT
LAYERS OF INTEGRAL CIRCUITS
The question of losses in thin transparent layers of
metal planar structures cannot be answered with full
strictness.
The reason is that it is impossible to state exactly the
boundary conditions at finite wall conductivity. Approx-
imate methods are to be used, using a number of simpli-
fying assumptions, as a result of which the energy flux
W along the structure is proportional to the factor e-lβz.
The energy loss in the walls is determined as
- QW
d
dW ==
Ζ
β2
hence the absorption coefficient is
W
Q
2
=β .
It can be postulated that while σ is sufficiently
small, attenuation will also be small (β<< α).
Neglecting it, according to the presentation of the
phase-time factor for electromagnetic field components
,)())( zwtjezezwtje αβγ −−⋅−=−−
where γ = α + jβ.
Here α determines the wave phase, and β - the ab-
sorption,
We assume that, within the limits of the structure,
for any of the field components
.ααβ jj
dz
d ≈+−=
This means that fields Е and В , as well as the en-
ergy flux W, are practically unchanged. Joule’s heat
losses Q are calculated using the skin-effect theory sep-
arately for each of the walls. We assume that the losses
are not interacting and can thus be determined indepen-
dently of each other.
The current power coming through the structure
cross-section with the wave along axis Z is determined
by the Z-th component of the Umov-Pointing:
[ ] ( ) .∫ ∫ −== dsHEHEEHP xyyxzz
As В and Н are complex values depending on time,
introducing their conjugated values, we can find for the
average power of the wave propagating in the structure
( ) .
2
1
0 0
dxdyHEHERW
a b
xyyxe∫ ∫ ∗∗ −=
Omitting the derivation, which is similar to the light
transducer not filled with dielectric, we can write down
the absorption coefficient for an Н01 type wave
( ) 11
1
686,829,1
24/32
2/3
2/3
−+
+
⋅
⋅
=
ур
у
ру
в
ρ
β (2)
and for the Н11 type wave
( )
( ) .
11
11
686,829,1
24/32
3
2/3
2/3
−+
+++
⋅
⋅
=
ур
у
рурр
в
ρ
β (3)
In formulas (2) and (3) the following notation was
introduced:
а
в=ρ ;
0f
fу = ,
where
22
0 2
+
=
b
n
a
mcf
is the critical, or limiting, frequency.
If a dielectric with dielectric constant Е is intro-
duced into the waveguide, formulas for the absorption
coefficient become more complex.
For wave Е11
( ) .
11
1686,829,1
2
2/3
4/32
3
2/3
−
⋅
+
+⋅
⋅
=
Еу
Еу
р
р
в
ρ
β
For wave of Н01 type
.
1
1
686,829,1
2
2/3
2/3
−
+
⋅
⋅
=
Еу
у
Еру
в
ρ
β
For wave of Н11 type
.
1)1(
1)1(
686,829,1
24/32
3
2/3
2/3
−+
+++
⋅
⋅
=
Еу
у
рурЕр
в β
ρ
β
If we take Аl-Si-Al structure, where
2SiOn =1,45 ,
р= 10-1, у=3, E=2,1 (для λ=0,3мкм), ρАl = 2,69·10-8
Ohm·m, b = 3·10-5 сm, а = 3·10-4 сm, for the attenuation
coefficient β - 0,733·104 dB/m = 7,3 dB/m it should be
noted that propagation of the electromagnetic wave is
affected by optical properties of silicon, which is trans-
parent for the visible light at layer thickness up to 3 μm.
156
3. CONCLUSIONS
Experimental studies of generation and propagation
of electromagnetic radiation in silicon under bombard-
ment by alpha-particles have shown that two-thirds of
the radiation propagates in the spectral region 0.9...1.1
μm, and one-third of the energy is emitted in the nearest
IR range.
Therefore, to improve stability of solid-state elec-
tronic instruments with respect to penetrating radiation
capable of inducing light generation, one should use
dopants creating deep energy levels in the band gap.
Another possibility of improving radiation stability
is the use of semiconductors that are poorly transparent
or not transparent at all in the visible and near-IR range
(e.g., germanium). One should also use materials that
are not transparent in the visible and near-IR range as
insulating layers.
As such approach can lead to certain deterioration of
the characteristics of electronic instruments, a compro-
mise is advisable, allowing substantial improvement of
stability of integral circuits under irradiation.
REFERENCES
1.V.I. Bendikov, R.I. Garber, A.K. Gnap, A.I. Fe-
dorenko. Studies of optical emission by silicon under
ion bombardment //Radiation Defects in Semiconduc-
tors. 1972, p. 203.
2.O.I Leipunski. Gamma-radiation due to atomic explo-
sion. M.: “Atomizdat”, 1959, 155 p.
3.A.M. Ivanov, N.B. Strokan, V.B. Shuman. Properties
of p-n structures with a deepened layer of radiation de-
fects //Fiz. Tekhn. Poluprovod. 1999, v. 32, N3, p.359–
365.
ОПТИЧНІ ПРОЦЕСИ В КРЕМНІЇ ТА МІКРОЕЛЕКТРОННИХ СТРУКТУРАХ НА ЙОГО
ОСНОВІ ПРИ ВЗАЄМОДІЇ З ВИСОКОЕНЕРГЕТИЧНИМИ ЧАСТКАМИ
В.Г. Волков, В.Д. Рижиков, Н.И. Коваленко, А.К. Гнап, В.В. Черніков, Є.Ф. Храмов
Приведено результати технічних досліджень формування світлових потоків в кремнії і інтегральних структурах на
його основі. Розглянуто вилив цих світлових потоків на електричні параметри тріодних структур інтегральних схем.
Показано, що під час опромінювання високоенергетичними частками збільшуються токи споживання і токи витопу
інтегральних схем. Застосування запропонованих засобів дозволяє зменшити вилив цих ефектів.
ОПТИЧЕСКИЕ ПРОЦЕССЫ В КРЕМНИИ И МИКРОЭЛЕКТРОННЫХ СТРУКТУРАХ НА ЕГО
ОСНОВЕ ПРИ ВЗАИМОДЕЙСТВИИ С ВЫСОКОЭНЕРГЕТИЧНЫМИ ЧАСТИЦАМИ
В.Г. Волков, В.Д. Рыжиков, Н.И. Коваленко, А.К. Гнап, В.В. Черников, Е.Ф. Храмов
Приведены результаты технических исследований формирования световых потоков в кремнии и интегральных
структурах на его основе. Рассмотрено влияние этих световых потоков на электрические параметры планарных триод-
ных структур интегральных схем. Показано, что при облучении высокоэнергетическими частицами увеличиваются токи
потреблений и токи утечки интегральных схем. Применение предложенных способов позволяет уменьшить влияние
этих эффектов.
157
2. METHOD OF SIMULATION
AND RESEARCH
2.1. Light fluxes in integral structures under high-energy irradiation
2.2. Generation of IR-radiation
We assume that, within the limits of the structure, for any of the field components
For wave of Н01 type
3. Conclusions
References
|