The time of simultaneous tunneling of identical particles through the rectangular quantum barrier

Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunne...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Martseniuk, L.S., Olhovsky, V.S.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2010
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111068
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The time of simultaneous tunneling of identical particles through the rectangular quantum barrier / L.S. Martseniuk, V.S. Olhovsky // Вопросы атомной науки и техники. — 2011. — № 3. — С. 19-21. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111068
record_format dspace
spelling irk-123456789-1110682017-01-09T03:02:23Z The time of simultaneous tunneling of identical particles through the rectangular quantum barrier Martseniuk, L.S. Olhovsky, V.S. Ядерная физика и элементарные частицы Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunneling, arising up because of their exchange interaction in a field of a rectangular quantum barrier is first counted. Робота присвячена теоретичному дослідженню впливу обмінної взаємодії тотожних частинок на часові характеристики їх синхронного тунелювання через прямокутний потенційний бар'єр. Показано, що, оскільки включення обмінної енергії змінює фазові характеристики хвильових функцій, що описують процес тунелювання, то обмінні процеси впливають на часові характеристики цього процесу. Вперше було розраховано значення додаткового часу тунелювання тотожних частинок з урахуванням їх обмінної взаємодії. Работа посвящена теоретическому исследованию влияния обменного взаимодействия тождественных частиц на временные характеристики их одновременного туннелирования через прямоугольный потенциальный барьер. Показано, что, поскольку включение обменной энергии изменяет фазовые характеристики волновых функций, описывающих процесс туннелирования, то обменные процессы влияют на временные характеристики этого процесса. Впервые было рассчитано значение дополнительного времени туннелирования тождественных частиц с учетом их обменного взаимодействия. 2010 Article The time of simultaneous tunneling of identical particles through the rectangular quantum barrier / L.S. Martseniuk, V.S. Olhovsky // Вопросы атомной науки и техники. — 2011. — № 3. — С. 19-21. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 03.65.-w, 03.65.Xp, 03.65.Nk http://dspace.nbuv.gov.ua/handle/123456789/111068 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Martseniuk, L.S.
Olhovsky, V.S.
The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
Вопросы атомной науки и техники
description Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunneling, arising up because of their exchange interaction in a field of a rectangular quantum barrier is first counted.
format Article
author Martseniuk, L.S.
Olhovsky, V.S.
author_facet Martseniuk, L.S.
Olhovsky, V.S.
author_sort Martseniuk, L.S.
title The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
title_short The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
title_full The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
title_fullStr The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
title_full_unstemmed The time of simultaneous tunneling of identical particles through the rectangular quantum barrier
title_sort time of simultaneous tunneling of identical particles through the rectangular quantum barrier
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2010
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/111068
citation_txt The time of simultaneous tunneling of identical particles through the rectangular quantum barrier / L.S. Martseniuk, V.S. Olhovsky // Вопросы атомной науки и техники. — 2011. — № 3. — С. 19-21. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT martseniukls thetimeofsimultaneoustunnelingofidenticalparticlesthroughtherectangularquantumbarrier
AT olhovskyvs thetimeofsimultaneoustunnelingofidenticalparticlesthroughtherectangularquantumbarrier
AT martseniukls timeofsimultaneoustunnelingofidenticalparticlesthroughtherectangularquantumbarrier
AT olhovskyvs timeofsimultaneoustunnelingofidenticalparticlesthroughtherectangularquantumbarrier
first_indexed 2025-07-08T01:34:29Z
last_indexed 2025-07-08T01:34:29Z
_version_ 1837040633022251008
fulltext THE TIME OF SIMULTANEOUS TUNNELING OF IDENTICAL PARTICLES THROUGH THE RECTANGULAR QUANTUM BARRIER L.S. Martseniuk∗, V.S. Olhovsky Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine (Received April 6, 2010) Work is devoted to studying the influence of exchange processes on a time of simultaneous crossing by identical particles of a rectangular quantum barrier. It is shown, that such processes essentially influence on the parameters of tunneling. The size of addition to time of identical particles tunneling, arising up because of their exchange interaction in a field of a rectangular quantum barrier is first counted. PACS: 03.65.-w, 03.65.Xp, 03.65.Nk 1. INTRODUCTION At research of processes of two identical particles dis- persion on each other it is necessary to take into ac- count their exchange interaction which essentially in- fluences on the parameters of dispersion. Such ac- count for coulomb potential has been lead earlier [1- 3]. The Mott’s formula is describing the dispersion of identical particles in a field of coulomb potential, it contains additional element, arising up owing to effect of exchange interaction. Parameters of the tunneling process which can be considered as a limiting case of dispersion at a zero corner of dispersion also can depend on characteristics of exchange processes be- tween identical particles. In the given work research of influence of exchange interaction of identical parti- cles on a time of their simultaneous tunneling through a rectangular quantum barrier is lead. As follows from [1], a wave function describing the collision of two particles in the system of center of masses can be presented by the following expression: u(r)r→∞ → eih̄z + r−1 f(θ, ϕ)eikr , (1) where r, θ, ϕ - are spherical coordinates of vector r. For identical particles, taking into account the neces- sity of symmetrisation of wave function of dispersion, asymptotical expressions for symmetric and antisym- metric functions of waves it is necessary to write down as follows: Ψ = (eikz ± e−ikz) + [f(θ, ϕ)± f(π − θ, ϕ + π)]r−1eikr , (2) where ”+” corresponds to symmetric function, ”-” to antisymmetric function. The effective section of dispersion, according to [1], will be described by: σ(θ, ϕ) = |f(θ, ϕ)|2 + |f(π − θ, ϕ + π)|2 ± 2Re[f(θ, ϕ)f∗(π − θ, ϕ + π)] . (3) As follows from this expression, at the account of identity of particles at their dispersion in the field of quantum barrier, to the section of dispersion for two particles it is necessary to bring in addition, deter- minate by the third element in a formula (3). Just the same difference in the formula of dispersion and determines a change time for identical particles by virtue of their co-operation. 2. ESTIMATION THE TIME OF IDENTICAL PARTICLES TUNNELING THROUGH THE RECTANGULAR QUANTUM BARRIER The chart of tunneling of two identical particles in one dimension variant is represented on the Figure The circuit of interaction of two identical particles in a field of rectangular potential barrier In a theory of dispersion are shown that if present a dispersive potential, the asymptotical form of wave function looks like [2]: ∗Corresponding author E-mail address: prolisok77@yandex.ru PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N3. Series: Nuclear Physics Investigations (55), p.19-21. 19 rΨ = ∑ l Pl(cos θ) gl(r) ∼= ∑ l AlPl(cos(θ) sin(kr + ∆) , (4) where∆l = δl− lπ 2 It ensues from the theory of disper- sion with the use of method of partsial waves [2], that expression for transversal dispersion of not identical particles looks like σ = |f(θ)|2 = 1 k2 | ∑ l (2l + 1) 2 Pl(cos θ)(e2iδl − 1)|2 . (5) This formula shows dependence of transversal section on a phase δ. At l = 0 angular dependence is absent, and have the following expression: σ = 1 k2 [e2iδl − 1]2 4 . (6) Taking into account this expression will have: Re(fbf ∗ c ) = 1 4k2 (e2iδ − 1)(e−2iδ − 1) = 1 2k2 (1− cos 2δ) . (7) Thus, function, describing dispersion of two identical particles will have the following kind: Ψ = (eikz ± e−ikz) + r−1eikr √ 1 2k2 (1− cos 2δ) = (eikz ± e−ikz) + r−1eikr 1 k √ 2 sin δ . (8) For small values δ (as specified in [2] at small values δ a phase is also small): sin δ ∼= δ ∼= eδ − 1 Ψ = (eikz ± e−ikz) + r−1eikr 1 k √ 2 (eδ − 1) . (9) Thus, for dispersion of symmetric identical particles the additional change of phase appeared approxi- mately equal δ (while in ordinary case - for not iden- tical particles, his value 2δ , [2]. Addition to time of tunneling taking into account exchange interaction of identical particles, described a symmetric wave func- tion, in accordance with [2, 5] makes: τf = 1 νg d dk δ = m h̄k d dk δ . (10) Expressions for δ are led in educational literature for various forms of potential. Having substituted these expressions in (10) it is possible to define the interest- ing us size of time of tunneling. In [2] such expressions are brought for tan δ tan δ = k a − tan ka 1 + k a tan ka ∼= k a − ka 1 + k aka , (11) where:a = k1 cot k1a,k2 1 = (E − U)2m h̄2 for quantum hole and k2 1 = (U − E) 2m h̄2 -for a barrier in high U ; k2 = 2m h̄2 E. From expression for k and k1 follow, that dk1 dk = k k1 . Then: dσ dk = 1 1 + ( k a−ka 1+ k a ka )2 × (1 + k2 α a)(α−k dα dk α2 − a)− ( k α − ka)[(α−k dα dk α2 )ka + ka α ] (1 + k2a α )2 , (12) where: dα dk = dk1 dk (cot k1a− k a sin2 k1a ) = k k1 sin 2k1a + 2k1a 2 sin2 k1a . (13) Then to addition of tunneling time get next expres- sion: ∆τf = 1 νg d dk δ = m h̄k (α + k2a)(α− α2a− k dα dk )− (k − αak)(2αak − k dα dk ) α3[(1 + k αka)2 + ( k α − ka)2] . (14) 3. CONCLUSIONS Additional time of tunnelling for identical particles, simultaneously crossing through a quantum poten- tial barrier (a potential hole) in opposite directions is designed, taking into account their exchange interac- tion. Tunnelling was considered as a limiting case of dispersion at a corner of dispersion aspiring to zero. It is shown, that the exchange interaction changes the time of tunnelling. Such analysis of the temporal descriptions of simultaneous tunnelling processes is conducted first. References 1. L. Schiff. Quantum mechanics. M: ”F.L.”, 1959, 473 p. (in Russian). 2. D. Bohm. Quantum theory. M: ”Science”, 1965, 727 p. (in Russian). 3. L.D. Landau and E.M. Lifshitz. Quantum me- chanics, course of Theoretical Physics, v. 3. M: ”Nauka”, 1989, p.768 [in Russian; eng. variant: Oxford, Uk, Pergamon, 1982]. 4. V.G. Levich, J.A. Vdovin, V.A. Miamlin. Course of theoretical physics. v. 2. M: Science, 1971, p.936 (in Russian). 5. G. Privitera, G. Salesi, V.S. Olkhovsky, E. Re- cami. Tunneling times: An elementary introduc- tion // Rivista del Nuovo Cimento. 1991, 26 (4), p.55. 20 ВРЕМЯ СИНХРОННОГО ТУННЕЛИРОВАНИЯ ТОЖДЕСТВЕННЫХ ЧАСТИЦ ЧЕРЕЗ ПРЯМОУГОЛЬНЫЙ КВАНТОВЫЙ БАРЬЕР Л.С. Марценюк, В.С. Ольховский Работа посвящена теоретическому исследованию влияния обменного взаимодействия тождествен- ных частиц на временные характеристики их одновременного туннелирования через прямоугольный потенциальный барьер. Показано, что, поскольку включение обменной энергии изменяет фазовые ха- рактеристики волновых функций, описывающих процесс туннелирования, то обменные процессы влия- ют на временные характеристики этого процесса. Впервые было рассчитано значение дополнительного времени туннелирования тождественных частиц с учетом их обменного взаимодействия. ЧАС СИНХРОННОГО ТУНЕЛЮВАННЯ ТОТОЖНИХ ЧАСТИНОК ЧЕРЕЗ ПРЯМОКУТНИЙ КВАНТОВИЙ БАР’ЄР Л.С. Марценюк, В.С. Ольховський Робота присвячена теоретичному дослiдженню впливу обмiнної взаємодiї тотожних частинок на часовi характеристики їх синхронного тунелювання через прямокутний потенцiйний бар’єр. Показано, що, оскiльки включення обмiнної енергiї змiнює фазовi характеристики хвильових функцiй, що опи- сують процес тунелювання, то обмiннi процеси впливають на часовi характеристики цього процесу. Вперше було розраховано значення додаткового часу тунелювання тотожних частинок з урахуванням їх обмiнної взаємодiї. 21