Bose-Einstein condensation of particles with spin
One of possible ground states and low-lying collective modes of Bose-Einstein condensate (BEC) of atoms with arbitrary spin in a magnetic field is studied using Bogoliubov's model for weakly interacting Bose gas. The equation for the vectorial order parameter, valid at temperatures T→0 , is der...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2007
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111058 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bose-Einstein condensation of particles with spin / A.S. Peletminskii, S.V. Peletminskii, Yu.V. Slyusarenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 413-417. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111058 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1110582017-01-08T03:04:29Z Bose-Einstein condensation of particles with spin Peletminskii, A.S. Peletminskii, S.V. Physics of quantum liquids One of possible ground states and low-lying collective modes of Bose-Einstein condensate (BEC) of atoms with arbitrary spin in a magnetic field is studied using Bogoliubov's model for weakly interacting Bose gas. The equation for the vectorial order parameter, valid at temperatures T→0 , is derived and its specific solution is found. This solution corresponds to the formation of BEC of atoms with a definite spin projection onto magnetic field. We obtain also the necessary condition for thermodynamic stability of such a condensate and the explicit expressions for low-lying collective modes and magnetization. На основі моделі Боголюбова слабко неідеального бозе-газу вивчено один із можливих основних станів і колективні збудження бозе-ейнштейнівського конденсату (БЕК) атомів із довільним цілим спіном у магнітному полі. Отримано рівняння для векторного параметра порядку, справедливе при температурах T→0, та знайдено його частковий розв'язок. Цей розв'язок відповідає утворенню БЕК атомів із визначеною проекцією спіну на магнітне поле. Одержано також необхідну умову термодинамічної стійкості такого конденсату та вирази для спектрів елементарних збуджень і намагніченості. На основе модели Боголюбова слабовзаимодействующего бозе-газа изучены одно из возможных основных состояний и низколежащие коллективные возбуждения бозе-эйнштейновского конденсата (БЭК) атомов с произвольным целым спином в магнитном поле. Получено уравнение для векторного параметра порядка, справедливое при температурах T→0, и найдено его частное решение. Это решение соответствует образованию БЭК атомов с определенной проекцией спина на направление магнитного поля. Найдены также необходимое условие термодинамической устойчивости такого конденсата и выражения для спектров элементарных возбуждений и намагниченности. 2007 Article Bose-Einstein condensation of particles with spin / A.S. Peletminskii, S.V. Peletminskii, Yu.V. Slyusarenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 413-417. — Бібліогр.: 22 назв. — англ. 1562-6016 PACS: 12.20.-m, 13.40.-f, 13.60-Hb, 13.88.+e http://dspace.nbuv.gov.ua/handle/123456789/111058 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Physics of quantum liquids Physics of quantum liquids |
spellingShingle |
Physics of quantum liquids Physics of quantum liquids Peletminskii, A.S. Peletminskii, S.V. Bose-Einstein condensation of particles with spin Вопросы атомной науки и техники |
description |
One of possible ground states and low-lying collective modes of Bose-Einstein condensate (BEC) of atoms with arbitrary spin in a magnetic field is studied using Bogoliubov's model for weakly interacting Bose gas. The equation for the vectorial order parameter, valid at temperatures T→0 , is derived and its specific solution is found. This solution corresponds to the formation of BEC of atoms with a definite spin projection onto magnetic field. We obtain also the necessary condition for thermodynamic stability of such a condensate and the explicit expressions for low-lying collective modes and magnetization. |
format |
Article |
author |
Peletminskii, A.S. Peletminskii, S.V. |
author_facet |
Peletminskii, A.S. Peletminskii, S.V. |
author_sort |
Peletminskii, A.S. |
title |
Bose-Einstein condensation of particles with spin |
title_short |
Bose-Einstein condensation of particles with spin |
title_full |
Bose-Einstein condensation of particles with spin |
title_fullStr |
Bose-Einstein condensation of particles with spin |
title_full_unstemmed |
Bose-Einstein condensation of particles with spin |
title_sort |
bose-einstein condensation of particles with spin |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2007 |
topic_facet |
Physics of quantum liquids |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111058 |
citation_txt |
Bose-Einstein condensation of particles with spin / A.S. Peletminskii, S.V. Peletminskii, Yu.V. Slyusarenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 413-417. — Бібліогр.: 22 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT peletminskiias boseeinsteincondensationofparticleswithspin AT peletminskiisv boseeinsteincondensationofparticleswithspin |
first_indexed |
2025-07-08T01:33:37Z |
last_indexed |
2025-07-08T01:33:37Z |
_version_ |
1837040578735374336 |
fulltext |
BOSE-EINSTEIN CONDENSATION OF PARTICLES WITH SPIN
A.S. Peletminskii, S.V. Peletminskii, and Yu.V. Slyusarenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
e-mail: spelet@kipt.kharkov.ua
One of possible ground states and low-lying collective modes of Bose-Einstein condensate (BEC) of atoms with
arbitrary spin in a magnetic field is studied using Bogoliubov's model for weakly interacting Bose gas. The equation
for the vectorial order parameter, valid at temperatures T , is derived and its specific solution is found. This
solution corresponds to the formation of BEC of atoms with a definite spin projection onto magnetic field. We ob-
tain also the necessary condition for thermodynamic stability of such a condensate and the explicit expressions for
low-lying collective modes and magnetization.
0→
PACS: 12.20.-m, 13.40.-f, 13.60-Hb, 13.88.+e
1. INTRODUCTION
After the first remarkable experiments concerning
the observation of BEC in dilute gases of alkali atoms
such as 87Rb [1], 23Na [2], and 7Li [3] the interest to this
phenomenon has revived [4,5]. Later, BEC has been
also obtained in other atomic species: atomic hydrogen
[6], metastable 4He [7], and 41K [8]. The experimental
observation of BEC has become possible due to devel-
opment of laser cooling and trapping techniques [9].
The carried out experiments have proved many predic-
tions of the micro-scopic theory for weakly interacting
Bose gas, which originates from the pioneering work of
Bogoliubov [10]. Bogoliubov's theory has become al-
most the first theory in which it was necessary to move
essentially from the methods of standard perturbative
approach while describing the interaction effects. How-
ever, this theory, in its original formulation, did not take
into account the internal degrees of freedom of atoms.
The spin degrees of freedom have been taken into ac-
count for a weakly interacting Bose gas (spinor BEC) in
[10-19].
The realization of optical trapping of atomic con-
densate [20] has stimulated theoretical interest to spinor
BEC. Bose condensation in a weakly interacting gas of
bosonic atoms has been theoretically studied by many
authors both for spin-1 [12-17] and spin-2 [18,19] bos-
ons. These investigations are based on the effective in-
teraction Hamiltonians of two bosons in which the in-
teraction is characterized by a definite number of inter-
action constants s-wave scattering lengths. The number
of scattering lengths is determined by the total spin of
two interacting bosons taking into account the symme-
try properties of their wave function. For example, in
case of spin-1 atoms the interaction Hamiltonian con-
tains two interaction constants [12-17], in case of spin-2
atoms there are three interaction constants [18,19].
Thus, as the spin value of the atoms grows, the number
of constants which characterize the interaction of two
bosons is increased under phenomenological descrip-
tion. Note that in the mentioned effective Hamiltonians
it is difficult to interpret the physical nature of the iso-
lated term of non-relativistic interaction not associated
with neither potential nor spin-exchange interactions
(see e.g. [18]).
In this paper we study a weakly interacting Bose gas
of particles with arbitrary integer spin S in a magnetic
field (see also [11]). We start from the interaction Ham-
iltonian for two spin-S bosons. This Hamiltonian is
specified by two functions, which describe the potential
and spin-exchange interactions of spin-S atoms. Ac-
cording to general rules of quantum mechanics we pass
from the pairwise interaction of two bosons to the stan-
dard expression for binary interaction of arbitrary num-
ber of bosons in the second quantization representation.
By solving the problem of multichannel scattering for
the considered Hamiltonian we could find, in principle,
all scattering lengths in terms of the functions character-
izing the potential and spin-exchange interactions.
Thereby, it would be possible to obtain the Hamilto-
nians analogous to the above mentioned effective inter-
action Hamiltonians (see e.g. [18]). However, the Ham-
iltonian of the present paper gives a possibility to re-
strict ourselves by two interaction constants even in the
case of arbitrary spin while studying the ground state,
stability, and excitations in a weakly interacting gas in
the presence of BEC.
2. SEPARATION OF A CONDENSATE
To describe the system with a spontaneously broken
symmetry we address to the method of quasiaverages
[21,22]. According to this method the Gibbs statistical
operator is modified so that it possesses the symmetry
of the degenerate state. This modification is usually
done by introducing the infinitesimal "source"
( 0 ), which has the symmetry of phase under con-
sideration into the Gibbs exponent. Then the average
value of any physical quantity A is defined as
F̂ν
→ν
ˆ
,ˆˆlimlimˆ AwA
V
ν
∞→→ν
=>< Tr
0
(1)
where the Gibbs statistical operator w has the form νˆ
( )( )FNHw ˆˆˆexpˆ ν+µ−β−Ω= νν . (2)
Here ,/T1=β are the reciprocal temperature and
chemical potential respectively, and H are the sys-
tem Hamiltonian and the particle number operator. The
thermodynamic potential being a function of ther-
modynamic variables is found from the
µ
N̂,ˆ
νΩ
µβ,
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (2), p. 413-417. 413
normalization condition . Notice that the lim-
its in (1) are not permutable.
1=νŵTr
Consider a gas of condensed bosonic atoms with
spin The origination of a condensate is accompanied
by the gauge symmetry breaking and, therefore, in order
to remove this kind of degeneracy we should choose the
"source" in (2) such that [ (N is the
generator of phase transformation),
.S
F̂ν 0≠ν ]ˆ,ˆ Nw ˆ
( )∫ +
ααα ψ+ψν=ν )(ˆ)(ˆˆ xxxdF 3
+
,
where are the creation and annihilation
operators with index taking values (the sum-
mation over the repeated indices is assumed). Then
that corresponds to
the formation of a condensate of atoms with momenta
. The quantity represents
the order parameter usually called the condensate wave
function (V is the volume of the system).
)(ˆ),(ˆ xx αα ψψ
α
21) / <=> −Vx
12 +S
1
<− 21 a/
0 ~(ˆ >ψ< αα
0=p =α V
â
Ψ >α0ˆ
Note that the method of quasiaverages and the spa-
tial correlation decay principle allow to justify the re-
placement of creation and annihilation operators with
by c -numbers, 0=p *,ˆ,ˆ αα
+
αα ΨΨ→ VVaa 00
[21-22] (the condensate separation procedure).
The basic statement of the method of quasiaverages
applied to the description of BEC consists in the follow-
ing [21-22]: the Gibbs statistical operator is replaced by
( )( ))(ˆ)(ˆ)(exp)(ˆ Ψµ−Ψβ−ΨΩ=Ψ NHw , (3)
where is found from the following
equation:
},{ *
αα ΨΨ≡Ψ
.
)( 0=
Ψ∂
ΨΩ∂ (4) →
3. THE GROUND STATE OF SPIN-S BEC
In this Section we study the ground state properties
of spin-S BEC in a magnetic field. In doing so, we
start from the Hamiltonian which deter-
mines the Gibbs statistical operator (3). This Hamilto-
nian is given by , where
,ˆˆˆ NH µ−=H
ep HH ˆˆ +0HH ˆˆ +=
[ ]∑ =ε−δµ−ε= βαβαβ
+
α
1
2
1110 2M
p
aa p,ˆ)(ˆˆ hSH ,
( )∑ βα
+
β
+
α++δ−=
1234
4321432131
2
1
aaaaU
V
ˆˆˆˆˆ
,pH , (5)
( )∑ ργβραγ
+
β
+
α++δ−=
1234
4321432131
2
1
aaaaJ
V
ˆˆˆˆˆ
, SSeH ,
where are the spin matrices, U
( p ) are the Fourier transforms of the am-
plitudes of potential and spin-exchange interactions
respectively, and , where g is the Bohr
magneton, and is an external magnetic field. For our
next calculations it is convenient to introduce the so-
called ladder operators S . Then their non-
zero matrix elements in the representation where S is
a diagonal matrix, < , have the
form
αβS
1p −
),( 13p )( 13pJ
313 p=
Sg /Hh =
H
yx SiS ˆˆˆ ±=±
>=α′α |ˆ| zS
ẑ
α′ααδ
,)()( 11 +αα−+>= SS
.)()( 11 −αα−+>= SS
0=p
α0̂
ˆ =w
*Ψµ
ζ
ˆ
|ˆ|1 α+α< +S
|ˆ|1 α−α< −S (6)
Now we separate the components a in the
Hamiltonian (the replacement of a by c -numbers,
α0̂
αα Ψ→ Va0ˆ
αpˆ
αΨ
) and keep the terms only up to second
order in a . We omit the higher order terms, since
they should be taken into account only when examining
the interaction between quasiparticles, which we will
introduce in the next section. As a result the Hamil-
tonian takes the form . The explicit
expression for which contains only c -numbers
reads
(2)H )0 Ĥ+Hˆ (≈
,)(0H
( ) ( ) ( ) 2*2*
0
)ˆ(
2
0)(
2
0
ΨΨ+ΨΨ= SJU
V
H
,ˆ ** ΨΨµ−ΨΨ− Sh (7)
where
. (8) ˆˆ, ****
βαβααα ΨΨ=ΨΨΨΨ=ΨΨ SS
The explicit form for will be written in the next
section.
)(ˆ 2H
Next, using the normalization condition Tr
we immediately find the density of thermodynamic po-
tential in the main approximation
( 0T ) of the model for weakly interacting Bose gas,
,1
VT /Ω=ω
( ) ( )
.ˆ)ˆ()( *** Ψ−ΨΨ−ΨΨ+ΨΨ=ω ShS 22
2
0
2
0 JU
αΨTherefore, Eq.(5) for takes the form
( ) ααµ ΨΨ−Ψ )(0 *U Ψ (9)
( ) 00 =Ψ+ΨΨΨ− βαββαβ hSSS )ˆ( *J .
If to introduce the normalized spin functions ,α
,αα ζ=Ψ n
* ζζ αα
where is the condensate den-
sity and then the latter equation is written as
ααΨΨ= *n
,1=
( )
( ) .0)ˆ(0
0
* =+−
−
βαββαβ
αα
ζζζζ
ζµζ
hSSSnJ
nU
(10)
Its solution , which is an eigenfunction of S
is of the form
)(m
αζ
(mζ=
,z
,)ˆ( ))( mm
zS αβαβζ
.)(
m
m
αα δ=ζ (11)
Assuming the vector directed along z -axis,
and taking into account that S is a diago-
nal matrix, whereas have no diagonal matrix ele-
ments in the considered representation of spin matrices,
one finds from Eq. (3.8)
h
),,( h00=h ẑ
±Ŝ
( ) ( )
.
00 2JmU
mh
n
+
+µ
= (12)
414
Formulae (11), (12) result in the following expression
for the density of equilibrium thermodynamic potential:
( )
( ) ( )
.
002
1
2
2
JmU
mh
+
+µ
−=ω (13)
We are now in a position to study the stability of the
possible ground states (11). In the considered approxi-
mation the thermodynamic potential of normal state is
zero (the order parameter vanishes). Therefore, for
stability of the studied ground state the density of ther-
modynamic potential must be negative, and,
consequently, according to (13), we can write the nec-
essary condition of thermodynamic stability,
αΨ
0<ω
( ) ( ) .000 2 >+ JmU (14) = JH
Let us find now such spin projections m , which corre-
spond to minimum of the potential (13). For simplicity,
we study the case of h (or sufficiently weak h ).
Then
0=
( ) ( )
.
)(
0
002 2
2
<
+
µ
−=ω
JmU
(15)
As it can be easily seen that in contrast to the usual Bo-
goliubov theory, where U (the necessary condi-
tion of stability), the case U is also permissible.
Therefore, we have the following three situations:
00 >)(
0 <)( 0
1) U 0 . In this case the requirement
(14) is automatically fulfilled. The density of thermody-
namic potential (15) has a minimum at m in which
We call this case as antifer-
romagnetic ordering.
,)( 00 >
(/ 022 Uµ
0 >)(J
).
,0=
−=ω
2) U 0J but such that the requirement
(14) is fulfilled. The minimum of ω (see (15)) is
reached for where
,)( 00 >
minm
0 <)(
(±= cm ),1−
[ ] 1,)0(/)0( c
2/1 +≤−= SmJUmc (16) 2
(the square brackets denote an integer part). This case
corresponds to ferromagnetic ordering.
3) U 0 but again such that
Here the minimum of is given
by the spin projections m , where m
is also defined by (16) but with U .
This case also corresponds to ferromagnetic ordering.
,)( 00 <
( )02 >+ Jm
0 >)(J
.0
min
( )0U ω
)( 1+±= cm c
,)( 00 <
αp̂
00 >)(J
≠
[ ].)ˆ +p h.caˆ()ˆ *ΨΨ+
p SS
)ˆˆ( −+ − SS
±
ˆ
,ˆ α
+
α pa
++
− mp
[ ],−1ˆˆ +
−
+
+1 mm aa pp
+mp
[ ],ˆ 11 +
+
+ mm ap
4. LOW-LYING COLLECTIVE MODES
Here we shall obtain the excitation spectra for spin-
BEC employing the well-known diagonalization
procedure (Bogoliubov’s transformations [10])
for the Hamiltonian quadratic in creation and annihila-
tion operators.
S
−u v
The part of the spin-exchange interaction Hamilto-
nian (see (5)), which is quadratic in a ( 0p ) has
the form
+ΨΨ ∑ +
p
ppSS aa ˆˆˆˆ)(ˆ *0(2)
e (17)
( ) ,ˆ()ˆˆ()ˆˆ(∑ +ΨΨ+ +
−
+
p
pp SSp aaaJ
2
1
where we have used the notations (8). Taking into ac-
count that
)ˆˆ(ˆ
−+ += SSSx 2
1 , ˆ −=
i
y 2
S
and employing (6) for nonzero matrix elements of S as
well as the explicit expression for the condensate wave
function ,)(
m
m n αα δ=Ψ one finds
ˆ)ˆˆˆ()ˆ( * ∑
α
+ α=ΨΨ pppSS anmaa
=ΨΨ ++
−
+
maanmaa ppp SS ˆˆ)ˆˆ)(ˆˆ( 2
ˆˆ +
+−
+
−− ++ 112 mmmm aaSS
n
pp
=ΨΨ ++
maanmaa ppp SS ˆˆ)ˆˆ)(ˆˆ( * 2
ˆˆˆ 2
11
2
−
+
−− ++ mmmm aSaaS
n
ppp
where
( ) ( )11 +−+= mmSSSm .
As a result the "Hamiltonian" (17) takes the form
( ) ( )[ ]++++−= ∑ +
+
+
+
−
+
−
p
pppppp 1111 110 mmmmmm aamaamaamnmJ ˆˆˆˆˆˆ)(ˆ (2)
eH
[ ]++++α+ ∑ ∑
α
−
++
−
+
α
+
α
,
ˆˆˆˆˆˆ)(ˆˆ)(
p
pppppp
p
pp p mmmmmm aaaaaamJ
n
aanmJ 2
2
0 2
( )[ ]ˆˆˆˆˆˆˆˆ)( 11
2
11
2
11112 +
+
+−
+
−−−+−
+
+−
+
−− ++++ ∑ mmmmmmmmmmmm aaSaaSaaaaSSJ
n
pppppppp
p
p .
Here the summation index in the second term takes
all the values of spin projections except m , m , and
. We have separated these three spin projections
and written them as the first term of the above "Hamil-
tonian". In a similar manner assuming the vector
directed along -axis, , and eliminating the
chemical potential
α
,(0
1−
1+m
h
z ),h0=h
µ by using (12), we can find the
explicit expressions for and thereby the
total Hamiltonian quadratic in creation and annihilation
operators:
)2() ˆ, pHH (ˆ 2
0
),(ˆ)(ˆˆˆ )()()()( 112222 +−++= α mmm HHHH , (18)
where
( ) ( )[ ] ,ˆˆ)(ˆ
,
)( ∑
α
α
+
αα α−+α−−ε=
p
pp aamhmnmJp 02H
( ) [ ] ++ε= ∑ +
p
ppp mmmp aagm ˆˆ)(ˆ )(2H
[ ]∑ −
+
−
+ ++
p
ppppp mmmmm aaaag ˆˆˆˆ)(
2
1 , (19)
415
[ ]∑ +
+
+β+−ε=+−
p
ppp 11
2 11 mmmp aahmm ˆˆ)(),(ˆ )(H
+[ ]∑ −−−β++ε+
p
ppp 11 mmmp aah ˆˆ)(
[ ].)( 1111∑ +−−
+
+−
+
− ++
p
ppppp mmmmm aaaaα
The introduced quantities α , )(pm )(pmβ , are
given by
)(pmg
mmm SSJ
n
−=α )()( pp
2
,
mnJSJ
n
mm )()()( 0
2
2 +=β pp , (20) ( ) γω
( ).)()()( 2 ppp JmUngm +=
Now we are in a position to carry out the diagonali-
zation of the total Hamiltonian (18). In this connection
let us note that the "Hamiltonians" (19) contain the crea-
tion and annihilation operators with not overlapping sets
of indices , , , (α ).
Therefore, we can perform their diagonalization inde-
pendently. The evidence of this statement is also associ-
ated with the fact that (18) can be considered as the
Hamiltonian of the system consisting of four kinds
(α ) of noninteracting particles.
α
1
1−m m 1+m mm ,1±≠
±mm,,
The "Hamiltonian" has already a diagonal
form with the following spectrum:
)(ˆ 2
αH
( ) ( ) ( .)(, α−+α−−ε=ω α mhmnmJpm 0p )
1
(21)
To carry out the diagonalization of
we introduce the creation and anni-
hilation operators b ( ),
),(ˆ )( 112 +− mmH
p
ˆ
σ+m ±=σ
( ) ( ) ,ˆˆˆ ,,
+
σ−−σσ+σσ+ += mmmmm bvbua ppp pp
( ) ( ) σ−−σ
+
σ+σ
+
σ+ += mmmmm bvbua ppp pp ˆˆˆ *
,
*
,
in terms of which this "Hamiltonian" has the diagonal
form,
( ) ,)( 0
,
,
)2( Ebbm mmm +=+ +
+
+∑ σσ
σ
σωσ pp
p
pH
where and E are the excitation spectra and
the ground state energy respectively. In order that the
introduced operators meet the canonical commutation
relations, the functions u , must obey
the relationships:
)(, pσωm 0
)(, pσm )(, pσmv
122 =− σσ |)(||)(| ,, pp mm vu ,
( ) ( ) ( ) ( ) 0=−−− σ−σσ−σ pppp ,,,, mmmm uvvu .
Simple mathematical manipulations (see e.g. [22]) result
to the following expression for low-lying collective
modes:
±σ−
−σ=ω σ hJJnmm )()()(, pp
2
10 (22)
,
)(
))()((
2
1
2
22
2
1
+−+ε+ε±
mnJ
mSSnJpp
p
p
moreover,
( ) ( )
( ) ( )( )
,
2
,,
2
,
σσ
σ
γωα
α
mmm
m
mu
−−
=
pp
p
p
( )
( )
( ) ( )( )22
σσ
σσ
σ
γ−ω−α
γ−ω
=
,,
,,
,
mmm
mm
mv
pp
p
p ,
where
( ) hmpm σ−β+ε=γ σσ p, (23)
(here )(pσβm
,mu
depends on the product m ). In fact, the
functions , do not depend on be-
cause, as it can be easily shown, the quantity
σ
)(pσ
σ
)(, pσmv σ
σ − ,mp,m is independent of . The sign plus
before the square root in (22) corresponds (for σ )
to the wave, which propagates in one direction, whereas
the sign minus corresponds (for ) to the wave
propagating in opposite direction. Notice that the ob-
tained spectra as well as (21) contain only the amplitude
of spin-exchange interaction and does not depend on the
amplitude of potential interaction.
σ
1−
1=
=σ
When (the antiferromagnetic ordering), the
excitation spectrum (22) takes the form
0=m
( ) hSSnJpp ±+ε+ε=ω 12 )()( pp .
In this case for h and p we have 0= 0→
cpp =ω )( , ( )10
2
+= SSJ
M
n
)(c .
In ferromagnetic case (when m ) the excitation
spectrum is of the form
S=
hSnJ
SnJ
p σ−σ+σ−+ε=ω )()(
)(
)( 01
2
p
p .
In a similar manner we can perform the diagonaliza-
tion of and thereby to obtain another spec-
trum of excitations. This spectrum depends on the am-
plitudes of spin-exchange and potential interactions,
( )m)(ˆ 2H
))()(()( ppp JmUnppm
22 2 +ε+ε=ω . (24)
The corresponding functions u and v can be eas-
ily found and have the form,
pm pm
)(
)(
)(
p
p
p
mp
mp
mu
ωε
ω+ε
=
2
,
)(
)(
)(
p
p
p
mp
pm
m
ωε
ε−ω
=
2
v .
When the excitation spectrum (24) coincides
with those, obtained Bogoliubov [10]. At small the
spectrum has the phonon behavior,
0=)(pJ
p
( ) ,cpm =ω p ))()(( 00 2JmU
M
n
+=c ,
In this formula and in (24) we have chosen the arithme-
tic value of the square root.
The magnetization is defined as ,
where is the Bohr magneton, is the spin operator in
the second quantization representation and the Gibbs
statistical operator w is given by (3). Up to the second
order in a this magnetization is of the form
SM ˆ)(ˆ Ψ= wg Tr
g
ˆ
Ŝ
)(ˆ Ψ
αp
∑
≠
++=
0
22 )()|)(||)((|
p
pppM mmm fvugmgVm
))()(()|)(||)((| 11
0
21,21, pppp
p
−+
≠
+++ ∑ mmmm ffvugm
416
∑ ∑∑
≠ ±≠≠
−+ +++
0 1,0
11 )())()((
pp
ppp
mm
mm fgffg
α
αα ,
where we have taken into account the fact that the func-
tions , do not depend on ,
, . The fun-
ctions , , , represent the
boson distribution functions of quasiparticles with chemi-
cal potential µ and excitation spectra ,
, , respectively (see (24),
(22), (21)).
)(, pσmu
)p 1+= mv
)(pmf f
)p ,−ωm
)(, pσmv
)p −mu
)(p1+ mf
0
)p ,αωm
σ
)p
((1−mv
m
=
(,1mω (1
)()( pp 11 += mu
)(p1− )(pαf
)(p
(mω
In conclusion, we have studied BEC of atoms with ar-
bitrary spin in a magnetic field on the basis of the model
for weakly interacting Bose gas. We have derived the
equation, which determines the ground state of spin-S
BEC at T and found its specific solution. This solu-
tion corresponds to the formation of BEC of spin-S atoms
with a definite spin projection m that also holds for an
ideal Bose gas [11]. The explicit expression for thermody-
namic potential as a function of chemical potential and
spin projection has been obtained. It generalizes the ther-
modynamic potential for weakly interacting Bose gas to
the case when both potential and spin-exchange interac-
tions act between bosons. The thermodynamic stability of
the obtained ground state has been studied and the spin
projections which give a minimum of thermodynamic
potential have been found. These projections are deter-
mined by the integral part of the ratio of the potential and
spin-exchange interaction amplitudes. The expressions for
low-lying collective modes corresponding to the ground
state (11) as well as the magnetization have been obtained.
Notice that Eq. (10) for the order parameter has also other
solutions different from (11). The goal of our present re-
search is to seek such solutions.
0→
REFERENCES
1. M.H. Anderson, J.R. Ensher, M.R. Matthews,
C.E. Wieman, E.A. Cornell //Science. 1995, v. 269,
p. 198-201.
2. K.B. Davis, M.-O. Mewes, M.R. Andrews,
N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle
//Phys. Rev. Lett. 1995, v. 75, p. 3969-3973.
3. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet
//Phys. Rev. Lett. 1995, v. 75, p. 1687-1690.
4. C.J. Pethick, H. Smith. Bose-Einstein condensation in
dilute gases. Cambridge: "Cambridge University
Press", 2002, 402 p.
5. L. Pitaevskii, S. Stringari. Bose-Einstein condensation.
New York: "Oxford University Press", 2003, 382 p.
6. D.G. Fried, T.C. Killian, L. Willmann, D. Landhuis,
S.C. Moss, D. Kleppner, T.J. Greytak //Phys. Rev. Lett.
1998, v. 81, p. 3811-3814.
7. F. Pereira dos Santos, J. Lonard, J. Wang,
C.J. Barrelet, F. Perales, E. Rasel, C.S. Unikrishnan,
M. Leduc, C. Cohen-Tannoudji //Phys. Rev. Lett.
2001, v. 86, p. 3459-3462.
8. G. Modugno, G. Ferrari, G. Roati, R.J. Brecha,
A. Simoni, M. Inguscio //Science. 2001, v. 294,
p. 1320-1322.
9. S. Chu // Usp. Fiz. Nauk. 1999, v. 169, p. 274-291;
C.N. Cohen-Tannoudji //Usp. Fiz. Nauk. 1999, v. 169,
p. 292-304; W.D. Phillips // Usp. Fiz. Nauk. 1999,
v. 169, p. 305-322 (in Russian).
10. N.N. Bogoliubov //J. Phys. (USSR). 1947, v. 11, p. 23-
32.
11. A.I. Akhiezer, S.V. Peletminskii, Yu.V. Slyusarenko
//JETP. 1998, v. 86, p. 501-506.
12. T. Ohmi, K. Machida //J. Phys. Soc. Japan. 1998,
v. 67, p. 1822-1825.
13. T.-L. Ho //Phys. Rev. Lett. 1998, v. 81, p. 742-745.
14. M. Ueda //Phys. Rev. A. 2000, v. 63, p. 013601-1-
013601-4.
15. C.K. Law, H. Pu, N.P. Bigelow //Phys. Rev. Lett.
1998, v. 81, p. 5257-5261.
16. M. Koashi, M. Ueda //Phys. Rev. Lett. 2000, v. 84,
p. 1066-1069.
17. T.-L. Ho, S.-K. Yip //Phys. Rev. Lett. 2000, v. 84,
p. 4031-4034.
18. M. Ueda, M. Koashi //Phys. Rev. A. 2002, v. 65,
p. 063602-1-063602-22.
19. J.-P. Martikainen, K.-A. Suominen //J. Phys. B: At.
Mol. Opt. Phys. 2001, v. 34, p. 4091-4101.
20. D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur,
S. Inouye, H.-J. Miesner, J. Stenger, W. Ketterle
//Phys. Rev. Lett. 1998, v. 80, p. 2027-2030.
21. N.N. Bogoliubov. Lectures on quantum statistics,
vol. 2. Quasiaverages. New York: "Gordon and
Breach", 1970, 231 p.
22. A.I. Akhiezer, S.V. Peletminskii. Methods of statistical
physics. Oxford: "Pergamon Press", 1981, 450 p.
БОЗЕ-ЭЙНШТЕЙНОВСКАЯ КОНДЕНСАЦИЯ ЧАСТИЦ СО СПИНОМ
А.С. Пелетминский, С.В. Пелетминский, Ю.В. Слюсаренко
На основе модели Боголюбова слабовзаимодействующего бозе-газа изучены одно из возможных основных состоя-
ний и низколежащие коллективные возбуждения бозе-эйнштейновского конденсата (БЭК) атомов с произвольным
целым спином в магнитном поле. Получено уравнение для векторного параметра порядка, справедливое при темпера-
турах T , и найдено его частное решение. Это решение соответствует образованию БЭК атомов с определенной
проекцией спина на направление магнитного поля. Найдены также необходимое условие термодинамической устойчи-
вости такого конденсата и выражения для спектров элементарных возбуждений и намагниченности.
0→
БОЗЕ-ЕЙНШТЕЙНІВСЬКА КОНДЕНСАЦІЯ ЧАСТИНОК ЗІ СПІНОМ
О.С. Пелетмінський, С.В. Пелетмінський, Ю.В. Слюсаренко
На основі моделі Боголюбова слабко неідеального бозе-газу вивчено один із можливих основних станів і колективні
збудження бозе-ейнштейнівського конденсату (БЕК) атомів із довільним цілим спіном у магнітному полі. Отримано рів-
няння для векторного параметра порядку, справедливе при температурах T , та знайдено його частковий розв'язок.
Цей розв'язок відповідає утворенню БЕК атомів із визначеною проекцією спіну на магнітне поле. Одержано також необ-
хідну умову термодинамічної стійкості такого конденсату та вирази для спектрів елементарних збуджень і намагніченості.
0→
417
|