Relaxation caused by one phonon decay into three in superfluid helium

The analytical relation for the rate of one phonon decay into three is obtained. Starting from the relation obtained, the rate of spontaneous decay in the first order of perturbation theory is found. It is shown, that processes of one phonon decay into three provide a fast establishment of equilibri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2007
Hauptverfasser: Adamenko, I.N., Kitsenko, Yu.A., Nemchenko, K.E., Slipko, V.A., Wyatt, A.F.G.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111046
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Relaxation caused by one phonon decay into three in superfluid helium / I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko, A.F.G. Wyatt // Вопросы атомной науки и техники. — 2007. — № 3. — С. 399-403. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111046
record_format dspace
spelling irk-123456789-1110462017-01-08T03:04:19Z Relaxation caused by one phonon decay into three in superfluid helium Adamenko, I.N. Kitsenko, Yu.A. Nemchenko, K.E. Slipko, V.A. Wyatt, A.F.G. Physics of quantum liquids The analytical relation for the rate of one phonon decay into three is obtained. Starting from the relation obtained, the rate of spontaneous decay in the first order of perturbation theory is found. It is shown, that processes of one phonon decay into three provide a fast establishment of equilibrium in anisotropic and isotropic phonon systems. It allows us to relate the momentum region in which processes of one phonon decay into three are permitted to subsystem of low-energy phonons. Отримано аналітичний вираз для частоти процесів розпаду одного фонона на три. Виходячи з отриманого виразу, знайдено частоту самовільного розпаду в першому порядку теорії збурень. Показано, що процеси розпаду одного фонона на три забезпечують швидке встановлення рівноваги в анізотропних і ізотропних фононних системах. Це дозволяє область, у якій дозволені процеси розпаду одного фонона на три, віднести до підсистеми низькоенергійних фононів. Получено аналитическое выражение для частоты процессов распада одного фонона на три. Исходя из полученного выражения, найдена частота самопроизвольного распада в первом порядке теории возмущений. Показано, что процессы распада одного фонона на три обеспечивают быстрое установление равновесия в анизотропных и изотропных фононных системах. Это позволяет область, в которой разрешены процессы распада одного фонона на три, отнести к подсистеме низкоэнергетических фононов. 2007 Article Relaxation caused by one phonon decay into three in superfluid helium / I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko, A.F.G. Wyatt // Вопросы атомной науки и техники. — 2007. — № 3. — С. 399-403. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 67.40.Db, 67.40.Fd, 67.90.+z http://dspace.nbuv.gov.ua/handle/123456789/111046 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Physics of quantum liquids
Physics of quantum liquids
spellingShingle Physics of quantum liquids
Physics of quantum liquids
Adamenko, I.N.
Kitsenko, Yu.A.
Nemchenko, K.E.
Slipko, V.A.
Wyatt, A.F.G.
Relaxation caused by one phonon decay into three in superfluid helium
Вопросы атомной науки и техники
description The analytical relation for the rate of one phonon decay into three is obtained. Starting from the relation obtained, the rate of spontaneous decay in the first order of perturbation theory is found. It is shown, that processes of one phonon decay into three provide a fast establishment of equilibrium in anisotropic and isotropic phonon systems. It allows us to relate the momentum region in which processes of one phonon decay into three are permitted to subsystem of low-energy phonons.
format Article
author Adamenko, I.N.
Kitsenko, Yu.A.
Nemchenko, K.E.
Slipko, V.A.
Wyatt, A.F.G.
author_facet Adamenko, I.N.
Kitsenko, Yu.A.
Nemchenko, K.E.
Slipko, V.A.
Wyatt, A.F.G.
author_sort Adamenko, I.N.
title Relaxation caused by one phonon decay into three in superfluid helium
title_short Relaxation caused by one phonon decay into three in superfluid helium
title_full Relaxation caused by one phonon decay into three in superfluid helium
title_fullStr Relaxation caused by one phonon decay into three in superfluid helium
title_full_unstemmed Relaxation caused by one phonon decay into three in superfluid helium
title_sort relaxation caused by one phonon decay into three in superfluid helium
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Physics of quantum liquids
url http://dspace.nbuv.gov.ua/handle/123456789/111046
citation_txt Relaxation caused by one phonon decay into three in superfluid helium / I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko, A.F.G. Wyatt // Вопросы атомной науки и техники. — 2007. — № 3. — С. 399-403. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT adamenkoin relaxationcausedbyonephonondecayintothreeinsuperfluidhelium
AT kitsenkoyua relaxationcausedbyonephonondecayintothreeinsuperfluidhelium
AT nemchenkoke relaxationcausedbyonephonondecayintothreeinsuperfluidhelium
AT slipkova relaxationcausedbyonephonondecayintothreeinsuperfluidhelium
AT wyattafg relaxationcausedbyonephonondecayintothreeinsuperfluidhelium
first_indexed 2025-07-08T01:32:49Z
last_indexed 2025-07-08T01:32:49Z
_version_ 1837040528877682688
fulltext PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 399-403. 399 Section H. PHYSICS OF QUANTUM LIQUIDS RELAXATION CAUSED BY ONE PHONON DECAY INTO THREE IN SUPERFLUID HELIUM I.N. Adamenko1, Yu.A. Kitsenko2, K.E. Nemchenko1, V.A. Slipko1, and A.F.G. Wyatt3 1Karazin Kharkov National University, Kharkov, Ukriane; 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; e-mail: ykitsenko@kipt.kharkov.ua; 3School of Physics, University of Exeter, Exeter, UK The analytical relation for the rate of one phonon decay into three is obtained. Starting from the relation obtained, the rate of spontaneous decay in the first order of perturbation theory is found. It is shown, that processes of one phonon decay into three provide a fast establishment of equilibrium in anisotropic and isotropic phonon systems. It allows us to relate the momentum region in which processes of one phonon decay into three are permitted to subsystem of low-energy phonons. PACS: 67.40.Db, 67.40.Fd, 67.90.+z 1. INTRODUCTION Liquid helium is the unique medium in which a number of interesting macroscopic quantum phenomena are observed. One of them is the creation of high-energy phonons with energy close to 10 K by a pulse of low- energy phonons with typical temperature of 1 K (see Refs. [1-3]). The theory of this phenomenon has been developed in Refs. [4,5]. As it followed from the theory, phonons of superfluid helium break up into two subsystems: 1. Subsystem of low-energy phonons ( l -phonons) with cpp < . The establishment of equilibrium in this subsystem is due to three-phonon processes ( 21↔ ) with typical time 1 33 −= pppp ντ (see Refs. [6,7]). 2. Subsystem of high-energy phonons ( h -phonons) with cpp > . Here decay processes are forbidden by conservation laws of energy and momentum and the fastest are the four-phonon processes ( 22 ↔ ) with typical time 1 44 −= pppp ντ (see Refs. [4,5,8]). There is strong inequality pppp 43 ττ << (1) between pp3τ and pp4τ . As a result the equilibrium in l -phonon subsystem occurs very quickly in contrast to h -phonon subsystem where it happens rather slowly. The difference in group velocities and rather weak connection between h - and l -phonons results to h- phonon leaving through a rear wall of l -phonon pulse and forming of h -phonon pulse which comes to the detector after l -phonon pulse. However, in Refs. [9,10] it was shown, that three- phonon processes took place not up to cp but to momentum cpp pp 543 = and therefore phonons with momenta cpp ppp <<3 (2) should be related to h -phonon subsystem. But in momentum region (2) processes of one phonon decay into a greater number of phonons (decay processes) are still allowed and if the rates of these processes appear one order of magnitude with pp3ν then these phonons should be related to l -phonon subsystem. It would seem that it is not essential to what subsystem these phonons should be related, as the momentum range (2) is rather small. However, as it has been shown in Ref. [11], the rate of four-phonon processes is very sensitive to a numerical value of momentum which delimitates l - and h -phonon subsystems. Therefore the calculation of the rates of decay processes is of undoubtful interest as it will allow us to answer the question to what subsystem the mentioned momentum range should be related. Here we consider one of these processes such as the process of one phonon decay into three ( 31↔ ). 2. PROCESSES OF ONE PHONON DECAY INTO THREE Conservation laws of energy and momentum which should be satisfied in process of one phonon decay into three can be written as 4321 pppp ++= , (3) 4321 εεεε ++= , (4) where ip is the momentum of i -th phonon participating in the process and iε is its energy which we write as ( ) ( )( )iiii pcpp ψεε +=≡ 1 . (5) Here 41038.2 ⋅=c cm/s is the velocity of sound and ( )pψ is a function which describes a deviation of a spectrum from linearity which is small ( ( ) 1<<pψ ) but nevertheless it completely determines the mechanisms of phonon interactions. Here and below we shall use the simple analytical approximation of function ( )pψ obtained in [7] which is valid for cpp ≤ 400 ( )         −= 2 2 2 2 max 14 cc p p p pp ψψ . (6) Here maxψ is the maximum value of function ( )pψ reached when 2cpp = . In case of saturated vapour pressure 046.0max =ψ and 10~ == Bcc kcpp K. From conservation laws (3) — (4) taking (5) into account we obtain a relation on angles between phonons with momenta 1p , 2p and 3p , 4p ( ) 21 344321 12 2 222 pp pppp ζφφ ζ −+− = , (7) where 4321 ffff −−−=φ , ( )iii ppf ψ= , ijij θζ cos1−= , and ijθ is the angle between phonons with momenta ip and jp . Having put 34ζ and 12ζ equal to zero in (7) and taking (6) into account we derive the boundaries of regions in which processes of one phonon decay into three can take place ( ) ( 21213 55 10 1, ppppp −=± )22 2212 1 121510155 cppppp +−+−± , (8) ( ) 1213 , pppp = . From the positivity of radicand in Eq. (8) the restrictions on momentum 2p could be obtained: ( ) ),min(,0max 2122 +− << pppp , (9) where ( ) ( )2 1 2 max112 22 3 1 ppppp −±=± , (10) cpp 10 9 max = . (11) From Eqs. (8) – (11) it follows, that the momenta of phonons participating in 31→ processes can change in ranges (see also Ref. [12]): min4,3,2 530 ppp c =<< , (12) max10 pp << . (13) At saturated vapour pressure 75.7~ min =p K and 48.9~ max =p K. We note that when pppp 31 < the processes of one phonon decay into three can proceed at rather big angles between momenta of interacting phonons while when pppp 31 > the mentioned processes are small-angle. Interaction of phonons in superfluid helium is described by Landau Hamiltonian which we write as (see, for example, [13]) 430 ˆˆˆˆ VVHH ph ++= . (14) Here 0Ĥ is a Hamiltonian of noninteracting phonons and terms 3̂V and 4V̂ describe the interaction of phonons caused by the third and the fourth orders of small deviations of a system from an equilibrium state accordingly. The probability density of process of one phonon decay into three in the correspondence with [14] can be written as ( ) ( )6 22 4321 2 12 π π fiHVW =pppp . (15) Here V is a volume of a system and fiH is an amplitude of the process of one phonon decay into three which can be written in the form M V pppp H fi ρ δ 8 4321 ; 4321 pppp ++= . (16) Here 145.0=ρ g/cm3 is a density of helium and ( ) ( ) ( ) ( ) ( ) ( ) 4 4 14 4 13 4 12 2 14 2 13 2 12 MMMM MMMM +++ ++= (17) is a matrix element consisting of seven terms which can be written as ( ) ( ) ( ),12 12 21221121 43443343 2121 212 12 −− ++ − − +++−× +++−× −− = nnnnnn nnnnnn u u M εεε ε (18) ( ) ( ) ( ),12 12 21221121 43443343 2121 214 12 −− ++ − − −−+−× −−+−× +− −= nnnnnn nnnnnn u u M εεε ε (19) ( ){ }wuM +−= 2 4 14 , (20) where i i i p p n = , ( )jiji pp −=− εε , 84.2= ∂ ∂ = ρ ρ c c u , 188.02 22 = ∂ ∂ = ρ ρ c c w . The other terms of Eq. (17), can be obtained from the mentioned by replacement of corresponding subscripts. We note, that 4M corresponds to the first order of perturbation theory on 4V̂ , and the others correspond to the second order of perturbation theory on 3̂V . The first three terms in the right-hand side of Eq. (17) are resonant. These terms give the main contribution to amplitude (16). In momentum range where three-phonon processes are allowed their denominators can vanish giving the essential divergence in matrix element. This divergence can be eliminated by taking the final lifetime of phonon caused by three- phonon processes into account. 3. THE KINETIC EQUATION FOR PROCESSES OF ONE PHONON DECAY INTO THREE The kinetic equation describing change of distribution function ( )11 pnn ≡ of phonon with momentum 1p due to 31↔ processes can be written as ( ) ( )11 1 2 1 !3 1 pp cd II dt dn += . (21) Here ( ) ( ) ( )∫ Γ= ΣΣ dnWI cdcdcdcdcd ,,,,1, pp δεδ , (22) 401 where 4 3 3 3 2 3 pdpdpdd =Γ , ( )4321 ppppWWd = ( )3214 ppppWWc = , (23) ( ) ( )( )( )43211432 1111 nnnnnnnnnd +++−+= , (24) ( )( )( ) ( )43213214 1111 nnnnnnnnnc +−+++= , (25) 4321 εεεεε −−−=Σ d , 4321 ppppp −−−=Σ d , (26) 3214 εεεεε −−−=Σ c , 3214 ppppp −−−=Σ c . (27) We note that the first term of Eq. (21) corresponds to phonon with momentum 1p decay into three and the inverse process and the second term corresponds to combining of a phonon with momentum 1p with other two phonons and the process inverse to it. We consider that in all momentum range (13) phonons are in equilibrium. In this case their equilibrium distribution function in the accordance with Refs. [6, 15] can be written as ( ) ( ) 1 0 1exp −         −      − = Tk n B ii i up p ε . (28) Here ( )χ−= 1cNu is a drift velocity, which is defined by the unit vector N directed along the total momentum of phonon system (an anisotropy axis of phonon system) and parameter of anisotropy χ . In isotropic phonon systems 1=χ . In case corresponding to experiments [1-3] phonon pulses are strongly anisotropic phonon systems with 1<<χ . To obtain the relaxation rate caused by 31↔ processes we change the equilibrium number of phonons with momentum 1p on a small value 1nδ at equilibrium distribution of the others phonons. In this case Eqs. (24) and (25) can be rewritten as ( ) ( )( ) ( )( ) ( )( )0 4 0 3 0 20 1 1 111 1 nnn n n nd +++ + −= δ , (29) ( ) ( ) ( ) ( )( )0 4 0 3 0 20 1 1 1 1 nnn n nnc + + −= δ . (30) We define the relaxation rate caused by 31↔ processes by equality dt nd n 1 1 31 1 δ δ ν −=↔ . (31) Substituting (29) and (30) into (21) and taking (31) into account we have cd ννν +=↔31 , (32) where ( ) ( ) ( ) ( )( ) ( )( ) ( )( )),111 1 1 !3 1 0 4 0 3 0 2 0 1 nnn Wd n dddd +++× Γ + = ΣΣ∫ pδεδν (33) ( ) ( ) ( ) ( ) ( ) ( )( )).1 1 1 2 1 0 4 0 3 0 2 0 1 nnn Wd n cccc +× Γ + = ΣΣ∫ pδεδν (34) We note, that in the momentum range (2) ( ) 10 1 <<n . Thus the definition of the decay rate in Ref. [14] actually coincides with the mentioned above. 4. THE RATE OF PROCESSES OF ONE PHONON DECAY INTO THREE Taking (15)-(17) into account we rewrite the relation (33) in spherical coordinates ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) . 111 1 444333222 0 4 0 3 0 2 3 4 3 3 3 2 2 0 1 1 ζϕζϕζϕ× +++× δεδ + =ν ∫ ΣΣ dddpdddpdddp nnnppp M n Kp ddd p (35) Here i i p Npi−=1ζ , 2751223 1 ρπ⋅ =K . Having made the integration in (35) with the help of δ -functions we get ( )( ) { } ( )( ) ( )( ) ( )( ),111 1 2 0 4 0 3 0 2 2 4 3 3 3 222 232320 1 1 nnn R ppp MM ddddpdp nc Kp d ++++× +⋅ = −+ ∫ ϕζζν (36) where ( ) ( )( )±± ± === 4433 coscos,coscos ϕϕϕϕMM , (37) ( ) ( ) ⊥ ⊥⊥± −+ = 3 2 2 4 2 31 3 2 cos Ap RppA αα ϕ ∓ , (38) ( ) ( ) ⊥ ⊥⊥± ±+− = 4 2 2 4 2 31 4 2 cos Ap RppA αα ϕ , (39) 2211 cosϕα ⊥⊥ −= pp 222 sinϕα ⊥= p , (40) ( )22 4 2 3 2 4 2 34 ⊥⊥⊥⊥ −−−= ppAppR , (41) 221 2 2 2 1 cos2 ϕ⊥⊥⊥⊥ −+= ppppA , (42) φ−−+= 3214 pppp 22 iiii pp ζζ −=⊥ , (43) 4 332211 4 p ppp φζζζ ζ −−+ = . (44) The rate of processes of one phonon decay into three defined by relation (36) consists of two compounds. The first of them is connected with a spontaneous decay of a phonon with momentum 1p , and the other is caused by stimulation of a phonon with momentum 1p decay due to the presence of phonon system, i.e. nonzero functions ( )0 in . As in prevailing momentum range distribution functions ( )0 in are much less than the unity we will be interested in the rate of spontaneous decay. We shall find the decay rate I dν caused by the first order of perturbation theory on 4V̂ . In this case 4MMM == −+ and we can get an exact analytical expression for the rate I dν : 402 ( ) ( ) ( )        ≥ <≤ << ≤ ⋅= .,0 ,, ,, ,, max1 max1313 31min12 min111 pp ppppg ppppg pppg N pp ppI dν (45) Here ( ){ } cp wu N c 4273 max 22 3265720500 1 ρπ ψ+− = , (46) ( ) ( )2 1 211 111 136117 64064 3492075 ppppg c −= , (47) ( ) ( ) ( ) ( ) ( ) ( ) , 45 2735 arctan 2 1601600 9 2 1 2 3 2 min 2 1 1 22 1 122 22 1 2 max 3 1 2 1 2 3 121 12                −− − +   ⋅−+ −= pppp ppp pgppp pppgpg pp c pp π (48) ( ) ( ) ( )122 22 1 2 max 3 113 pgppppg −⋅= π , (49) where ( ) ,4232632326231375360 0336189868208826244785 50121429933658359634287 2254448500 12102 1 84 1 66 1 48 1 210 1 12 1121 cc cc cc ppp pppp pppp ppg +− +− +− = (50) ( ) .1530987480 15795093500 642 1 24 1 6 1122 cc c ppp ppppg −+ −= (51) Big numerical coefficients in expressions (46) - (51) are caused by repeated integration of high powers of momentum. We note, that the obtained relation for the rate is valid for all pressures up to 19 bar at which the dispersion becomes normal and decay processes are forbidden by conservation laws. In Fig. 1 the rate I dν calculated with a help of Eq. (45) is shown. We see, that the rate sharply vanishes near max1 pp = . Such behavior of the rate could be explained by factor ( )22 1 2 max pp − in (49). Fig. 1. The rate of spontaneous phonon decay into three in the first order of perturbation theory on 4V̂ calculated from Eq. (45) The integration in case of the second order of perturbation theory on 3V̂ cannot be exactly made analytically due to the complexity of integrand in (36). However in this case the integration can be made numerically. The result of this integration in momentum range (2) is shown in Fig. 2 (curve 2). As it follows from the comparison of curve 2 in Fig. 2 with (45), the main contribution in the momentum range (2) is due to the second order of perturbation theory on 3V̂ . Fig. 2. Momentum dependences of the rates of three- phonon processes 21→ (curve 1), processes of one phonon decay into three 31→ (curve 2), h -phonon creation for three values of delimitating momentum dp equal to cp , ppp3 and maxp (curves 3, 3′ and 3″). Calculations were made with 01 =θ , 02.0=χ and 041.0=T 5. MOMENTUM THAT DELIMITATES l- AND h-PHONON SUBSYSTEMS As it has been already told in introduction the important question is where we should delimitate l - and h-phonon subsystems. To answer this question we start from Fig. 2. In Fig. 2 momentum dependences of the rates of three-phonon processes (curve 1), processes of one phonon decay into three (curve 2), four-phonon processes of high-energy phonons creation with momenta dpp > for three different values of momentum dp which delimitates l - and h -phonon subsystems (curves 3, 3′, 3″) are represented. From Fig. 2 it can be seen, that the rates of three- phonon processes ( 21→ ) and processes of one phonon decay into three ( 31→ ) are comparable and appear much greater than the rate of four-phonon processes of high-energy phonons creation. As a result the momentum range (2) should be related to l -phonon subsystem in which equilibrium occurs quickly in contrast to h -phonon subsystem with cpp > where the decay processes are forbidden and equilibrium occurs slowly. Thus there is a question where we should relate phonons with momenta from maxp up to cp . The calculation of the rates of decay processes in this range is rather difficult problem as the order of integrals in this case increases strongly. It is possible only to state, that due to decay processes the time of establishment of equilibrium in this momentum range will be less than in the range of cpp > where the decay processes are forbidden. Besides this we must take into account that, as it can be seen from Fig. 2, the rate of four-phonon processes decreases quickly enough with increasing of momentum. As a result the momentum dp , that 403 delimitates phonons of superfluid helium into two subsystems with different relaxation times can be considered to be equal to cp , as it was supposed in Refs. [4,5,8]. 6. CONCLUSION In paper the processes of one phonon decay into three in anisotropic and isotropic phonon systems of superfluid helium are investigated. The restrictions on momenta of phonons which can participate in the mentioned processes are obtained. The general relation (35) for the rate dν of processes of one phonon decay into three is derived. With a help of numerical integration of relation (35) the numerical value of the rate dν caused by the second order of perturbation theory on 3V̂ is found. Starting from the general relation (35) the analytical relation (45) for the rate of spontaneous decay in the first order of perturbation theory on 4V̂ is derived. The question about the value of momentum dp , which delimitates l - and h -phonon subsystems is considered and it is shown, that dp is equal to cp . REFERENCES 1. A.F.G. Wyatt, N.A. Lockerbie and R.A. Sherlock. Propagating phonons in liquid 4He //J. Phys. Condens. Matter, 1989, v. 1, p. 3507-3522. 2. M.A.H. Tucker and A.F.G. Wyatt. Phonons in liquid 4He from a heated metal film. I. The creation of high-frequency phonons //J. Phys. Condens. Matter, 1994, v. 6, p. 2813-2824. 3. M.A.H. Tucker and A.F.G. Wyatt. Spatial Evolution of High Frequency Phonons in Superfluid 4He from a Pulse-Heated Metal Film //J. Low Temp. Phys., 1998, v. 113, p. 621-626. 4. I.N. Adamenko, K.E. Nemchenko, A.V. Zhukov, M.A.H. Tucker, and A.F.G. Wyatt. Creation of High-Energy Phonons from Low-Energy Phonons in Liquid Helium //Phys. Rev. Lett., 1999, v. 82, p. 1482-1485 5. A.F.G. Wyatt, M.A.H. Tucker, I.N. Adamenko, K.E. Nemchenko, and A.V. Zhukov. High-energy phonon creation from cold phonons in pulses of different length in He II // Phys. Rev. B, 2000, v. 62, p. 9402-9412. 6. M.A.H. Tucker, A.F.G. Wyatt, I.N. Adamenko, A.V. Zhukov and K.E. Nemchenko. Three-phonon interactions and initial stage of phonon pulse evolution in He II //Low Temp. Phys., 1999, v. 25, p. 488-492 [in Russian: Fiz. Nizk. Temp., 1999, v. 25, p. 657-663]. 7. I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko and A.F.G. Wyatt. Three-phonon relaxation in isotropic and anisotropic phonon systems of liquid helium at different pressures//Low Temp. Phys., 2005, v. 31, p. 459-469 [Fiz. Nizk. Temp., 2005, v. 31, p. 607-619]. 8. I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko and A.F.G. Wyatt. Creation and decay of high-energy phonons in anisotropic systems of low-energy phonons in superfluid helium //Phys. Rev. B, 2006, v. 73, 134505 (7 pages). 9. J. Jackle, K.W. Kehr. High-Frequency Ultrasonic Attenuation in Superfluid Helium Under Pressure //Phys. Rev. Lett., 1971, v. 27, p. 654-657. 10. R.A. Sherlock, N.G. Mills and A.F.G. Wyatt. The angular spreading of phonon beams in liquid 4He: upward phonon dispersion //J. Phys. C: Solid State Phys., 1975, v. 8, p. 2575-2590. 11. I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko and A.F.G. Wyatt. Creation of high- energy phonons caused by four-phonon processes in anisotropic phonon systems of He II /to be published in Fiz. Nizk. Temp. 12. L.P. Pitayevski, Y.B. Levinson. Decay threshold in the phonon spectra of liquid helium //Phys. Rev. B, 1976, v. 14, p. 263-264. 13. I.M. Khalatnikov. An Introduction to the Theory of Superfluidity. Redwood City: “Addison-Wesley”, 1989, 205 p. 14. I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko and A.F.G. Wyatt. The decay of one phonon into three in superfluid helium //J. Phys.: Condens. Matter, 2006, v. 18, p. 10179-10191 15. I.N. Adamenko, Yu.A. Kitsenko, K.E. Nemchenko, V.A. Slipko and A.F.G. Wyatt. Quasiequilibrium distribution function of anisotropic phonon systems and the interaction of pulses of low-energy phonons in superfluid helium //Phys. Rev. B, 2005, v. 72, 054507 (11 pages). РЕЛАКСАЦИЯ, ОБУСЛОВЛЕННАЯ ПРОЦЕССАМИ РАСПАДА ОДНОГО ФОНОНА НА ТРИ В СВЕРХТЕКУЧЕМ ГЕЛИИ И.Н. Адаменко, Ю.А. Киценко, К.Э. Немченко, В.А. Слипко, A.F.G. Wyatt Получено аналитическое выражение для частоты процессов распада одного фонона на три. Исходя из полученного выражения, найдена частота самопроизвольного распада в первом порядке теории возмущений. Показано, что процессы распада одного фонона на три обеспечивают быстрое установление равновесия в анизотропных и изотропных фононных системах. Это позволяет область, в которой разрешены процессы распада одного фонона на три, отнести к подсистеме низкоэнергетических фононов. РЕЛАКСАЦІЯ, ЩО ОБУМОВЛЕНА ПРОЦЕСАМИ РОЗПАДУ ОДНОГО ФОНОНА НА ТРИ У НАДПЛИННОМУ ГЕЛІЇ І.Н. Адаменко, Ю.О. Кіценко, К.Е. Немченко, В.А. Сліпко, A.F.G. Wyatt Отримано аналітичний вираз для частоти процесів розпаду одного фонона на три. Виходячи з отриманого виразу, знайдено частоту самовільного розпаду в першому порядку теорії збурень. Показано, що процеси розпаду одного фонона на три забезпечують швидке встановлення рівноваги в анізотропних і ізотропних фононних системах. Це дозволяє область, у якій дозволені процеси розпаду одного фонона на три, віднести до підсистеми низькоенергійних фононів.