On statistical mechanics in noncommutative spaces

We study the formulation of quantum statistical mechanics in noncommutative spaces. We construct microcanonical and canonical ensemble theory in noncommutative spaces and study some basic and important examples in the framework of noncommutative statistical mechanics.

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
1. Verfasser: Alavi, S.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111023
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On statistical mechanics in noncommutative spaces / S.A. Alavi // Вопросы атомной науки и техники. — 2007. — № 3. — С. 301-304. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111023
record_format dspace
spelling irk-123456789-1110232017-01-08T03:03:57Z On statistical mechanics in noncommutative spaces Alavi, S.A. Kinetic theory We study the formulation of quantum statistical mechanics in noncommutative spaces. We construct microcanonical and canonical ensemble theory in noncommutative spaces and study some basic and important examples in the framework of noncommutative statistical mechanics. Вивчається формулювання квантової статистичної механіки в некомутативних просторах. Будується теорія мікроканонічного й канонічного ансамблів у некомутативних просторах і вивчаються деякі основні й важливі приклади в рамках некомутативної статистичної механіки. Изучается формулировка квантовой статистической механики в некоммутативных пространствах. Строится теория микроканонического и канонического ансамблей в некоммутативных пространствах и изучаются некоторые основные и важные примеры в рамках некоммутативной статистической механики. 2007 Article On statistical mechanics in noncommutative spaces / S.A. Alavi // Вопросы атомной науки и техники. — 2007. — № 3. — С. 301-304. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 02.40.Gh, 05.30.-d http://dspace.nbuv.gov.ua/handle/123456789/111023 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Kinetic theory
Kinetic theory
spellingShingle Kinetic theory
Kinetic theory
Alavi, S.A.
On statistical mechanics in noncommutative spaces
Вопросы атомной науки и техники
description We study the formulation of quantum statistical mechanics in noncommutative spaces. We construct microcanonical and canonical ensemble theory in noncommutative spaces and study some basic and important examples in the framework of noncommutative statistical mechanics.
format Article
author Alavi, S.A.
author_facet Alavi, S.A.
author_sort Alavi, S.A.
title On statistical mechanics in noncommutative spaces
title_short On statistical mechanics in noncommutative spaces
title_full On statistical mechanics in noncommutative spaces
title_fullStr On statistical mechanics in noncommutative spaces
title_full_unstemmed On statistical mechanics in noncommutative spaces
title_sort on statistical mechanics in noncommutative spaces
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Kinetic theory
url http://dspace.nbuv.gov.ua/handle/123456789/111023
citation_txt On statistical mechanics in noncommutative spaces / S.A. Alavi // Вопросы атомной науки и техники. — 2007. — № 3. — С. 301-304. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT alavisa onstatisticalmechanicsinnoncommutativespaces
first_indexed 2025-07-08T01:31:21Z
last_indexed 2025-07-08T01:31:21Z
_version_ 1837040435699122176
fulltext Section F. KINETIC THEORY ON STATISTICAL MECHANICS IN NONCOMMUTATIVE SPACES S.A. Alavi Department of Physics, Sabzevar university of Tarbiat Moallem, Sabzevar, P.O. Box 397, Iran and Sabzevar House of Physics, Asrar Physics Laboratory, Laleh Square, Sabzevar, Iran; e-mail: alavi@sttu.ac.ir; alialavi@fastmail.us We study the formulation of quantum statistical mechanics in noncommutative spaces. We construct microcan- onical and canonical ensemble theory in noncommutative spaces and study some basic and important examples in the framework of noncommutative statistical mechanics. PACS: 02.40.Gh, 05.30.-d 1. INTRODUCTION To study quantum mechanical systems composed of indistinguishable entities, as most physical systems are, one finds that it is advisable to rewrite the ensemble theory in a language that is more natural to a quantum- mechanical treatment, namely the language of the operators and the wave functions [1]. Once we set out to study these systems in detail, we encounter a stream of new and altogether different physical concepts. In par- ticular, we find that the behavior of even a noninteract- ing system, such as an ideal gas, departs considerably from the pattern set by the so-called classical treat- ments. In the presence of interactions the pattern be- comes still more complicated. Recently there have been notable studies on the for- mulation and possible experimental consequences of extensions of the usual physical theories in the non- commutative spaces (see for example [2-6]). The study on noncommutative spaces is much important for un- derstanding phenomena at short distances beyond the present test of different physical theories. For a mani- fold parameterized by the coordinates , the noncom- mutative relations can be written as: ix [ ] [ ] [ ] ,0,,, =δ=θ= jiijjiijji ppipxixx (1) where is an antisymmetric tensor which can be de- fined as ijθ kijkθε= 2 1 ijθ . In this paper we study the formulation of quantum statistics, namely the quantum-mechanical ensemble theory, the density matrix, etc., in a noncommutative space and the new features that arise. We consider for illustration some basic and important examples in the framework of noncommutative statistical mechanics: (i). An electron in a magnetic field. (ii). A free particle in a box. (iii). A linear harmonic oscillator. Contrary to the other fields of physics, statistical mechanics has not been studied extensively in non- commutative spaces and this work can be a motivation for more studying this field of physics. 2. PERTURBATION ASPECTS OF NONCOMMUTATIVE DYNAMICS NCQM is formulated in the same way as the stan- dard quantum mechanics SQM (quantum mechanics in commutative spaces), that is in terms of the same dy- namical variables represented by operators in a Hilbert space and a state vector that evolves according to the Schrödinger equation: ,>ψ>=ψ ncH dt di (2) we have taken in to account . denotes the Hamiltonian for a given system in the noncommuta- tive space. In the literatures two approaches have been considered for constructing the NCQM: 1= θ≡ HHnc a) , so that the only difference between SQM and NCQM is the presence of a nonzero θ in the com- mutator of the position operators, i.e. Eq.(1). HH =θ b) By deriving the Hamiltonian from the Moyal analog of the standard Schrödinger equation: ),,(),(),1(),( txHtxx i pHtx t i ψ≡ψ∗∇==ψ ∂ ∂ θ (3) where is the same Hamiltonian as in the stan- dard theory, and as we observe the dependence enters now through the star product [7]. In [8], it has been shown that these two approaches lead to the same physical theory. Since the noncommutativity parameter, if it is non-zero, should be very small compared to the length scales of the system, one can always treat the noncommutativity effects as some perturbations of the commutative counterpart. For the Hamiltonian of the type: ),( xpH θ )( 2 ),( 2 xV m pxpH += (4) the modified Hamiltonian can be obtained by a shift in the argument of the potential [2-6,9]: θH , 2 1 , iijijii pppxx =+= θ (5) which leads to ). 2 1( 2 2 jiji pxV m pH θ−+=θ (6) The variables and now satisfy the same commu- tation relations as the usual case: ix ip [ ] [ ] [ ] .,,0,, ijjijiji pxppxx δ=== (7) Now we discuss the perturbation aspects of non- commutative dynamics. Using PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 301-304. 301 ,)( ! )()()( 1 )( n n n x n xUxUxxU ∆+=∆+ ∑ ∞ = (8) and Eq.(6) we have: ,)( ! )()( 2 1 )(2 n i n i n inc x n xVxV m pHH ∆++== ∑ ∞ = θ (9) where jiji px θε−=∆ 2 1 and )( 2 2 xV m pH += is the Hamiltonian in ordinary(commutative) space. To the first order we have: .)( 2 2 Ii i i i inc HHx x VHx x VxV m pH θ+=∆ ∂ ∂ +=∆ ∂ ∂ ++= (10) − ∑∑∑ ((aH n k l kWe can use perturbation theory to obtain the eigen- values and eigenfunctions of : ncH ....)2(2)1(000 +θ+θ+=∆+= nnnnnn EEEEEE (11) ,)( k nk nknn C φθφφ ∑ ≠ += (12) where: . (13) ...)( )2(2)1( +θ+θ=θ nknknk CCC To the first order in perturbation theory we have: ,)1( >φθφ=<θ nInn HE (14) ,)1( k nk nknn C φθ+φ=φ ∑ ≠ (15) ,00 )1( kn nIk nk EE H C − >φθφ< =θ (16) k nn where and 0 nE nφ are the n-th eigenvalue and eigen- function of the Hamiltonian . and φ are the n- th eigenvalue and eigenfunction of . H nE H n nc 3. THE DENSITY OPERATOR IN NONCOMMUTATIVE SPACES Using the orthonormal functions φ , an arbitrary wave function in a noncommutative space can be writ- ten as: n ,)()( ∑= n n k n k tat φψ (17) Tr where: : ∫= .)()( * τψφ dtta k n k n (18) The time variation of these coefficients will be given by: =τψ ∂ ∂ φ= ∂ ∂ ∫ dt t ia t i k n k n )(* ∑ ∑∫ ∫ == m m k mnmm k nn k n taHdtaHdtH ),()()( ** τφφτψφ (19) where . We now introduce the density operator mnnm HH φφ= ∫ * )(tρ in a noncommutative space by the matrix elements: : [∑ = =ρ n k k n k mnm tata n t 1 * )()(1)( ]. (20) Clearly the matrix element )(tnmρ is the ensemble average of the quantity , which as a rule varies from member to member in the ensemble. )() * tan(tam We shall now determine the equation of motion for the density matrix )(tnmρ : =ρ ∂ ∂ )(t t i mn .)()]([)()]([1 1 **         ∂ ∂ + ∂ ∂∑ = n k k m k n k n k m tata t itata t i n (21) It can be written in the following form: =∑ == )()]([)])[1 1 *** 1 tataHtat k m n k nl k n k lml n mnHH )( ρ−ρ . (22) Using the commutator notation, it can be written as: ],[ ρ=ρ Hi . (23) Now, we consider the expectation value of a physi- cal quantity G in a noncommutative space which is dy- namically represented by an operator G . This will natu- rally be determined by the double averaging process: τψψ>=< ∑∫ = dG n G n k kk 1 *1 (24) or: ,1 1 , *∑∑ = >=< n m nm k m k n GaaG (25) where: τφφ= ∫ dGG mnnm * . (26) Introducing the density matrix ρ , it takes a particularly neat form: )()( , GTrGGG m mm nm nmn ρ=ρ=ρ>=< ∑∑ . (27) We note that if the original wave functions , were not normalized then the expectation value would be given by the formula kψ >G< )( )( ρ ρ >=< GTrG . (28) The interesting point is that the equations (23) and (28) are the same as the commutative case with quantities replaced by their noncommutative counterparts. 4. STATISTICS OF THE VARIOUS ENSEMBLE The microcanonical ensemble. The construction of the microcanonical ensemble is based on the premise that the systems constituting the ensemble are characterized by a fixed number of particles , a fixed volume V and an energy lying within the interval N ), 2 , 2 ( ∆∆ − EE + where . The total number of distinct microstates accessible to a system is then denoted by the symbol and by assumption, any of these micro- states is just as likely to occur as any other. E<<∆ );, ∆EV,(Γ N 302 Accordingly, the density matrix mnρ (which in the energy representation must be a diagonal matrix) will be of the form Γ 1 , for each of the accessible states and 0, for all other states. We note that ρ is independent of energy (energy ei- genstates) and the volume V, so it does not depend on space coordinates. It means that the noncommutativity of space has no effects on ρ in microcanonical ensem- ble. The dynamics of the system determined by the ex- pression for its entropy, which in turn is given by: ,Γ= kLnS (29) which as mentioned above remains unchanged in non- commutative spaces. The canonical ensemble. In this ensemble the mac- rostate of a member system is defined through the pa- rameters N, V and T; the energy E now becomes a vari- able quantity. The probability that a system, chosen at random from the ensemble, possesses an energy E, is determined by the Boltzmann factor exp( , where )Eβ− kT 1 =β . The density matrix in the energy representa- tion is therefore takes as: ,mnnmn δρρ = (30) where: : ,...2,1,0; ==ρ β− nce nE n (31) Here are the energy eigenvalues in noncommutative space (Eq.11), and the constant c is given by: nE : . )( 1 )exp( 1 ββ N n n QE c = − = ∑ (32) Where , is the partition function of the sys- tem in the noncommutative space. The density operator in the canonical ensemble may be written as: )(βNQ : | )( 1| n E Nn n ne Q φ β φρ β 〈〉= −∑ . )( || )( 1 H H n n n H N eTr ee Q β β β φφ β − − − =〈〉= ∑ (33) Then the expectation value of a physical quantity G, in a noncommutative space is given by: : . )( )()( H H N eTr eGTrGTrG β β ρ − − ==>< (34) EXAMPLES (i). An electron in a magnetic field. The Hamiltonian of the system has the following form: ),.( BH B σµ−= (35) 2 pH = where mc e B 2 =µ . The Hamiltonian is space independ- ent, so there is no corrections due to the noncommuta- tivity of space on the statistical (thermodynamical) properties of this system. (ii). A free particle in a box. Let us consider the motion of a particle with charge e and mass m in the presence of a magnetic field produced by a vector potential . The Lagrangian is as follows: A 1 ),,( 2 2 yxVVA c emVL −⋅+= (36) where (no summation, i ) are the com- ponents of the velocity of the particle and are the scale factors. V describes additional inter- actions (impurities). For the case of a free particle . In the absence of the quantum spectrum the well-known Landau levels consists of V. In the strong magnetic field limit only the lowest Landau level is relevant. But the large B limit corresponds to small m, so setting the mass to zero effectively projects onto the lowest Landau level. In the chosen gauge and in that limit, the Lagrangian (36) takes the follow- ing form: iii qhV = 0) = 3,2,1= )3,2,1( =ihi ),0( 11 Bqh= ),( yx ,( yxV A ),,(2121 yxVqqhBh c eL −=′ (37) which is of the form , and suggests that ),( qpHqp − 11qBhc e and are canonical conjugates, so we have : 22qh ,],[ 2211 eB ciqhqh −= (38) which can be written in general form: ,],[ ijjjii iqhqh θ= (39) which is the fundamental space-space noncommutativ- ity relation in a general noncommuting curvilinear co- ordinates. The Cartesian, circular cylindrical and spheri- cal polar coordinates are three special cases. So a free particle in a noncommutative space is equal to a particle in commutative space but in the pres- ence of a magnetic field. The Hamiltonian of a particle in a magnetic field is: 2)( 2 1 A c qP m H −= . (40) On the other hand let us introduce the noncommutativity to momentums instead of space coordinates: ,],[],[0],[ ijjiijjiji ippipxxx θ=δ== (41) one can easily show that there is a transformation: ,, 2 1 iijijii xxxpp =+= θ (42) where the new variables and satisfy the standard commutation relations (7). We note that (42) is the same as ip ix c Aqpp i ii −→ with jx q c −= 2 1 ijθiA . Now the Hamiltonian of a free particle in a non- commutative space is: 21 m ),( 2 1 ))(( 2 1 2 1 2 1 22 22 2 θθ θθθ OLp Opxp m xp m i ijijijiji +⋅−= ++=      += (43) 303 where . Since for a free particle , so to the first order there is no corrections to the Hamil- tonian and therefore there is no corrections due to non- commutativity of space on the statistical (thermody- namical) properties of the this system. jiijkk pxL =∈ 0=L (iii). A harmonic oscillator. The case of a linear harmonic oscillator is irrelevant, because there is only one space variable. In the case of harmonic oscillator in higher dimensions, for instance spherical harmonic os- cillator, the corrections on the Hamiltonian due to non- commutativity of space is given by: , 2 1 j i iji i I p x Vx x VH ∂ ∂ −=∆ ∂ ∂ = θ (44) where: : ∑ = ω= 3 1 22 2 1 i ixmV . (45) We put and the rest of the components to zero, which can be done by a rotation or by a redifini- tion of coordinates. So we have: θ=θ3 θ . 4 1 4 1 4 1 )( 2 1 2 2 θθθεω ωθ zkjiijk jiijI LLpxm pxmH =⋅−== −= (46) For a spherical harmonic oscillator the unperturbed (commutative) eigenfunctions are given by: , )()( )( 21 2 1 2 2 r YrLer r lmn e mn r θφα αθφφ α ++ − (47) where )( 22 1 rLn α+ are Lagure's function. Using Eqs.(14) and (31), one can easily derive the energy ei- genvalues in noncommutative space and so the density operator ρ and the partition function . The thermodynamical properties of the system can be done straightforwardly using partition function. We have: ∑ β− n Ene=βnQ )( θ>=ϕϕ=< mHE nemInemn 4 1||)1( . So: )(4)( β θ β − =β N m N QeQ . The Helmholtz free energy is given by: AmkA +θ β+ = 4 . Whence we obtain: Smk T AS +θ β = ∂ ∂ −= 4 , UmkU +θ β+ = 2 , CmkC +θ β = 2 , where and C are the entropy, the internal energy and the specific heat of the system in Noncommutative space and S, U and C are their counter part in commuta- tive case. US, REFERENCES 1. R.K. Pathria. Statistical mechanics. Butterworth- Heinemann, 1996. 2. N. Seiberg, E. Witten //JHEP. 1999, v. 9909, p. 032. 3. I. Avramidi //Phys. Lett. B. 2003, v. 576, p. 195. 4. A. Kokado //Phys. Rev. 2004, D69, 125007. 5. B. Basu, S. Chosh //Phys. Lett. A346. 2005, p. 133. 6. S.A. Alavi //Mod. Phys. LettA. 2006, v. 21, p. 1. 7. L. Mezincescu, hep-th/0007076. 8. O. Espinosa, hep-th/0206066. 9. M. Chaichian, M.M. Sheikh-Jabbari and A. Tureanu //Phys. Rev. Lett. 2001, v. 86, p. 2716. К СТАТИСТИЧЕСКОЙ МЕХАНИКЕ В НЕКОММУТАТИВНЫХ ПРОСТРАНСТВАХ С.А. Алави Изучается формулировка квантовой статистической механики в некоммутативных пространствах. Стро- ится теория микроканонического и канонического ансамблей в некоммутативных пространствах и изучают- ся некоторые основные и важные примеры в рамках некоммутативной статистической механики. ДО СТАТИСТИЧНОЇ МЕХАНІКИ В НЕКОМУТАТИВНИХ ПРОСТОРАХ С.А. Алаві Вивчається формулювання квантової статистичної механіки в некомутативних просторах. Будується тео- рія мікроканонічного й канонічного ансамблів у некомутативних просторах і вивчаються деякі основні й важливі приклади в рамках некомутативної статистичної механіки. 304