Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation

Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are considered. It has been shown that under irradiation by high-energy pa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Volkov, V.G., Ryzhikov, V.D., Gnap, A.K., Kovalenko, N.I., Chernikov, V.V., Khramov, E.F.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2003
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110925
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation / V.G. Volkov, V.D. Ryzhikov, A.K. Gnap, N.I. Kovalenko, V.V. Chernikov, E.F. Khramov // Вопросы атомной науки и техники. — 2003. — № 3. — С. 154-157. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110925
record_format dspace
spelling irk-123456789-1109252017-01-08T03:02:23Z Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation Volkov, V.G. Ryzhikov, V.D. Gnap, A.K. Kovalenko, N.I. Chernikov, V.V. Khramov, E.F. Физика радиационных и ионно-плазменных технологий Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are considered. It has been shown that under irradiation by high-energy particles consumed and leakage currents of integral circuit are increased. Ways to decrease these effects are proposed. Приведено результати технічних досліджень формування світлових потоків в кремнії і інтегральних структурах на його основі. Розглянуто вилив цих світлових потоків на електричні параметри тріодних структур інтегральних схем. Показано, що під час опромінювання високоенергетичними частками збільшуються токи споживання і токи витопу інтегральних схем. Застосування запропонованих засобів дозволяє зменшити вилив цих ефектів. Приведены результаты технических исследований формирования световых потоков в кремнии и интегральных структурах на его основе. Рассмотрено влияние этих световых потоков на электрические параметры планарных триодных структур интегральных схем. Показано, что при облучении высокоэнергетическими частицами увеличиваются токи потреблений и токи утечки интегральных схем. Применение предложенных способов позволяет уменьшить влияние этих эффектов. 2003 Article Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation / V.G. Volkov, V.D. Ryzhikov, A.K. Gnap, N.I. Kovalenko, V.V. Chernikov, E.F. Khramov // Вопросы атомной науки и техники. — 2003. — № 3. — С. 154-157. — Бібліогр.: 3 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/110925 621.382 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных и ионно-плазменных технологий
Физика радиационных и ионно-плазменных технологий
spellingShingle Физика радиационных и ионно-плазменных технологий
Физика радиационных и ионно-плазменных технологий
Volkov, V.G.
Ryzhikov, V.D.
Gnap, A.K.
Kovalenko, N.I.
Chernikov, V.V.
Khramov, E.F.
Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
Вопросы атомной науки и техники
description Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are considered. It has been shown that under irradiation by high-energy particles consumed and leakage currents of integral circuit are increased. Ways to decrease these effects are proposed.
format Article
author Volkov, V.G.
Ryzhikov, V.D.
Gnap, A.K.
Kovalenko, N.I.
Chernikov, V.V.
Khramov, E.F.
author_facet Volkov, V.G.
Ryzhikov, V.D.
Gnap, A.K.
Kovalenko, N.I.
Chernikov, V.V.
Khramov, E.F.
author_sort Volkov, V.G.
title Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
title_short Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
title_full Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
title_fullStr Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
title_full_unstemmed Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
title_sort optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2003
topic_facet Физика радиационных и ионно-плазменных технологий
url http://dspace.nbuv.gov.ua/handle/123456789/110925
citation_txt Optical processes in silicon and microelectronic structures based thereon upon interaction with high-energy radiation / V.G. Volkov, V.D. Ryzhikov, A.K. Gnap, N.I. Kovalenko, V.V. Chernikov, E.F. Khramov // Вопросы атомной науки и техники. — 2003. — № 3. — С. 154-157. — Бібліогр.: 3 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT volkovvg opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation
AT ryzhikovvd opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation
AT gnapak opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation
AT kovalenkoni opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation
AT chernikovvv opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation
AT khramovef opticalprocessesinsiliconandmicroelectronicstructuresbasedthereonuponinteractionwithhighenergyradiation
first_indexed 2025-07-08T01:21:24Z
last_indexed 2025-07-08T01:21:24Z
_version_ 1837039810735243264
fulltext УДК 621.382 OPTICAL PROCESSES IN SILICON AND MICROELECTRONIC STRUCTURES BASED THEREON UPON INTERACTION WITH HIGH-ENERGY RADIATION 1V.G. Volkov, 1V.D. Ryzhikov, 2A.K. Gnap, 2 N.I. Kovalenko, 1V.V. Chernikov, 3E.F. Khramov 1STC RI of Concern “Institute for Single Crystals” 2V.V.Dokuchaev Agrarian University, Kharkov; 3Ukrainian National Academy of Communications, Odessa Results of technical studies are presented on formation of light fluxes in silicon and integral structures based thevlon. Effects of these light fluxes upon electric parameters of planar triode structures of integral circuits are con- sidered. It has been shown that under irradiation by high-energy particles consumed and leakage currents of integral circuit are increased. Ways to decrease these effects are proposed. 1. INTRODUCTION Emission in visible and infrared spectral region has been recorded in our experiments when silicon was bombarded by alpha particles, protons, helium, hydro- gen and nitrogen ions. This emission is observed when the primarily kicked-off atom is decelerated. The light flux starts propagating, and further course of this process depends upon optical properties of the crystal studied. Propagating in semiconductors and inte- gral structures, the emerging radiation causes generation of current carriers and photocurrent. Carrier formation intensity depends upon optical transparence of the semi- conductor and energy levels of the dopants. 2. METHOD OF SIMULATION AND RESEARCH 2.1. LIGHT FLUXES IN INTEGRAL STRUC- TURES UNDER HIGH-ENERGY IRRADIATION We report here our experimental results on the ef- fects of light flash formation and the accompanying light fluxes in visible and IR ranges. This occurs when corpuscular fluxes affect solid-state elements of elec- tronic equipment and parameters of integral circuits. In the defect cascade formation theory, pair interac- tions of atoms are assumed. However, with irradiation by high-energy particles, the liberated energy affects large groups of atoms. The transfer of energy leads to heating of a limited region of the substance to high tem- peratures. According to calculations [1] based on simple mi- croscopic laws of thermal conductivity, energy is liber- ated in the form of heat and is propagated by the laws of thermal conductivity (“temperature wedge”). The tem- perature rises and falls very quickly (τheat = 5·10-12 s, τcool = 2·10-11s) in a small volume (diameter ~60 A) contain- ing 103 atoms. The substance inside the “wedge” is in overheated state with a melted zone in the center. For- mation of the “temperature wedge” is accompanied by expansion of the substance in it, which leads to forma- tion of mechanical stresses around it, and to generation of dislocation loops. According to [2], a region containing about 104 atoms is heated up to melting (Fig.1), being intensively mixed. Subsequent rapid cooling causes distortions of the crystal lattice to be preserved as dislocation loops and micro-regions with new orientation. Such regions are called “displacement wedges”. Direct experimental observation of thermal peaks is rather difficult, and their studies were carried out by observing physical processes that could be explained by heating (in particular, phase transitions in alloys of complex composition). Difficul- ties in interpretation of the data obtained are due to the fact that results of these studies could be also explained by defect migration or accumulation processes. _________________________________________________________________________________ 154 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2003. № 3. Серия: Физика радиационных повреждений и радиационное материаловедение (83), с. 154-157. Fig.1. Thermal peak T1, being cooled due to its short-wave emission, leads to heating and melting of the adja- cent region (T2, Tmelt), which, in turn, transforms the energy in a region of longer wavelengths, where it goes out of the silicon sample because of its transparence Sputtering experiments can explain, to some extent, the dynamic processes that proceed when ions are intro- duced into a crystal, as the influence of ions results in large concentrations of low-energy ions in the spectrum of emitted particles [2]. However, explanation of this maximum in terms of particle evaporation from the sur- face is also rather ambiguous. An important consequence of the formation of “wedges” of any type is that their appearance, existence and disappearance should lead to emerging radiation in the light spectral region. Therefore, a question has arisen to study light emission processes under introduc- tion of high-energy particles. 2.2. GENERATION OF IR-RADIATION Experimental studies have shown the existence of radiation in the nearest IR spectral region [1]. Mi- crophotometry of photographic plates that recorded IR radiation coming from silicon affected by alpha-parti- cles (with an intermediate IR light filter or without one) have shown that approximately 1/3 of the radiation is in the region above 1.1 μm, and nearly 2/3 – in the 0.76… 1.1 μm region. 2.3. EFFECTS OF GENERATED AND PROPA- GATING ELECTROMAGNETIC RADIATION ON RADIATION STABILITY OF INTEGRAL CIRCUITS UNDER IRRADIATION To explain the processes in the solid state under in- troduction of high-energy particles and to calculate the degree of illumination caused by thermal flashes, let us consider the case of silicon being bombarded by fast neutrons. Assuming the energy of bombarding neutrons to be En = 2 MeV and the conversion coefficient N = 0.5 [3], we put that about 1 MeV will be converted into electro- magnetic radiation. Putting the intensity of fast neutrons under irradia- tion in a nuclear reactor as n1 = 5.109 neutrons.cm-2.s-1, we can obtain the energy released during deceleration of neutrons in the semiconductor .108105 1055,02 1241215 129 1 −−−−− −− ⋅⋅⋅≈⋅⋅⋅= =⋅⋅⋅⋅⋅== sсmJsсmeV sсmn n МeVNnEE nT (1) This value is practically equivalent to the illumina- tion of one lux. When an atomic devise is exploded, the flux of fast particles can reach the densities of 1012 - 5.1013 neutron- s.cm-2.s-1 [4]. This means that internal regions of integral circuits and semiconductor instruments (in particular, p- n transitions) that come under such conditions will be subject to illumination of 102 – 105 lux. When the primarily displaced particles interact with silicon, effects are observed that can be explained in terms of Seitz’s “thermal peaks” and Brinkman’s “dis- placement wedges” formation theories. If we consider that IR radiation is caused only by en- ergy spent for defect formation during introduction of the particles, then it would be not exact to say that one half of all the energy, on the average, is spent for the de- fect formation, and the second half is lost in collisions not accompanied by displacement of atoms. In fact, nearly two-thirds of the energy of introduced alpha-par- ticles or primarily displaced particles is emitted in the IR region. In addition, it should be accounted for that in- teraction of particles with a solid-state body not accom- panied by displacement of atoms from the lattice sites would also contribute to the energy of IR radiation. Theoretical calculations have shown that parameters of silicon semiconductor instruments (diodes, triodes, planar structures of integral circuits) can get changed under bombardment by fast particles not only due to de- fects and recombination centers [5] formed by the influ- ence of accelerated particles, but also due to IR and op- tical illumination of p-n transition. Silicon band gap at 300 K is 1.09 eV. When the wavelength of the light flux generated in the integral structure is changed from 380 nm to 1.33 μm, the ener- gy of light quanta is dectrased from 3.5 eV to 1.2 eV, and at 13 μm wavelength, the propagating radiation quanta have energies of 0.1 eV. Silicon is transparent for IR light above 1 μm and has high reflectance in the all the light range. Silicon oxide is transparent in visible and IR spectral ranges. At light quantum energies above 1.09 eV, all over the silicon volume generation of charge carriers will be observed, which will recombinate in the region of elec- tron-hole transitions, giving rise to photocurrent under the flux of bombarding high-energy particles. This pro- cess is due to the transition of silicon electrons from the valence zone to the conductivity zone (Fig.2). Fig.2. The emitter (E), base (B) and collector (C) metal outlets (1,2,3) from the corresponding regions of planar transistor structure of the integral circuit. Transparent structure of the insulating layer (4) and carrier genera- tion regions (7) on the boundaries of p-n transitions un- der light fluxes (5) In parallel with this, carrier generation is observed due to ionization of admixture atoms in the lattice sites. Activation energy of the carriers located on donor and 155 (1) acceptor levels is lower than the band gap width, so the carrier concentration will be increased due to transitions from the donor levels to the conductivity zone and the valence zone. In silicon oxide, waves of both IR and visible range can propagate. They will substantially affect the carrier generation at the boundaries, as well as in surface-adja- cent regions and p-n transitions coming to the surface or adjacent to it. In bipolar integral circuits, the emitter transition is also within the transparence limits for the visible range waves. Its efficiency will be decreased, as the emerging photocurrent by-passes the electron-hole transition. 2.4. ATTENUATION OF ELECTROMAGNETIC WAVES IN OPTICALLY TRANSPARENT LAYERS OF INTEGRAL CIRCUITS The question of losses in thin transparent layers of metal planar structures cannot be answered with full strictness. The reason is that it is impossible to state exactly the boundary conditions at finite wall conductivity. Approx- imate methods are to be used, using a number of simpli- fying assumptions, as a result of which the energy flux W along the structure is proportional to the factor e-lβz. The energy loss in the walls is determined as - QW d dW == Ζ β2 hence the absorption coefficient is W Q 2 =β . It can be postulated that while σ is sufficiently small, attenuation will also be small (β<< α). Neglecting it, according to the presentation of the phase-time factor for electromagnetic field components ,)())( zwtjezezwtje αβγ −−⋅−=−− where γ = α + jβ. Here α determines the wave phase, and β - the ab- sorption, We assume that, within the limits of the structure, for any of the field components .ααβ jj dz d ≈+−= This means that fields Е and В , as well as the en- ergy flux W, are practically unchanged. Joule’s heat losses Q are calculated using the skin-effect theory sep- arately for each of the walls. We assume that the losses are not interacting and can thus be determined indepen- dently of each other. The current power coming through the structure cross-section with the wave along axis Z is determined by the Z-th component of the Umov-Pointing: [ ] ( ) .∫ ∫ −== dsHEHEEHP xyyxzz As В and Н are complex values depending on time, introducing their conjugated values, we can find for the average power of the wave propagating in the structure ( ) . 2 1 0 0 dxdyHEHERW a b xyyxe∫ ∫ ∗∗ −= Omitting the derivation, which is similar to the light transducer not filled with dielectric, we can write down the absorption coefficient for an Н01 type wave ( ) 11 1 686,829,1 24/32 2/3 2/3 −+ + ⋅ ⋅ = ур у ру в ρ β (2) and for the Н11 type wave ( ) ( ) . 11 11 686,829,1 24/32 3 2/3 2/3 −+ +++ ⋅ ⋅ = ур у рурр в ρ β (3) In formulas (2) and (3) the following notation was introduced: а в=ρ ; 0f fу = , where 22 0 2     +    = b n a mcf is the critical, or limiting, frequency. If a dielectric with dielectric constant Е is intro- duced into the waveguide, formulas for the absorption coefficient become more complex. For wave Е11 ( ) . 11 1686,829,1 2 2/3 4/32 3 2/3 − ⋅ + +⋅ ⋅ = Еу Еу р р в ρ β For wave of Н01 type . 1 1 686,829,1 2 2/3 2/3 − + ⋅ ⋅ = Еу у Еру в ρ β For wave of Н11 type . 1)1( 1)1( 686,829,1 24/32 3 2/3 2/3 −+ +++ ⋅ ⋅ = Еу у рурЕр в β ρ β If we take Аl-Si-Al structure, where 2SiOn =1,45 , р= 10-1, у=3, E=2,1 (для λ=0,3мкм), ρАl = 2,69·10-8 Ohm·m, b = 3·10-5 сm, а = 3·10-4 сm, for the attenuation coefficient β - 0,733·104 dB/m = 7,3 dB/m it should be noted that propagation of the electromagnetic wave is affected by optical properties of silicon, which is trans- parent for the visible light at layer thickness up to 3 μm. 156 3. CONCLUSIONS Experimental studies of generation and propagation of electromagnetic radiation in silicon under bombard- ment by alpha-particles have shown that two-thirds of the radiation propagates in the spectral region 0.9...1.1 μm, and one-third of the energy is emitted in the nearest IR range. Therefore, to improve stability of solid-state elec- tronic instruments with respect to penetrating radiation capable of inducing light generation, one should use dopants creating deep energy levels in the band gap. Another possibility of improving radiation stability is the use of semiconductors that are poorly transparent or not transparent at all in the visible and near-IR range (e.g., germanium). One should also use materials that are not transparent in the visible and near-IR range as insulating layers. As such approach can lead to certain deterioration of the characteristics of electronic instruments, a compro- mise is advisable, allowing substantial improvement of stability of integral circuits under irradiation. REFERENCES 1.V.I. Bendikov, R.I. Garber, A.K. Gnap, A.I. Fe- dorenko. Studies of optical emission by silicon under ion bombardment //Radiation Defects in Semiconduc- tors. 1972, p. 203. 2.O.I Leipunski. Gamma-radiation due to atomic explo- sion. M.: “Atomizdat”, 1959, 155 p. 3.A.M. Ivanov, N.B. Strokan, V.B. Shuman. Properties of p-n structures with a deepened layer of radiation de- fects //Fiz. Tekhn. Poluprovod. 1999, v. 32, N3, p.359– 365. ОПТИЧНІ ПРОЦЕСИ В КРЕМНІЇ ТА МІКРОЕЛЕКТРОННИХ СТРУКТУРАХ НА ЙОГО ОСНОВІ ПРИ ВЗАЄМОДІЇ З ВИСОКОЕНЕРГЕТИЧНИМИ ЧАСТКАМИ В.Г. Волков, В.Д. Рижиков, Н.И. Коваленко, А.К. Гнап, В.В. Черніков, Є.Ф. Храмов Приведено результати технічних досліджень формування світлових потоків в кремнії і інтегральних структурах на його основі. Розглянуто вилив цих світлових потоків на електричні параметри тріодних структур інтегральних схем. Показано, що під час опромінювання високоенергетичними частками збільшуються токи споживання і токи витопу інтегральних схем. Застосування запропонованих засобів дозволяє зменшити вилив цих ефектів. ОПТИЧЕСКИЕ ПРОЦЕССЫ В КРЕМНИИ И МИКРОЭЛЕКТРОННЫХ СТРУКТУРАХ НА ЕГО ОСНОВЕ ПРИ ВЗАИМОДЕЙСТВИИ С ВЫСОКОЭНЕРГЕТИЧНЫМИ ЧАСТИЦАМИ В.Г. Волков, В.Д. Рыжиков, Н.И. Коваленко, А.К. Гнап, В.В. Черников, Е.Ф. Храмов Приведены результаты технических исследований формирования световых потоков в кремнии и интегральных структурах на его основе. Рассмотрено влияние этих световых потоков на электрические параметры планарных триод- ных структур интегральных схем. Показано, что при облучении высокоэнергетическими частицами увеличиваются токи потреблений и токи утечки интегральных схем. Применение предложенных способов позволяет уменьшить влияние этих эффектов. 157 2. METHOD OF SIMULATION AND RESEARCH 2.1. Light fluxes in integral structures under high-energy irradiation 2.2. Generation of IR-radiation We assume that, within the limits of the structure, for any of the field components For wave of Н01 type 3. Conclusions References