The high-Z hydrogen-like atom: a model for polarized structure functions
The Dirac equation offers a precise analytical description of relativistic two-particle bound states, when one of the constituent is very heavy and radiative corrections are neglected. Looking at the high-Z hydrogen-like atom in the infinite momentum frame and treating the electron as a "parton...
Gespeichert in:
Datum: | 2007 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/110942 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The high-Z hydrogen-like atom: a model for polarized structure functions / X. Artru, K. Benhizia // Вопросы атомной науки и техники. — 2007. — № 3. — С. 98-103. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-110942 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1109422017-01-08T03:02:26Z The high-Z hydrogen-like atom: a model for polarized structure functions Artru, X. Benhizia, K. Elementary particle theory The Dirac equation offers a precise analytical description of relativistic two-particle bound states, when one of the constituent is very heavy and radiative corrections are neglected. Looking at the high-Z hydrogen-like atom in the infinite momentum frame and treating the electron as a "parton", various properties usually attributed to the quark distributions in the nucleon are tested, in particular: Bjørken scaling; charge, helicity, transversity and momentum sum rules; existence of the parton sea; Soffer inequality; correlation between spin and transverse momentum (Sivers and Boer-Mulders effects); transverse displacement of the center-of-charge and its connection with the magnetic moment. Deep inelastic experiments with photon or positron beams at MeV energies, analogous to DIS or Drell-Yan reactions, are considered. Рівняння Дірака дає точний аналітичний опис релятивістських зв'язаних станів із двома частинками, якщо одна з них дуже важка, а радіаційними поправками можливо знехтувати. Розглядаючи воднеподібний атом з великим Z у системі нескінченного імпульсу та трактуючи електрон як "партон", перевірено різні властивості, звичайно приписувані розподілам кварків у нуклоні, зокрема: Б’йоркенівський скейлінг; правила сум для заряду, спіральності, поперечної поляризації, імпульсу; існування партонів “моря”; нерівність Соффера; кореляція між спином і поперечним імпульсом (ефекти Сіверса та Бура-Малдерса); поперечне зміщення центру заряду та його зв'язок з магнітним моментом. Розглянуто експерименти з глибоконепружного розсіювання фотонних або позитронних пучків мегаелектронвольтних енергій, подібні до глибоконепружного розсіяння або процесу Дрела-Яна. Уравнение Дирака дает точное аналитическое описание релятивистских связанных состояний двух частиц, если одна из них очень тяжелая, а радиационными поправками можно пренебречь. Рассматривая водородоподобный атом с большим Z в системе бесконечного импульса и трактуя электрон как "партон", проверены различные свойства, обычно приписываемые распределениям кварков в нуклоне, в частности, Бьёркеновский скейлинг; правила сумм для заряда, спиральности, поперечной поляризации, импульса; существование “моря” партонов; неравенство Соффера; корреляция между спином и поперечным импульсом (эффекты Сиверса и Бура-Малдерса); поперечное смещение центра заряда и его связь с магнитным моментом. Рассмотрены эксперименты по глубоконеупругим процессам на фотонных или позитронных пучках мегаэлектронвольтных энергий, аналогичные глубоко неупругому рассеянию, либо процессу Дрелла-Яна. 2007 Article The high-Z hydrogen-like atom: a model for polarized structure functions / X. Artru, K. Benhizia // Вопросы атомной науки и техники. — 2007. — № 3. — С. 98-103. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 03.65.Pm, 11.55.Hx, 13.60.-r http://dspace.nbuv.gov.ua/handle/123456789/110942 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Elementary particle theory Elementary particle theory |
spellingShingle |
Elementary particle theory Elementary particle theory Artru, X. Benhizia, K. The high-Z hydrogen-like atom: a model for polarized structure functions Вопросы атомной науки и техники |
description |
The Dirac equation offers a precise analytical description of relativistic two-particle bound states, when one of the constituent is very heavy and radiative corrections are neglected. Looking at the high-Z hydrogen-like atom in the infinite momentum frame and treating the electron as a "parton", various properties usually attributed to the quark distributions in the nucleon are tested, in particular: Bjørken scaling; charge, helicity, transversity and momentum sum rules; existence of the parton sea; Soffer inequality; correlation between spin and transverse momentum (Sivers and Boer-Mulders effects); transverse displacement of the center-of-charge and its connection with the magnetic moment. Deep inelastic experiments with photon or positron beams at MeV energies, analogous to DIS or Drell-Yan reactions, are considered. |
format |
Article |
author |
Artru, X. Benhizia, K. |
author_facet |
Artru, X. Benhizia, K. |
author_sort |
Artru, X. |
title |
The high-Z hydrogen-like atom: a model for polarized structure functions |
title_short |
The high-Z hydrogen-like atom: a model for polarized structure functions |
title_full |
The high-Z hydrogen-like atom: a model for polarized structure functions |
title_fullStr |
The high-Z hydrogen-like atom: a model for polarized structure functions |
title_full_unstemmed |
The high-Z hydrogen-like atom: a model for polarized structure functions |
title_sort |
high-z hydrogen-like atom: a model for polarized structure functions |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2007 |
topic_facet |
Elementary particle theory |
url |
http://dspace.nbuv.gov.ua/handle/123456789/110942 |
citation_txt |
The high-Z hydrogen-like atom: a model for polarized structure functions / X. Artru, K. Benhizia // Вопросы атомной науки и техники. — 2007. — № 3. — С. 98-103. — Бібліогр.: 14 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT artrux thehighzhydrogenlikeatomamodelforpolarizedstructurefunctions AT benhiziak thehighzhydrogenlikeatomamodelforpolarizedstructurefunctions AT artrux highzhydrogenlikeatomamodelforpolarizedstructurefunctions AT benhiziak highzhydrogenlikeatomamodelforpolarizedstructurefunctions |
first_indexed |
2025-07-08T01:22:56Z |
last_indexed |
2025-07-08T01:22:56Z |
_version_ |
1837039906831990784 |
fulltext |
THE HIGH-Z HYDROGEN-LIKE ATOM: A MODEL FOR POLARIZED
STRUCTURE FUNCTIONS
X. Artru1 and K. Benhizia2
1Institut de Physique Nucléaire de Lyon, CNRS and Université Lyon-I.
Domaine Scientifique de la Doua. 4, rue Enrico Fermi, F-69622 Villeurbanne, France;
e-mail: x.artru@ipnl.in2p3.fr;
2Laboratoire de Physique Mathématiques et Physique Subatomique, Université Mentouri,
Constantine, Algeria;
e-mail: Beni.Karima@laposte.net
The Dirac equation offers a precise analytical description of relativistic two-particle bound states, when one of
the constituent is very heavy and radiative corrections are neglected. Looking at the high-Z hydrogen-like atom in
the infinite momentum frame and treating the electron as a "parton", various properties usually attributed to the
quark distributions in the nucleon are tested, in particular: Bjørken scaling; charge, helicity, transversity and mo-
mentum sum rules; existence of the parton sea; Soffer inequality; correlation between spin and transverse momen-
tum (Sivers and Boer-Mulders effects); transverse displacement of the center-of-charge and its connection with the
magnetic moment. Deep inelastic experiments with photon or positron beams at MeV energies, analogous to DIS or
Drell-Yan reactions, are considered.
PACS: 03.65.Pm, 11.55.Hx, 13.60.-r
1. THEORETICAL FRAME
The Dirac equation enables us to study the relativis-
tic aspects of an hydrogen-like atom of large
( 1 , where ). It takes all or-
ders in into account but neglects (i) the nucleus
recoil, (ii) the nuclear spin and (iii) radiative corrections
like the Lamb shift. So it is accurate at least to zeroth
order in and . Applying a Lorentz boost, we
have an explicit model of “doubly relativistic” two-body
bound state (relativistic for the internal and external
motions). In particular, boosting the atom to the “infi-
nite momentum frame” (or looking it on the null-plane
), one has a model for the structure functions
which appear in deep inelastic scattering on hadrons. In
fact, since it neglects nucleus recoil, this model is best
suited to mesons with one heavy quark. However many
properties can be generalized to hadrons made of light
quarks.
A Z
~αZ
= 0t z+
( ) 137/14/2 ≅= πα e
/e Am m
Zα
α
In analogy with the quark distributions, we introduce
the unpolarized electron distributions q k ,
and where takes the place of the Bjørken
scaling variable, is the transverse momentum of the
electron and the impact parameter is the
variable conjugate to . We will also define the corre-
sponding polarized distributions like
where and S are the polarization vectors of the
atom and the electron. We will particularly study:
( )+
= (b
( ,q k
( , )Tq k +k
, )x y
, ; ),e A+b S S
( , ),q k +b
AS
k +
Tk
Tk
e
• the differences between , the helicity distribu-
tion and the transversity distribution ;
( )q k +
( )q k +∆ ( )q kδ +
• the sum rules for the vector, axial and tensor charges
and for the longitudinal momentum;
• the correlations between , and or k , like
the Sivers effect;
AS eS b T
• the existence of a non-zero for transverse S and
its connection to the atom magnetic moment;
〈 〉b A
• the positivity constraints;
• the existence of an electron - positron sea and its role
in the sum rules.
As scaling variable we take the null-plane momen-
tum of the electron measured in the atom rest frame,
( ) ( )0 ,rest frame inf. mom. frame
= = /
= .
z A z A z
A Bj
k k k M k P
M x
+ +
(1)
We prefer it to the Bjørken variable which is
very small and depends on the nucleus mass. The kin-
ematical limit for | is but typical values are
.
Bjx
|k +
atomM
| |~e ek m Z mα+ −
We hope in this study to get a better insight of rela-
tivistic and spin effects in hadronic physics. The infinite
momentum or null-plane description can also be inter-
esting in atomic physics itself, since “deep inelastic”
experiments can also be made with atoms, in particular:
• Compton profile measurements:
( ) bound ( ) free ( )K e K Q eγ γ− − ′+ → + + k
−
,
• Moeller or Bhabha scattering:
( ) bound ( ) free ( )e K e e K Q e k± − ± ′+ → + +
• annihilation:
( ) bound ( ) ( )e K e K Q kγ γ+ −+ → + + .
The Mandelstam variables , t Q
and are supposed to be large compared to
. A ten MeV beam is sufficient for that. We take the
axis opposite to the beam direction. In the laboratory
frame the final particles are ultrarelativistic nearly in the
2= ( )s K Q k ′+ + 2=
2= ( )u K k ′−
2
em
ẑ
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p.98-103. 98
ˆ−z
k +
Tk
+
−∇
q k
direction. The components k and k of the elec-
tron momentum just before the collision are given by
+
.T
),
, ]k
{ i
)
1 1
, '
, )
T
+
T
= i− ∇k
− ∇
, )i
.z
b
A+
( , ( , k ( , k
) =
Co
.
+Φ
,+
2.
)
b q
,+ b
E E
,k Q+ + (2)
' (nucleus) = 'T T−k P k QT
A
e
} Φb r
b
(3)
can be measured with one detector, k and
need two detectors. The definition (3) of k is ambigu-
ous due to the final state Coulomb interaction.
+
Tk
2. JOINT DISTRIBUTION ( , )k +b
Being observable quantities, the operators and
should be defined in the gauge independent way
k +
0= ( ) ( ( )z z T T Tk i V i A∂ − − ∂ − −r r r . (4)
They do not commute: [ , where
is the transverse part of the Coulomb force.
Therefore one cannot define a joint distribution
in an unambiguous way. Leaving this prob-
lem for the next section, we can at least define the joint
distribution in the impact parameter represen-
tation. This quantity plays a role in double H + H colli-
sions in which both nuclei and both electrons collide.
= ( )T Ti V+ k r
( )TV r
( , T
+ k )
( , )q k + b
From the known the Dirac wave function of the hy-
drogen atom (see, for instance [1-3])
( , ) = ( ) ,iEtt −Ψ Ψr r (5)
we can define the two-component null-plane wave func-
tion in b and [4], Tk
( , ) = exp ( ( );k dz ik z Ez z
+∞+ +
−∞
Φ − + − χ∫b (6)
1 3
2 4
( ) ( )
= ( ) = ;
( ) ( )
Ψ +Ψ
Φ Ψ −Ψ
r r
r
r r
(7)
( ) (
( ) ( )
0
0
, ' ,
sinh / sinh /
z
z
z dz V x y z
Z z b− −
χ =
= − α −
∫b
(8)
The "gauge link" exp{ ( }i z− χ transforms in
the Coulomb gauge to in the null plane gauge
( = in the infinite momentum frame). The
choice of corresponds to a residual gauge freedom.
The quantity
Ψ
Ψ
= 0 zA
0z
0
†
2) = ) ),
/(2 )
edN
q k
d dk
+
+≡ Φ Φ
π
b b
b
(9) + +b
will be temporarily interpreted as the electron distribu-
tion in the atom. One has indeed
2( ) = ( , 1
2 2
dk dkq k d b k
+ ++∞ +∞+ +
−∞ −∞∫ ∫ ∫π π
(10) q k
However a significant re-interpretation will be given
in Section 5.
The gauge link makes invariant under a
gauge transformation, for instance
, . Such a
shift of the potential is practically realized when elec-
trons are added in far outer shells. Intuitively, this addi-
tion does not change the momentum distribution of the
deeply bound electrons.
( )q k
( )r r( ) ( ) ConstV V→ +r r ( ) nst→ +
3. JOINT DISTRIBUTION ( , )T k +k
Notwithstanding the non-commutativity mentioned
earlier, one can make a transversal Fourier transform of
(6),
2( , ) = ( , )i TT k d e k−+ ⋅Φ ∫
k bk b b (11)
and define a longitudinal-transverse momentum distri-
bution
†( , ) = ( , ) ( , )T T Tq k k k+ +Φ Φk k k (12)
normalized to
2( ) = ( , ) /(2 )T Tq k q k d π+ +∫ k k (13)
( ,Tq k+k
0 =z −∞
0z
depends on , which is a remnant of the
ambiguity. However, an appropriate choice of turns
this apparent disease into an advantage [5–7]. Taking
for the Compton reaction, the factor e in
(6) just takes care of the final state interaction: it de-
scribes the distortion of the scattered electron wave
function by the Coulomb potential, in the eikonal ap-
proximation. Similarly, taking for the annihila-
tion reaction, it describes the distortion of the initial
positron wave function. Thus , which depends
on , has no precise intrinsic character. One can just
consider a “most intrinsic” definition with .
0z
0z
i− χ
= 0
( , )zb
0 =z +∞
( ,Tq k +k )
0z
4. SPIN DEPENDENCE OF THE ELECTRON
DENSITY
In formulas (5-12) the angular momentum state of
the atom was not specified. We assume that the electron
is in the fundamental , state and the nu-
cleus is spinless. Let
= 1n
= 2AS
= 1/2j
〈 〉j and denote
the atom and electron polarization vectors. The unpolar-
ized electron density in ( , space in a fully polar-
ized ( | ) atom is
= 2e 〈 〉S s
1
A+
.
⋅n
)+kb
|=AS
†( , ; ) = ( , ; ) ( , ; )A Aq k k k+ +Φ Φb S b S b S (14)
and the electron polarization is given by
†
( , ; ) ( , ; )
= ( , ; ) ( , ; )
e A A
A A
S k q k
k k
+ +
+ +Φ Φ
b S b S
b S σ b S
(15)
Taking into account parity and angular momentum
conservations, the density of electrons with polarization
in a polarized atom can be written as eS
( ) 0 0ˆ ˆ( , , ; ) = ( , ) / 2 [1e A A e
n nq k C C+ + + ⋅ +b S S b S n S
ˆ ˆ ˆ( )( ) ( )
ˆ ˆ ˆ( ) ( )( )],
e A e A e A
nn ll z z l z
e A e A
l z
C C S S C S
C S C
π
π ππ
+ ⋅ ⋅ + + ⋅
+ ⋅ + ⋅ ⋅
S n S n S π
S π S π S π
(16)
where and n z . The C 's also are func-
tions of b and . A similar equation can be written in
the representation. Integrating (16) over leaves
the following spin correlations:
ˆ = /bπ b ˆ ˆ ˆ= × π ,i j
k +
Tk b
99
( , ; )
= 12 ( ) ( ) ( ) ,
e A
e A e A
z z T T
q k
q k q k S S q kδ
+
+ + + + ∆ + ⋅
S S
S S
(17)
where and are the helicity and trans-
versity distributions.
( )q k +∆ (q kδ + )
.
4.1. FORMULAS FOR THE POLARIZED
DENSITIES IN AND ( ,( , )k +b )T k +k
For the state, Φ of Eq.(11) can be writ-
ten as
= 1/2zj +
ˆ( , ; = ) = ;
ˆ( , ; = ) =
A
i
A
T i
w
k
ive
w
k
ve
+
φ
+
φ
Φ + −
Φ + −
b S z
k S z
(18) =z
For the state, = 1/2zj −
ˆ( , ; = ) = ;
ˆ( , ; = ) = .
i
A
i
A
T
ive
k S
w
ve
k S
w
− φ
+
φ
+
Φ −
Φ −
b z
k z
(19)
For other orientations of , one takes linear com-
binations of (18) and (19). The distribution de-
pends of only in an over-all phase. Choosing ,
and are real and given by
AS
( , )k +b
0z 0 = 0z
( , )v k +b ( , )w k +b
( , )= ikv b z iEz i zdz e f r r
w r i z
+∞ −
−∞
ξ + − χ
+ ξ
∫ b (20) ( )/ ,
3 †= ( ; ) ( ; )A Aq d Ψ Ψ∫ r r S r S (26)
where = /(1 )Zξ α + γ , 2= / = 1 ( )eE m Zγ − α and
1/2
1/2 11( ) = (2 ) exp( )
8 (1 2 ) e ef r m Z r m Z rγ+ γ− + γ
α − πΓ + γ
α (21)
is the 1S radial wave function. Then,
2 2
2 2
0 0
2 2 2 2
( , ) = ;
( , ) = 1;
( , ) = ( , ) = 2 /( );
( , ) = ( , ) = ( )/( );
( , ) = ( , ) = 0.
nn
n n
ll
l l
q b k w v
C b k
C b k C b k wu w v
C b k C b k w v w v
C b k C b k
ππ
π π
+
+
+ +
+ +
+ +
+
− +
− +
(22)
Note that , which gives an asymmet-
rical impact parameter profile for a transversely polar-
ized atom.
0 ( , ) 0nC b k + ≠
The distribution depends on . Taking
makes (8) divergent. In practice we will as-
sume that | | is large but finite, accounting for a
screening of the Coulomb potential. It gives
( , )T k +k
0z
0z
0 =z ∞∓
( ) ( ) ( ) ( )[ ]bzzbzZz /2ln/sinh, 00
1 ε−α−=χ −b , (23)
with and , the upper sign corre-
sponding to Compton scattering and the lower sign to
annihilation. Modulo an overall phase,
(0) = 0ε ( ) = 1ε ∞∓ ∓
= 1;
( 00
0
1
( ) ( , ))= 2
( ) ( , )
iZ z T
T
w J k b w b k
b db b
v J k b v b k
+
∞ αε
+
π
∫ . (24)
The analogue of (22) is
2 2
* 2 2
0 0
2 2 2 2
* 2 2
( , ) = | | | | ;
( , ) = 1;
( , ) = ( , ) = 2 ( )/(| | | | );
( , ) = ( , ) = (| | | | )/(| | | | ).
( , ) = ( , ) = 2 ( )/(| | | | ).
T
nn T
n T n T
ll T T
l T l T
q k k w v
C k k
C k k C k k v w w v
C k k C k k w v w v
C k k C k k v w w v
+
+
+ +
+ +
ππ
+ +
π π
+
ℑ +
− +
− ℜ +
(25)
These coefficients are related to the structure func-
tions listed in Ref.[8]. For the "most intrinsic" gauge
, and are real so that C k (no
Sivers effects). This is in accordance with time reversal
invariance [7]. For the “Compton” and "annihilation"
gauges ( ), and v are complex numbers, so
that Sivers [9-10] effect ( and the Boer-
Mulders [8] effect ( ) take place.
0 = 0z w
0
v
1
0 ( , ) = 0n T k +
) 0k ≠
∓ w
0
k +
( ,n TC k +
( , ) 0n T ≠0C k
In the Compton case the factor b behaves like a
converging cylindrical wave. Multiplying , it op-
erates as a boost toward the axis, interpreted as the
"focusing" of the final particle by the Coulomb field
[10]. This focusing converts the asymmetry in b for a
transversely polarized atom into the Sivers asymmetry
in . The opposite effect (defocusing of the positron)
takes place in the annihilation case.
iZ− α
( )Φ r
z
Tk
4.2. SUM RULES
Integrating (17) over , one obtains the vector, ax-
ial and tensor charges
k +
2
3 †
2
1 /3= ( ; ) ( ; ) =
1
A A Aq d − ξ
∆ ⋅ Ψ Ψ
+
;
ξ∫S r r S Σ r S (27)
2
3 †
2
1 /3= ( ; ) ( ; ) =
1
A A Aq d + ξ
δ ⋅ Ψ β Ψ
+
.
ξ∫S r r S Σ r S (28)
Note the big "helicity crisis", instead of 1
as naively expected, for .
= 1/3q∆
= 1Zα
4.2.1. SUM RULE FOR THE ATOM MAGNETIC
MOMENT
Consider a classical object of mass , charge ,
spin and time-averaged magnetic moment
M Q
J µ in its
rest frame. In this frame, the centre of energy r and
the average center of charge 〈 coincide, say at
. Upon a boost of velocity , and 〈 un-
dergo the lateral displacements
G
Cr
C 〉r
v= 0r Gr 〉
= / , = /G CM× 〈 〉 ×b v J b v .Qµ (29)
Gb and coincide if the gyromagnetic ratio has the
Dirac value . In our case, is negligible due to
the large nucleus mass, therefore the magnetic moment
is almost totally anomalous. In the infinite momentum
or null-plane frame ( ) one observes an electric
dipole moment [11]
C〈 〉b
/Q M Gb
ˆv z
atom ˆ= Ae− 〈 〉 µ ×b z ,S
x
(30)
which we can calculate from C b . Weighting
(14) with b for S
0 ( , )n k +
x ≡ ˆ=A y one obtains
100
= (1 2 )/(6 )ex〈 〉 − + mγ (31) n
which is in accordance with the relativistic result for the
atomic magnetic moment = (1 2 )/(6 )A ee mµ − + γ (ig-
noring the anomalous magnetic moment of the electron
itself).
4.3. POSITIVITY CONSTRAINTS
The spin correlations between the electron and the
atom can be encoded in a positive-definite "grand den-
sity matrix" [12], R
=
t
A eR C µ ν
µν σ ⊗ σ . (32)
Here µ and run from 0 to 3, summation is under-
stood over repeated indices, and C .
can be seen as the density matrix of the final state in the
crossed reaction . Be-
sides the trivial conditions | the positivity of
gives
ν
0 = Iσ
atom(→
| 1ij ≤
00 = 1
( )A e++ −S S
R
R
nucleus ) e
C
2 2 2
0 0(1 ) ( ) ( ) ( ) .nn n n ll l lC C C C C C Cππ π π± ≥ ± + ± + ∓ 2
+
+
(33)
These two inequalities agree with those of Ref. [13].
Together with | they are saturated by (22) or
(25). This maximal strength of the spin correlation
means that the information contained in the atom polari-
zation is fully transferred to the electron, once the other
degrees of freedom ( and b or ) have been fixed.
If we integrate over , for instance, some information
is lost and some positivity conditions get non-saturated.
The same happens if there are “spectators” electrons
which keep part of the information for themselves.
| 1llC ≤
k +
k +
Tk
After integration over b or k , we are left with the
Soffer inequality [14],
T
2 | ( ) | ( ) ( ),q k q k q kδ + +≤ + ∆ (34)
which are saturated by (26-28).
Note that a complete anti-correlation between the
atom and the electron spins, and
, leading to
= = = 1ll nnC C Cππ −
= 0i jC ≠
( , , ; ) = ( , ) (1 )/2,e A e Aq k q k+ + − ⋅b S S b S S
violates the positivity conditions, although the last ex-
pression is positive for any S and . In fact such a
correlation would make
e
,A e
+ 〉
AS
,A e| |R+
A e
〈 〉
+
〉
〉
negative for
some entangled states | , in the crossed channel,
in particular the spin-singlet state [12].
5. THE ELECTRON-POSITRON SEA
The charge rule (26) receives positive contributions
from both positive and negative values of k . So the
contribution of the positive k domain is less than
unity. On the other hand, physical electrons have posi-
tive . It seems therefore that there is less than one
physical electron in the atom. This paradox is solved by
the second quantification and the introduction of the
electron-positron sea.
+
+
k +
Let us denote by | an electron state in the Cou-
lomb field. Quantizing the states in a box, we take n to
be integer. Negative 's are assigned to negative energy
states. Positive 's up to label the bound states
( ) and the remaining ones from
to label the positive energy scattering states,
. Let | be the plane wave with four-
momentum and spin , solution of the free Dirac
equation. The destruction and creation operators in the
interacting and free bases are related by
n〉
n
em
, k s
a− −
=
| n′
Bn
k s
Dir
atom〈 〉
< <e nm E−
+∞
n eE m≥ +
k
= ,k sα
† †| =n nH a
0k k +
atom
<0
( , )
| ,
e
n
N s
k s
−
′
+ 〈∑
k
†
na
1Bn +
.
,k s
1 2
〉
| n a〈 〉∑
†a
†
,
2| .
k s
〉
s
,
† |a−∞
k
,k s
atom
,
e e
k k
N N
− −
ion
, | (k s n〈 〉 → Φ k
0>0
,T
= |
s
∑ ∑
)
,k s (q k +
k +
k +
s
a
e
tom ( ,N k
+
atom= k s− − 〉α α
ion atom
e e+ +
= <0k+
q− ∫
k +
k +
( at
=e eQ N
atom
( )
( )
(
=
=
ion
q k +
q k +
)− +
+
= 1e
om
e −
ion
eQ
ion
e eN N
− −
N
ion
atomN−
† †
, = | ,n n
n n
a n k sα 〈∑ (35)
In the Dirac hole theory, the hydrogen-like atom is
in the Fock state
ac-bare nucleus .〉 〉 (36)
“Dirac-bare” means that all Dirac states, including
the negative energy ones, are empty. The number of
electrons of momentum and spin (with positive
and ) in the atom is
s
2=| , | |k s nα α 〈
(37)
A stripped ion is a "Dirac-dressed" nucleus, all nega-
tive energy states being occupied. For the ion the factor
of (36) is missing and the first term of (37) is absent.
By difference,
2| | = >0 2k
dkn
+
+− 〈 〉
π∫ (38) ),
the last expression being for the continuum limit
.
Positrons are holes in the Dirac sea. The number of
positrons of momentum k (with positive 0k and )
and spin in the atom is
† 2
, ,
0<
) = | , | |k s
n n
s k s n− −
′≠
′〈 〉 〈− −∑ . (39)
For the ion, the condition is relaxed. By dif-
ference,
n n′ ≠
2
dkN N k
+
+
π
(40) ( ),
where we have made the change of variable = −k k .
The sum rule (26) can therefore be interpreted in the
following way:
• for , ( distrib. in atom) - ( distrib.
in ion)
> 0 e− e−
• for , ( distrib. in ion) - ( distrib.
in atom).
< 0 e+ e+
Thus
) = 1,e eN
+ +
(41)
where each bracket ∈ . Introducing
, this can be rewritten as
[0,1]
e−
−
Q Q (42)
is the electronic charge renormalization of the ion
on the null plane. It is more likely positive, maybe infi-
101
nite for a point-like nucleus. The renormalization
of the atom is equal to it. It may be interesting
to relate with the result of covariant QED.
atom 1eQ −
ato
edN
−
( )
γ +
γ +
(q k+
ion
matter NP+
NE
field
=
e
ionQ
m/dk
seγ +
→ γ
→
)
P M
+ ν
( )r
{ }
dx
dx
∫
∫
00T
0 0z zT T
atom
eE
E M
2 +E B
= =
P M
eB
≡ −
+ , , and
are separately measured in the deep inelastic reactions
listed in Section 1 and their generalizations to the elec-
tron-positron sea, for instance
atom/edN dk
+ +
ion /edN dk
− +
ions /
edN dk
+ +
a ( ) free ( ).K e K Q e k± ′→ γ + + ±
e−
N
)
)
d
xdydz
(43) P P
A “sea” electron can be equally understood in the
sense given by Feyman in the parton model or by Dirac
in the hole theory. It gives the second term of (37) and
the whole process is
slow fastA A e+′ + + + . (44) P k
A “sea” positron is understood in the Feynman sense
only. In the hole theory, an electron of large negative
energy is lifted to a bound or slow free state | . It
gives the right-hand side of (39). The whole process is
n′〉
, fast .n n nH H e− +
′ ′+ + γ (45)
Of course, one can permute the roles of the electron
and the positron in the Dirac theory; then Feynman and
Dirac sea positrons become equivalent.
6. MOMENTUM SUM RULE
obeys a momentum sum rule which, like the
charge sum rule, applies to the difference between the
atom and the ion.
The null-plane momentum of the ion (=nucleus) can
be decomposed into a matter part and a Coulomb field
part:
{ }matter field= =N NP P+ + ++ E . (46)
includes the momentum of the electron cloud
which renormalize the ion charge. is the flux
of the component of the energy-
momentum tensor T of the nucleus Coulomb
field across the null plane:
{ }field NP+ E
, 0= zT T Tν ν+
µν { }NE
{ } { }(
(
( )
0
00 0 0
2 2
=
= .
z
N N N
z z zz
x y
P T T
dydz T T T T
dydz E E
+ ν ν
ν+ σ
+ + +
+
∫E E E
(47)
We have used , = (1,0,0,1)d dνσ
( )2= 2
x yE B −
, ,
. Similarly, for the atom, we
have
00 2 2=zz
z zT T E B− −
y xE B
{ }matter bare field= = ;A N e N eP P P+ + + ++ + +E E Be
.t
)
(48)
the electron magnetic field being included. Here ,
and take only into account the difference be-
tween the atomic and ionic electron clouds. Subtracting
(46) from (48),
bare eP+
=A N e inM P P+ ++ (49)
intP+ results from the crossed terms in and or
of T . Its value is
NE eE eB
µν
( ) (3
3
= 2
4 4= = .
3 3
int Nx ex ey Ny ey ex
N e
P d E E B E E B
d E E V
+ + + −
⋅ 〈 〉
∫
∫
r
r
(50)
V〈 〉 is the average potential energy. The terms in
have disappeared upon angular integration.
N eE B
{ }bare field=e e P+ + ++ E
= zk E i+ − ∂
is the mean value of the null-
plane mechanical momentum k of the physical elec-
tron (more precisely the “atom - minus – ion” part of it).
Inserting in Eqs.(9), one obtains
+
e
4= ( ) =
2 3e
dk q k E
++∞+ + +
−∞
− 〈 〉∫ π
(51) V
/
with
3 † 2= ( ) ( ) ( ) = ( )eV d V r m Z〈 〉 Ψ Ψ − α .γ∫ r r r (52)
Eqs.(49-51) constitute the momentum sum rule.
7. CONCLUSION
This study has shown the rich spin and structure
of the hydrogen-like atom at large when it is ob-
served in the infinite momentum (or null-plane) frame.
Without the complications of QCD, like gluon self-
interaction and confinement, many properties attributed
to the leading twist hadronic structure functions have
been found and clearly interpreted here, in particular:
the sum rules, the spin crisis, the connection between
and the Sivers effect, the relation between
and the magnetic moment, the role of spectators in the
positivity constraints, the existence of a Feynman sea.
With this "theoretical laboratory" one may also investi-
gate non-leading twist structure functions, elastic form
factor a la Isgur-Wise, etc. Our results are interesting
also in pure QED. We have seen a connection between
the nucleus charge renormalization and the unpolarized
deep inelastic structure function of the cloud of a
stripped ion target. Thus the charge renormalization can
be analyzed experimentally in deep inelastic Compton,
Moller or annihilation processes. The same reactions at
the 10 MeV energy scale can test the relativistic correc-
tions to the electronic wave functions of large atoms.
Tk
±
Z
Z
0〈 〉 ≠b 〈 〉b
e
The PowerPoint document presented at
QEDSP2006, which contains figures not presented here,
can be obtained upon request to one author (X. A.).
REFERENCES
1. L.D. Bjørken, S.D. Drell. Relativistic Quantum Me-
chanics. New York: “McGraw-Hill”, 1964.
2. A.I. Akhiezer, V.B. Berestetskii. Quantum Electro-
dynamics. New York : “Interscience”, 1965, 868 p.
3. A. Messiah. Mécanique Quantique, v. 2. “Dunod”,
1964.
4. X. Artru, K. Benhizia. The relativistic hydrogen
atom: a theoretical laboratory for structure functions
//Proc. Int. Workshop on Transverse Polarisation
Phenomena in Hard Processes, Como, Italy, 2005.
“World Scientific”, 2006, p. 154-163. [hep-
ph/0512161, 2005, 10 p.].
102
5. S.J. Brodsky, D.S. Hwang, I. Schmidt. Final-state
interactions and single-spin asymmetries in semi-
inclusive deep inelastic scattering //Phys. Lett. B.
2002, v. 530, p. 99-107.
6. A.V. Belitsky, X. Ji, F. Yuan. Final state interactions
and gauge invariant parton distributions //Nucl.
Phys. B. 2003, v. 656, p. 165-198.
7. J.C. Collins. Leading-twist single-transverse-spin
asymmetries: Drell–Yan and deep-inelastic scatter-
ing //Phys. Lett. B. 2002, v. 536, p. 43-48.
8. D. Boers, P. J. Mulders. Time-reversal odd distribu-
tion functions in leptoproduction //Phys. Rev. D.
1998, v. 57, p. 5780-5786.
9. D. Sivers. Single-spin production asymmetries from
the hard scattering of pointlike constituents //Phys.
Rev. D. 1990, v. 41, p. 83-90.
10. D. Sivers. Hard-scattering scaling laws for single-
spin production asymmetries //Phys. Rev. D. 1991,
v. 43 p. 261-253.
11. M. Burkardt. Chromodynamic lensing and trans-
verse single spin asymmetries //Nucl. Phys. A. 2004,
v. 735, p. 185-199.
12. X. Artru, J.-M. Richard. General constraints on spin
observables, applications to antiproton proton to
antilambda lambda and to polarized quark
distributions //Proc. of the Xth Advance Research
Workshop on High Energy Spin Physics, NATO
ARW DUBNA-SPIN-03, Dubna, 2003. P. 19-28,
hep-ph/0401234, 2004, 10p.
13. A. Bacchetta, M. Boglione, A. Henneman,
P.J. Mulders. Bounds on transverse momentum de-
pendent distribution and fragmentation functions
//Phys. Rev. Lett. 2000, v. 85, p. 712-715.
14. J. Soffer. Positivity constraints for spin-dependent
parton distributions //Phys. Rev. Lett. 1995, v. 74,
p. 1292-1294.
ВОДОРОДОПОДОБНЫЙ АТОМ С БОЛЬШИМ Z:
МОДЕЛЬ ДЛЯ ПОЛЯРИЗАЦИОННЫХ СТРУКТУРНЫХ ФУНКЦИЙ
К. Артру, К. Бенхизия
Уравнение Дирака дает точное аналитическое описание релятивистских связанных состояний двух час-
тиц, если одна из них очень тяжелая, а радиационными поправками можно пренебречь. Рассматривая водо-
родоподобный атом с большим Z в системе бесконечного импульса и трактуя электрон как "партон", прове-
рены различные свойства, обычно приписываемые распределениям кварков в нуклоне, в частности, Бьёрке-
новский скейлинг; правила сумм для заряда, спиральности, поперечной поляризации, импульса; существо-
вание “моря” партонов; неравенство Соффера; корреляция между спином и поперечным импульсом (эффек-
ты Сиверса и Бура-Малдерса); поперечное смещение центра заряда и его связь с магнитным моментом. Рас-
смотрены эксперименты по глубоконеупругим процессам на фотонных или позитронных пучках мегаэлек-
тронвольтных энергий, аналогичные глубоко неупругому рассеянию, либо процессу Дрелла-Яна.
ВОДНЕПОДІБНИЙ АТОМ З ВЕЛИКИМ Z:
МОДЕЛЬ ДЛЯ ПОЛЯРИЗАЦІЙНИХ СТРУКТУРНИХ ФУНКЦІЙ
К. Артру, К. Бенхізія
Рівняння Дірака дає точний аналітичний опис релятивістських зв'язаних станів із двома частинками, як-
що одна з них дуже важка, а радіаційними поправками можливо знехтувати. Розглядаючи воднеподібний
атом з великим Z у системі нескінченного імпульсу та трактуючи електрон як "партон", перевірено різні
властивості, звичайно приписувані розподілам кварків у нуклоні, зокрема: Б’йоркенівський скейлінг; прави-
ла сум для заряду, спіральності, поперечної поляризації, імпульсу; існування партонів “моря”; нерівність
Соффера; кореляція між спином і поперечним імпульсом (ефекти Сіверса та Бура-Малдерса); поперечне
зміщення центру заряду та його зв'язок з магнітним моментом. Розглянуто експерименти з глибоко-
непружного розсіювання фотонних або позитронних пучків мегаелектронвольтних енергій, подібні до гли-
боконепружного розсіяння або процесу Дрела-Яна.
103
|