Distinctive numbers of production systems functioning description
The production system of an enterprise is represented as the system with large quantity of elements, which are the objects of one's labour. The distinctive numbers of the production system are introduced by means of statistical mechanics. This approach gives the possibility of qualitative estim...
Gespeichert in:
Datum: | 2007 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111018 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Distinctive numbers of production systems functioning description / O.M. Pignasty // Вопросы атомной науки и техники. — 2007. — № 3. — С. 322-325. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111018 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1110182017-01-08T03:04:08Z Distinctive numbers of production systems functioning description Pignasty, O.M. Kinetic theory The production system of an enterprise is represented as the system with large quantity of elements, which are the objects of one's labour. The distinctive numbers of the production system are introduced by means of statistical mechanics. This approach gives the possibility of qualitative estimation of production processes functioning, sound selection of the corresponding equations set of macroscopic parameters balances for description of real production object. The estimation of the model selection should be interpreted as the qualitative one. The approach has the advantage of easy comparison of the results, corresponding to different microscopic models. Виробничу систему підприємства представлено у вигляді системи з великою кількістю елементів — предметів праці. За допомогою апарату статистичної механіки введено характерні числа виробничої системи. Цей підхід дає можливість провести якісну оцінку функціонування виробничого процесу, підібрати для опису реального виробничого об’єкту відповідну систему рівнянь балансів макроскопічних параметрів. Оцінку вибору моделі слід сприймати як якісну. Підхід має перевагу, що дозволяє легко порівнювати результати, що відповідають різноманітним мікромоделям. Производственная система предприятия представлена в виде системы с большим количеством элементов — предметов труда. Посредством аппарата статистической механики введены характерные числа производственной системы. Данный подход дает возможность провести качественную оценку функционирования производственного процесса, обоснованно подобрать для описания реального производственного объекта соответствующую систему уравнений балансов макроскопических параметров. Оценку выбора модели следует воспринимать как качественную. Подход обладает тем преимуществом, что позволяет легко сравнивать результаты, соответствующие различным микромоделям. 2007 Article Distinctive numbers of production systems functioning description / O.M. Pignasty // Вопросы атомной науки и техники. — 2007. — № 3. — С. 322-325. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 89.65.Gh http://dspace.nbuv.gov.ua/handle/123456789/111018 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Kinetic theory Kinetic theory |
spellingShingle |
Kinetic theory Kinetic theory Pignasty, O.M. Distinctive numbers of production systems functioning description Вопросы атомной науки и техники |
description |
The production system of an enterprise is represented as the system with large quantity of elements, which are the objects of one's labour. The distinctive numbers of the production system are introduced by means of statistical mechanics. This approach gives the possibility of qualitative estimation of production processes functioning, sound selection of the corresponding equations set of macroscopic parameters balances for description of real production object. The estimation of the model selection should be interpreted as the qualitative one. The approach has the advantage of easy comparison of the results, corresponding to different microscopic models. |
format |
Article |
author |
Pignasty, O.M. |
author_facet |
Pignasty, O.M. |
author_sort |
Pignasty, O.M. |
title |
Distinctive numbers of production systems functioning description |
title_short |
Distinctive numbers of production systems functioning description |
title_full |
Distinctive numbers of production systems functioning description |
title_fullStr |
Distinctive numbers of production systems functioning description |
title_full_unstemmed |
Distinctive numbers of production systems functioning description |
title_sort |
distinctive numbers of production systems functioning description |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2007 |
topic_facet |
Kinetic theory |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111018 |
citation_txt |
Distinctive numbers of production systems functioning description / O.M. Pignasty // Вопросы атомной науки и техники. — 2007. — № 3. — С. 322-325. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pignastyom distinctivenumbersofproductionsystemsfunctioningdescription |
first_indexed |
2025-07-08T01:31:00Z |
last_indexed |
2025-07-08T01:31:00Z |
_version_ |
1837040413799612416 |
fulltext |
DISTINCTIVE NUMBERS
OF PRODUCTION SYSTEMS FUNCTIONING DESCRIPTION
O.M. Pignasty
NPF Technology, 10/12 Kotlov Str., 61052, Kharkov, Ukraine,
e-mail: techpom@online.kharkov.ua
The production system of an enterprise is represented as the system with large quantity of elements, which are
the objects of one's labour. The distinctive numbers of the production system are introduced by means of statistical
mechanics. This approach gives the possibility of qualitative estimation of production processes functioning, sound
selection of the corresponding equations set of macroscopic parameters balances for description of real production
object. The estimation of the model selection should be interpreted as the qualitative one. The approach has the ad-
vantage of easy comparison of the results, corresponding to different microscopic models.
PACS: 89.65.Gh
1. INTRODUCTION
Extensive categories of organization, planning and
operation of production enterprise are developed within
the limits of simple models [1-7]. However, not neces-
sarily the real production systems functioning can be
accurately described with the help of these simplest
models [8-11]. Different production systems under the
same external conditions conduct themselves in differ-
ent ways. Thus, the same equations, even with addition
of the corresponding boundary conditions, are not
enough for the description of specific production system
functioning [12]. This fact gets obvious if the number of
equations is less than the number of constituent un-
known values. The equation set is open. Construction of
the closed equation set, showing the functioning of the
production system under consideration, is connected
with the definition of additional relationships among the
parameters of the given production system. Construc-
tion of the closed equation set means construction of
mathematical simulator of the production environment
being studied.
Construction of new models of production systems
is connected with experimental study of organization
and production techniques [1,8], it is caused by the re-
quirements of the fifth stage of economics [8]. To con-
struct such models, the application of well-known gen-
eral laws of mechanics and physics, e.g. thermodynamic
relations [13] is necessary. The application of varia-
tional principles [14,15] is appeared to be useful. Large
variety and complication of production method of the
system final product requires construction of theory of
production system functioning on the basis of represen-
tation of production system of an enterprise as the set of
objects of one's labour, being in different stages of
technological treatment [14]. However, it is impossible
to follow the conduct of each object of labour (the base
product of production system) because of their quite
large quantity and probabilistic nature of influence of
manufacturing equipment on the base product [12]. Sta-
tistical physics is one of the general approaches to
analysis of large systems conduct. Here probabilistic
approach to study of large systems is usually applied.
Such approach allows to obtain the functioning model
of production system with definite manufacturing
method in the framework of manufacturing equipment
at the enterprise by means of the aggregation of the mi-
croscopic parameters of the production under considera-
tion. Having such approach allows to exclude selection
of the model (one of the existing models for description
of production systems) which is the closest to the object
under consideration. At the same time from practical
view point it is interesting to obtain distinctive numbers
for production systems functioning, allowing to sub-
stantiate selection of the corresponding model of real
production object description.
2. KINETIC EQUATION, DESCRIBING
PRODUCTION SYSTEM FUNCTIONING
Description of functioning of contemporary mass
production systems is represented as stochastic process
[6, p.178]. The system state is defined as the state of the
total number of base products [7, p.183] of produc-
tion system. The state of the base product is described
by microscopic parameters ( , here (hrn) and
N
, jj µ )S jS
t
S j
tj ∆
∆
=µ
→∆ 0
lim
Nj ≤<0
(hrn/hr) are correspondingly the sum of
common expenses and expenses in a unit of time, trans-
ferred by production system to the -th base product,
. Production system is characterized by the
criterion function [1,7]:
j
)j,,( jStJ µ
)()(
2
),,( 0
1
1
1
2
V
N
j
jV
N
j
j
jj SWSFStJ
pp
ψψ
=
ψψ
=
−µ⋅+
µ
=µ ∑∑ (1)
Function is the productive potential of an
enterprise, it makes manufacturing field of production
process, being assigned directly by technological poten-
tial , potential of overheads
and potential of interaction . The system’s
state at any point of time is defined in the case when
microscopic values
)(0 VSW ψψ
)( VSψ
(S
0 VF ψ )(0 VC SF ψψ
)(0 VVC SF ψψ
),..., NNS,, 11 µµ are defined, and
at any other point of time the state equation of base
products is obtained:
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 322-325. 322
mailto:techpom@online.kharkov.ua
),,(
),,(),,(
,
Stf
S
StJStJ
dt
d
dt
dS
j
j
jj
j
jjÏ
j
j
=
∂
∂
=
∂
∂
=
µ
µ
µ
µ
(2)
here is the production-engineering function.
Instead of considering the state of production system
with microscopic values
),( Stf j
),...,,,( 11 NNSS µµ , we intro-
duce normalized function of distribution of
the base products number in phase space
[16], satisfying the kinetic equation:
),, µSt
,(S
(χ
N )µ
),,,(),( µ=⋅
µ∂
χ∂
+µ⋅
∂
χ∂
+
∂
χ∂ StJStf
St
(3)
).,(),,(),,(
,
Stf
S
StJStJ
dt
d
dt
dS
ПП =
∂
µ∂
=
µ∂
µ∂
µ=
(4)
Generating function is assigned by com-
pactness of equipment arrangement lengthwise
technological chain and its features [12]:
),,( µStJ
eqλ
,~)]~,,(~]~[[
),,(
0
⋅−⋅⋅⋅→×
=
∫
∞
χµµµχµµµψ
λµ
dSt
StJ eq
. (5)
here ]~[ µ→µψ is a function, being defined by equip-
ment certificate. The total probability of the base prod-
uct transfer into any state equals to one:
1~]~[
0
=µ⋅µ→µψ∫
∞
d (6) ξ Jd
⋅=
⋅
∂⋅
+
(the zero moment of the function ]~[ µ→µψ ), and pro-
ductivity of equipment functioning [
and the mean-square deviation can be
defined with the help of the first and second moments
of the function of manufacturing equipment operating
0][χ⋅µ= ψ
2
0]
1]χ ψ
22 [χ⋅σ= ψχσ
]~[ µ→µψ :
ψ
∞
µ=µ⋅µ⋅µ→µψ∫ ~~]~[
0
d (7)
(the first moment of the function ]~[ µ→µψ ),
222
0
~~]~[ ψψ
∞
σ+µ=µ⋅µ⋅µ→µψ∫ d (8)
⋅= PKP
(the second moment of the function ]~[ µ→µψ ).
The first moment of the function of manufacturing
equipment operating ]~[ µ→µψ characterizes the de-
pendence of the rate of expense change when the base
product passes the unit of manufacturing equipment, the
second moment is the mean-square deviation of the rate
of expense change when the base product passes the
unit of manufacturing equipment from its mean value
, being defined by the equipment features and pecu-
liarities of manufacturing process.
ψµ
S
3. DIMENSIONLESS DISTINCTIVE
FEATURES OF PRODUCTION SYSTEM
The solution of the equation relative to function of
the base products distribution in the rates of expenses
change in the phase space is connected
with some difficulties. The first step in the integral-
differential analysis of the equation (3) has to contain
analysis of order of values of different summands.
),,( µχ St ),( µs
Let , τ η , be correspondingly the distinctive
time, rate of expenses change and step of the variable
. Let us input dimensionless variables , ,
ξ
t S µ , con-
nected with the variables , τ η , as follows: ξ
),,(),(
;;;
χχ⋅η⋅λ=χχ
µ⋅η=µ⋅ξ=⋅τ=
JJ
SStt
eq
(9)
here eqλ is the distinctive compactness of equipment
arrangement lengthwise technological chain of produc-
tion process. Then the kinetic equation (3) of produc-
tion system looks like:
).,( χχηλ
τ
µη
µη
χ
µη
ξ
χ
τ
χ
J
t
d
St
eq ⋅⋅=
∂⋅
⋅
⋅
∂⋅
∂
+⋅⋅
∂⋅
∂
+
∂⋅
∂
(10)
Let us divide the above summands by η : 1−ξ⋅
),,( χχη
µ
µτη
χ
µ
χ
τη
χξ
λξ
η
t
Steq
∂∂⋅⋅
⋅
∂
∂
+
∂⋅⋅
∂⋅
⋅
(11)
and, after reduction, we obtain
).,(
1
χχ
µ
µτη
χξ
µ
χ
τη
χξ
λξ
J
t
Steq
=
∂
∂
⋅
∂⋅⋅
∂⋅
+
⋅
∂
∂
+
∂⋅⋅
∂⋅
⋅
⋅
(12)
Let us input the symbols
,
1
ξ
λ
=
eq
vK ,
η⋅τ
ξ
=mP (13)
.1
0
η⋅τ⋅λ
=
eq
mv (14)
Kinetic equation of production system (3) taking
into account the symbols (13,14) looks as follows
[ ),( χχ=
∂
µ
⋅
µ∂
χ∂
⋅+µ⋅
∂
χ∂
+
∂
χ∂
⋅⋅ J
t
dP
St
PK mmv . (15)
Multiplying kinetic equations correspondingly by 1,
µ ,
2
2µ and integrating them by the whole µ range, we
323
obtain balances equation of macroscopic parameters of
production system [16] in the zero approximation ac-
cording to the small parameter ε relative
to equilibrium position, that the equations of macro-
scopic parameters of production system, describing
functioning of manufacturing process, depend on dis-
tinctive numbers of production system.
0),( →mv PK
dη
dS
eqλ
,(χ t
η ξ
As , , τ ξ η (distinctive time, step of variable ,
and rate of expenses change) we can take the time of
production cycle T , , the average cost price of
base product ,
S
d dT=τ
dSdS =ξ , and average rate of expenses
change for one period of production cycle , η=ηd .
The value
d
eq
L=
λ
1 (16)
is the average conversion of expenses to base product
among equipment units (or the length of base product
free path between manufacturing influences).
Then distinctive numbers of production system will
look as follows:
dd
d
mv
dd
d
m
d
d
v
T
L
PKP
T
S
P
S
L
K
η⋅
=⋅=
η⋅
==
0
,,
. (17)
Substitution of production cycle time values , the
average cost price of base product , average rate of
expenses change for one period of production cycle
dT
dη
and average compactness of equipment arrangement
lengthwise technological chain in the expres-
sions for distinctive numbers of production system (17)
gives the possibility of justification of selection the
model of production system functioning description.
The given estimation would rather be taken as qualita-
tive one than quantitative. However, such an approach
has the advantage, allowing compare the results, corre-
sponding to different microscopic models, easy, because
the equation relative to distribution function of base
products on the rates of expenses change in
the phase space ( , expressed with the help of val-
ues ,
),µS
),µS
τ η , being measured macroscopically, does not
depend on the integral
ξ
,~)],,(]~[
)~,,(~]~[[
0
µµχµµµψ
µχµµµψλ
dSt
Steq
⋅⋅⋅→−
⋅⋅→⋅ ∫
∞
(18)
and can be represented as the equation relative to distri-
bution function of base products in the rates of expenses
change by means of values , τ , , being measured
macroscopically:
].[),( 0χ−χ⋅η⋅λ≈⋅
µ∂
χ∂
+µ⋅
∂
χ∂
+
∂
χ∂
eqStf
St
(19)
If 0][ 0 =χ−χ , we have the case of production system
equilibrium position, which is described by the identity
0),( 00 =χχJ . (20)
The value of the distinctive number varies from
zero to infinity, and there are two extreme cases for it
and . These two cases describe the
situations, which are related to extremely small and ex-
tremely large expenses changes of base product be-
tween two main operations.
vK
0→vK ∞→vK
Production systems with qualitative estimation of
state having the factors values , corre-
spond to a compact flow of base products lengthwise
technological chain with high concentration of techno-
logical equipment. The case, when , ,
corresponds to production process with, as a rule, small
compactness of manufacturing equipment
lengthwise technological chain of base product produc-
tion. Thereby, the way of base products among the main
operations is long enough. When it is in the “free”, un-
manufactured, state, base product moves lengthwise
technological chain without any interceptions. The free
motion is the motion of base products lengthwise tech-
nological chain of production process, when the conver-
sion of expenses to base product realizes by means of
definite way, which is defined by engineering-
production function of production process
without the expense change rate abmodality. Such con-
version is characterized by the function
1<<vK
vK
1≈mP
1>> P
(λeq
f
1≈m
)0→
)S,t(
][]~[ µ→µψ=µ→µψ , i. e. after manufacturing the rate
of expenses change of base product can take only the
values, defined by equipment certificate without any
deviations.
4. CONCLUSIONS
The model of production system functioning can
be estimated by means of distinctive numbers. Distinc-
tive numbers provide qualitative estimation of produc-
tion process functioning, allow to select the appropri-
ate set of balances equations of production system
macroscopic parameters for description of real
production system. Definite generating function of
operating production system, when the system’s
position is close to the equilibrium one, can get
obvious with the help of the values of production
cycle time T , average cost price of base product ,
average rate of expenses change in unit of production
cycle period and average compactness of
equipment arrangement lengthwise technological
chain of production system distinctive
numbers. Such an approach of model selection would
rather be taken as qualitative one than quantitative.
However, it has the advantage, allowing to compare
the results, corresponding to different microscopic
models.
d dS
dη
eqλ
The author sincerely appreciate professor of the
KhNU V.D. Khodusov, V.P. Demutsky, E.N. Dovga,
NAU named after N.E. Zhuckovsky “The KhAI” for
the valuable notes and help in the preparation of the
materials.
324
REFERENCES
1. J. Forrester. Fundamentals of enterprise cybernetics.
M.: “Progress”, 1961, 341 p.
2. V.A. Balashevitch. Mathematical methods in pro-
duction management. Minsk: “Visheish. Sch.”,
1976, 334 p.
3. L.E. Basovsky, V.B. Protasiev. Quality manage-
ment. M.: INFRA-M, 2004, 212 p.
4. Course for the highest managing staff. M.: “Econom-
ics”, 1970, 807 p.
5. V.V. Leontiev. The structure of American econo-
mics. M.: Gos. stat. izd-vo, 1958, 640 p.
6. B.V. Pritkin. Technical-economical analysis of pro-
duction. M.: UNITI-DANA, 2000, 399 p.
7. V.A. Letenko, B.N. Rodionov. Organization, plan-
ning and management of machine-building enter-
prise: In 2 parts. M.: “Vissh. sch.”, 1979, P. 2: In-
traplant planning. 232 p.
8. V.-B. Zang. Synergetical economy. M.: “Mir”, 1999,
335p.
9. Y.Y. Rushitsky, T.S. Modified model of Philips-
Laurence for economical system (firms corporation)
with stable assets //Reports of National Akademy of
Science of Ukraine. 1996, N 12, p. 36-40.
10. N.S. Gonchar. Information model in economics
//NANU “Statistical Physics: General problems and
new applications”, L., 2005, p. 33.
11. D.S. Chernavsky, N.I. Starkov, A.V. Scherbakov.
Problems of physical economy //Success of physical
sciences. 2005, v. 172, N 12, p. 1045-1066.
12. V.P. Demutsky, V.S. Pignastaya, O.M. Pignastiy.
Theory of enterprise: Stability of mass production
and products’ motion to the market functioning.
Kh.: KhNU, 2003, 272 p.
13. I.R. Uhnovsky. Thermodynamic analogies in eco-
nomics //NANU “Statistical Physics: General prob-
lems and new applications”, L., 2005, p. 51.
14. O.M. Pignastiy. Peculiarities of construction of
models, describing functioning of production system
of airspace industry //Problems of designing and
constructions production of aircrafts. Kh.: NASU
“KhAI”. 2005, p. 120-136.
15. O.M. Pignastiy. Engineering-production function of
manufacturing firm with mass production output
//Problems of designing and constructions produc-
tion of aircrafts. Kh.: NASU “KhAI”. 2005,
p. 111-117.
16. V.P. Demutsky, V.S. Pignastaya, O.M. Pignastiy.
Stochastic description of economy-production sys-
tems with mass production output //Reports of Na-
tional Akademy of Science of Ukraine. 2005, N 7,
p. 66-71.
ХАРАКТЕРНЫЕ ЧИСЛА ОПИСАНИЯ ФУНКЦИОНИРОВАНИЯ
ПРОИЗВОДСТВЕННЫХ СИСТЕМ
О.М. Пигнастый
Производственная система предприятия представлена в виде системы с большим количеством элемен-
тов — предметов труда. Посредством аппарата статистической механики введены характерные числа про-
изводственной системы. Данный подход дает возможность провести качественную оценку функционирова-
ния производственного процесса, обоснованно подобрать для описания реального производственного объ-
екта соответствующую систему уравнений балансов макроскопических параметров. Оценку выбора модели
следует воспринимать как качественную. Подход обладает тем преимуществом, что позволяет легко срав-
нивать результаты, соответствующие различным микромоделям.
ХАРАКТЕРНІ ЧИСЛА ОПИСУ ФУНКЦІОНУВАННЯ
ВИРОБНИЧИХ СИСТЕМ
О.М. Пiгнастий
Виробничу систему підприємства представлено у вигляді системи з великою кількістю елементів —
предметів праці. За допомогою апарату статистичної механіки введено характерні числа виробничої систе-
ми. Цей підхід дає можливість провести якісну оцінку функціонування виробничого процесу, підібрати для
опису реального виробничого об’єкту відповідну систему рівнянь балансів макроскопічних параметрів.
Оцінку вибору моделі слід сприймати як якісну. Підхід має перевагу, що дозволяє легко порівнювати ре-
зультати, що відповідають різноманітним мікромоделям.
325
|