Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering
An economic technique for calculation of polarized bremsstrahlung process is proposed, assuming typical atomic momentum transfer q << m. The adopted approach is based on the natural reduction of the matrix element to the form Vαγα + A₅γ⁵. Polarization distribution in the fully differential cro...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2009
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111262 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering / M.V. Bondarenco // Вопросы атомной науки и техники. — 2009. — № 3. — С. 89-94. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111262 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1112622017-01-09T12:43:18Z Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering Bondarenco, M.V. Электродинамика An economic technique for calculation of polarized bremsstrahlung process is proposed, assuming typical atomic momentum transfer q << m. The adopted approach is based on the natural reduction of the matrix element to the form Vαγα + A₅γ⁵. Polarization distribution in the fully differential cross-section is analyzed. It is found that at a given momentum transfer to the atom polarization in the plane of small radiation angles is oriented along circles passing through two common points. It is shown that with angular selection of radiated photons carried out, even with momentum transfers to the atom being integrated over, for particular radiation angles polarization may stay as high as 100%. Without angular selection of photons, only by control of the recoil, it is impossible to gain radiation polarization above 50%. Запропоновано спрощений спосіб обчислення диференціального перерізу поляризованого гальмівного випромінення за типової атомної передачі импульсу q << m. Використовуваний підхід грунтується на природній редукції спінового матричного елементу процесу до форми Vαγα + A₅γ⁵. Аналізується розподіл поляризації у повністю диференціальному перерізі. Показано, що якщо здійснювати кутову селекцію випромінених фотонів, то навіть після інтегрування по импульсах переданих атому, для певних кутів випромінення поляризація може зберігатися до 100%. Без кутової селекції фотонів, тільки за рахунок контролю віддачі, неможливо отримати поляризацію випромінення вищу ніж 50%. Предложен упрощенный способ вычисления дифференциального сечения поляризованного тормозного излучения при типичной атомной передаче импульса q << m. Используемый подход основывается на естественной редукции спинового матричного элемента процесса к форме Vαγα + A₅γ⁵. Анализируется распределение поляризации в полностью дифференциальном сечении. Показано, что если производить угловую селекцию излученных фотонов, то даже после интегрировании по импульсам, переданным атому, для определенных углов излучения поляризация может сохраняться до 100%. Без угловой селекции фотонов, только за счет контроля отдачи, нельзя получить поляризацию излучения выше 50%. 2009 Article Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering / M.V. Bondarenco // Вопросы атомной науки и техники. — 2009. — № 3. — С. 89-94. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 41.60.-m, 61.80.Az, 61.80.Ed, 78.70.-g, 95.30.Gv http://dspace.nbuv.gov.ua/handle/123456789/111262 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Электродинамика Электродинамика |
spellingShingle |
Электродинамика Электродинамика Bondarenco, M.V. Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering Вопросы атомной науки и техники |
description |
An economic technique for calculation of polarized bremsstrahlung process is proposed, assuming typical atomic momentum transfer q << m. The adopted approach is based on the natural reduction of the matrix element to the form Vαγα + A₅γ⁵. Polarization distribution in the fully differential cross-section is analyzed. It is found that at a given momentum transfer to the atom polarization in the plane of small radiation angles is oriented along circles passing through two common points. It is shown that with angular selection of radiated photons carried out, even with momentum transfers to the atom being integrated over, for particular radiation angles polarization may stay as high as 100%. Without angular selection of photons, only by control of the recoil, it is impossible to gain radiation polarization above 50%. |
format |
Article |
author |
Bondarenco, M.V. |
author_facet |
Bondarenco, M.V. |
author_sort |
Bondarenco, M.V. |
title |
Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering |
title_short |
Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering |
title_full |
Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering |
title_fullStr |
Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering |
title_full_unstemmed |
Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering |
title_sort |
computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2009 |
topic_facet |
Электродинамика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111262 |
citation_txt |
Computation and analysis of the polarization degree for bremsstrahlung at peripheral scattering / M.V. Bondarenco // Вопросы атомной науки и техники. — 2009. — № 3. — С. 89-94. — Бібліогр.: 6 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT bondarencomv computationandanalysisofthepolarizationdegreeforbremsstrahlungatperipheralscattering |
first_indexed |
2025-07-08T01:52:31Z |
last_indexed |
2025-07-08T01:52:31Z |
_version_ |
1837041767883472896 |
fulltext |
ELECTRODYNAMICS
COMPUTATION AND ANALYSIS OF THE POLARIZATION
DEGREE FOR BREMSSTRAHLUNG AT PERIPHERAL
SCATTERING
M.V. Bondarenco∗
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received December 12, 2008)
An economic technique for calculation of polarized bremsstrahlung process is proposed, assuming typical atomic
momentum transfer q ¿ m. The adopted approach is based on the natural reduction of the matrix element to the
form V αγα + A5γ
5. Polarization distribution in the fully differential cross-section is analyzed. It is found that at
a given momentum transfer to the atom polarization in the plane of small radiation angles is oriented along circles
passing through two common points. It is shown that with angular selection of radiated photons carried out, even
with momentum transfers to the atom being integrated over, for particular radiation angles polarization may stay as
high as 100%. Without angular selection of photons, only by control of the recoil, it is impossible to gain radiation
polarization above 50%.
PACS: 41.60.-m, 61.80.Az, 61.80.Ed, 78.70.-g, 95.30.Gv
1. INTRODUCTION
Radiation from ultra-relativistic electrons is natu-
rally collimated along the forward direction, with
the opening angle being inversely proportional to the
electron energy, but up to energies ∼ 10 GeV, corre-
sponding to typical radiation angles ∼ 10−4 rad, an-
gular distribution of radiation can be resolved. If that
is done in practice, photon polarization effects neces-
sarily come into play. In particular, the connection
between the polarization degree and the angular dis-
tribution is important for purposes of preparation of
polarized photon beams. The issue of polarization ac-
count may arise also at investigation of spatial evolu-
tion of electromagnetic showers. Calculations of dif-
ferential cross-section for the bremsstrahlung process
were conducted in various frameworks [1], [2], but
acquired reputation of rather cumbersome a subject.
Presentation of the final results in the literature does
not help gaining detailed intuition.
The conditions of radiation from ultra-relativistic
electrons in matter are such that small momentum
transfers to atoms dominate (q ∼ r−1
B ¿ m). Un-
der such conditions the expression for bremsstrahlung
cross-section, called dipole approximation, is similar
to Compton scattering cross-section from the stand-
point of the equivalent photon method. As a matter
of fact, the latter method is usually used to derive
characteristics of bremsstrahlung, averaged over di-
rections of emission and over polarizations of final,
and also (through azimuthal integration in momen-
tum transfers) over polarizations of initial quanta.
Nevertheless, it can be extended to the polarized case,
provided one traces correspondence of polarizations
(that is traditionally achieved via a transition be-
tween reference frames [1]).
From the technical side, the case of Compton scat-
tering has the advantage that photon polarization
vectors in it might be chosen orthogonal simultane-
ously to two momenta in the problem (out of three
momenta not bound by 4-momentum conservation).
That is expected to substantially simplify the pro-
cedure of calculation with the account of polariza-
tions and, in the conventional technology of cross-
section calculation via computation of a spur from
the squared matrix amplitude [3], this is indeed the
case. Despite the simplifications gained, calculations
for this process still are of formidable complexity.
This is in mark contrast with the concise final result,
and should be blamed on nothing but poor efficiency
of the method of straightforward spurring.
As was discussed in [4], a more adequate method
of calculation of QED-processes, also offering access
to fermion polarization observables, is the evaluation
of spin amplitudes in a matrix basis chosen by some
convenience reasons.
In the present paper, firstly, it is desired to ap-
ply the spin amplitude approach to the specific case
of Compton scattering. It appears that in this par-
ticular case the most convenient spin matrix choice
is different from what may be appropriate in other
cases. With the choice adopted in the present article,
the whole procedure of differential cross-section cal-
culation with the account of initial and final photon
polarizations becomes fairly elementary. Issuing from
the representation for the differential cross-section for
∗Corresponding author E-mail address: bon@kipt.kharkov.ua
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N3.
Series: Nuclear Physics Investigations (51), p.89-94.
89
Compton scattering in a gauge- and Lorenz-invariant
form, it is straightforward further on to pass to the
differential cross-section of bremsstrahlung in labo-
ratory frame, corresponding to conditions of periph-
eral scattering, i.e. dipole approximation. This pro-
vides an alternative to explicit implementation of the
equivalent photon method.
The second objective of the present work is to
discuss the features of polarization distribution as a
function of the radiation angle at fixed transverse di-
rection of momentum transfer to the atom. The char-
acteristic feature is that the polarization is aligned
along circles, passing through two knot points in the
space of radiation angles. One of the circles has its
centre coinciding with the origin - and that has an
important consequence: upon averaging over momen-
tum transfers to the atom at radiation direction fixed,
only contributions with identical direction of polar-
ization are summed up. And since at small radiation
frequencies the polarization in the doubly differential
cross-section is close to 100%, after the averaging it
remains near so.
2. CALCULATION OF AMPLITUDES
AND CROSS-SECTION FOR COMPTON
SCATTERING
We are considering the process of electron scattering
on an atom1, accompanied by emission of a single
photon. Denoting by p and p′ 4-momenta of the ini-
tial and the final electrons, q and q′ - the momentum
transfer to the atom and the momentum of the emit-
ted photon, the 4-momentum conservation and mass
shell conditions for them read as:
p + q = p′ + q′, p2 = p′2 = m2, q′2 = 0.
For q2 there is no strict condition, but
q2 ∼ r−2
B ∼ e4m2 ¿ m2, (1)
rB being Bohr radius. This estimate relates mainly
to q components orthogonal to p . The component
qz parallel to p is small, as long as typical denom-
inators emerging in Feynman diagrams are of order
pq ' Eqz ∼ m2, and E is large. Then qzrB ¿ 1,
owing to which condition the matrix element for the
whole process factorizes into Born-level radiation ma-
trix element Mrad(q⊥, q′) and the exact elastic scat-
tering amplitude Ascat(q⊥):
Tfi = Ascat (q⊥)
√
4πeMrad (q⊥, q′) ,
dσscat = |Ascat|2 d2q⊥
(2π)2
,
Mrad = ūp′
(
ê′∗(p̂ +q̂+m)ê
2pq
− ê(p̂−q̂′+m)ê′∗
2pq′
)
up ,
dσrad =
1
2E
|Tfi|2 d2q⊥
(2π)22E′
d3q′
(2π)32q′0
, (2)
(the elastic scattering amplitude through small an-
gles can be regarded as independent from the elec-
tron polarization). We are interested in Mrad(q⊥, q′)
modulus squared and averaged over initial electron
and summed over final electron polarizations. By the
straightforward Feynman’s method, this quantity is
to be computed as
〈
|Mrad|2
〉
=
1
2
Sp (p̂′+m)
(
ê′∗(p̂ + q̂ + m)ê
2pq
− ê(p̂− q̂′ + m)ê′∗
2pq′
)
(p̂ +m)
(
ê∗(p̂ + q̂ + m)ê′
2pq
− ê′(p̂− q̂′ + m)ê∗
2pq′
)
.
(3)
However, at that one needs to calculate a spur from
a polynomial of 8th degree in γ-matrices. Typically,
even relying on properties of photon crossing sym-
metry and advantages of the gauge choice (see (4)
below), that entails calculations along 2-3 pages (cf.
[3]). A more efficient approach would be prior re-
duction of the spin matrix to some ”minimal” form,
embarking on the condition of initial and final elec-
tron bispinors belonging to the mass shell.
2.1. Deduction of basic amplitudes
As usual, the computations of Compton scatter-
ing are strongly facilitated in the gauge
ep = eq = 0 = e′p = e′q′. (4)
To start with, commute in the matrix element (2) p̂
through ê , ê′ to a position neighboring to up:
Mrad = ūp′
(
ê′∗(p̂ + q̂ + m)ê
2pq
− ê(p̂− q̂′ + m)ê′∗
2pq′
)
up
∼= ūp′
(
ê′∗q̂ê
2pq
+
êq̂′ê′∗
2pq′
)
up. (5)
Feynman in [3] started squaring from this modified
representation, but it is still 8-th order in γ-matrices,
and we shall proceed a little further. With the appli-
cation of the standard formula
γαγβγγ = gαβγγ − gαγγβ + gβγγα + iεναβγγνγ5,
(5) naturally reduces to a basic-matrix form:
Mrad = ūp′
(
V αγα + A5γ
5
)
up. (6)
The coefficients in the decomposition are
V α =
eαqe′∗ − qαee′∗
2pq
+
e′α∗q′e− q′αee′∗
2pq′
,
A5 = −iεµαβγ pµ
m
eαe′β∗Gγ ,
(
Gγ =
qγ
2pq
− q′γ
2pq′
)
and it was utilized that vector G, as well as e, e′, is
orthogonal to p,
Gp = 0,
1A composite and lower-dimensional scattering system will be addressed in Sec. 3.1.
90
so,
εναβγeαe′β∗Gγ =
pν
m
· εµαβγ pµ
m
eαe′β∗Gγ ,
whereas action of pνγνγ5/m on up gives −γ5.
One can still add to the vector V α an arbitrary
vector, proportional to (p − p′)α. It is advantageous
to tune it so that V be orthogonal to momentum p:
V α → V α
p =
eαqe′∗ − qαee′∗
2pq
+ (p− p′)α ee′∗
(p− p′)2
+
e′α∗q′e− q′αee′∗
2pq′
+ (p− p′)α ee′∗
(p− p′)2
= eαe′∗G− e′α∗eG−Gαee′∗
pq + pq′
m2 − pp′
.
Now V α
p and A5 together have 4 independent components, as it should be for parametrization of a matrix
describing transition between two spin-1/2 on-shell states.
2.2. Computation of the differential cross-section, averaged over fermion polarizations
Substituting (6) to (3), the spur is calculated easily:
〈
|Mrad|2
〉
=
1
2
Sp (p̂′ + m)
(
V α
p γα + A5γ
5
)
(p̂ + m)
(
V α∗
p γα + A∗5γ
5
)
= 2(m2 − pp′)
{
|Vp|2 − |A5|2
}
.
The entries thereat are evaluated to be
|Vp|2 = |eαe′∗G− e′α∗eG|2 + G2 |ee′∗|2
(
pq + pq′
m2 − pp′
)2
,
− |A5|2 =
∣∣∣∣∣∣
|e|2 ee′ eG
(ee′)∗ |e′|2 e′∗G
e∗G e′G G2
∣∣∣∣∣∣
= |e|2 |e′|2 G2 + 2Re ee′ · e′∗G · e∗G− |e|2 |e′G|2 − |e′|2 |eG|2 −G2 |ee′|2
= − |eαe′∗G− e′α∗eG|2 + |e|2 |e′|2 G2 −G2 |ee′|2 .
In sum, after cancellation of terms ± |eαe′∗G− e′α∗eG|2,
|Vp|2 − |A5|2 = |e|2 |e′|2 G2 −G2 |ee′|2 + G2 |ee′∗|2
(
pq + pq′
m2 − pp′
)2
, G2 =
m2 − pp′
2pq · pq′
,
〈
|Mrad|2
〉
=
1
pq · pq′
{(
|ep|2
∣∣e′p
∣∣2 −
∣∣epe
′
p
∣∣2
)
(pq − pq′)2 +
∣∣epe
′∗
p
∣∣2 (pq + pq′)2
}
. (7)
(In the final formula an explicit subscript p at polarization vectors is introduced emphasizing the employed
gauge). In what follows, we will be mainly interested in the case of linearly polarized initial photons. Then,
the final photon polarization is also linear. For those conditions one can set
∣∣epe
′∗
p
∣∣ =
∣∣epe
′
p
∣∣ =
(
epe
′
p
)
and
add in (7) the two like terms:
〈
|Mrad|2
〉
= e2
pe
′2
p
(pq − pq′)2
pq · pq′
+ 4(epe
′
p)
2. (8)
This is the renowned Klein-Nishina’s formula for linearly polarized initial and final photons [3], [5].
To apply formula (8) to bremsstrahlung in laboratory frame, where the scatterer atom is at rest, it should
first be rendered a gauge-invariant appearance. To this end, substitute for ep, e′p expressions ep = e− q ep
pq ,
e′p = e′ − q′ e
′p
pq′ , where e, e′ are polarization vectors in an arbitrary gauge:
〈
|Mrad|2
〉
=
(
e− q
ep
pq
)2 (
e′ − q′
e′p
pq′
)2 (pq − pq′)2
pq · pq′
+ 4
{(
e− q
ep
pq
)(
e′ − q′
e′p
pq′
)}2
. (9)
Thereupon, this formula can be applied in the laboratory frame.
3. APPLICATION TO THE
BREMSSTRAHLUNG IN LABORATORY
FRAME
For bremsstrahlung in the laboratory frame
e = (1,0), e′ = (0, e′), q = (0,−q), q′ = (ω,k).
At that, combinations ep, e′p in components equal
e− q
ep
pq
'
(
1, 1,
q⊥
qz
)
, (10)
91
e′−q′
e′p
pq′
'
(
e′zω
E
E′qz
, e′z
(
1+ω
E
E′qz
)
, e′⊥+k⊥
e′p
E′qz
)
.
(11)
In terms of orthogonal components, the combination
e′p entering (11) equals e′p ' E
ω (e′k − e′⊥k⊥) =
−E
ω e′⊥k⊥.
Apparently, in scalar products present in (9), the
temporal and the longitudinal spatial components
of vectors (10-11) do not essentially contribute, ex-
cept in e′2p , which is easier calculated in the Lorenz-
invariant fashion, with the use of e′q′ = 0, q′2 = 0:
e′2p = e′2 = −1. So,
e2
p ' −q2
⊥
q2
z
,
e′2p = −1,
epe
′
p ' |q⊥|
qz
(
−nq⊥ +
(
k⊥nq⊥
)
E′qz
E
ω
k⊥
)
e′ ,
with
nq⊥ =
q⊥
|q⊥|
.
Next, the kinematical combinations required are
(pq − pq′)2
pq · pq′
' (qq′)2
pq · pq′
' (ωq′z)
2
Eqz · E′qz
=
ω2
EE′ ,
E′qz ' p′q ' pq′ = Eω − pzkz
' Eω −
(
E − m2
2E
)(
ω − k2
⊥
2ω
)
' ω
2E
m2+
E
2ω
k2
⊥,
or, introducing the radiation angle θk = k⊥/ω and
ratios γ = E/m À 1, xω = ω/E, 0 ≤ xω ≤ 1,
qz =
mxω
2(1− xω)
(
1
γ
+ γθ2
k
)
.
Substituting all the ingredients into (9), one ar-
rives at the expression
〈
|Mrad|2
〉
=4q2
⊥
(1− xω)
m2
(
1
γ +γθ2
k
)2
{
1 +
4(1− xω)
x2
ω
|νe′|2
}
.
(12)
Here ν is a vector
ν = −nq⊥ +
2
γ−2 + θ2
k
(θknq⊥)θk,
along which the radiation polarization orients itself2.
The absolute value of the polarization amounts
P =
ν2
x2
ω
2(1−xω) + ν2
,
with
ν2 = 1− 4γ−2
(γ−2 + θ2
k)2
(θknq⊥)2
≡ (γθk + nq⊥)2(γθk − nq⊥)2
(1 + γ2θ2
k)2
.
It is easy to show by solving the differential
equation dθy/dθx = νy (θx, θy) /νx (θx, θy), that the
curves, in every point tangential to the direction
of vector ν, are circles passing through two specific
points: θk = ±nq⊥/γ (see Fig. 1). In those two
points the polarization turns to zero. In vicinities of
those points ν2 ' (γθk ∓ nq⊥)2 . At distances from
them much greater then xω
2γ
√
1−xω
polarization is close
to 100%.
-1.5 -1 -0.5 0.5 1 1.5
-1.5
-1
-0.5
0.5
1
1.5
Fig.1.Curves in γθk plane, directing polarization of
radiation. All displayed curves are circles. nq⊥ is a
unit vector along the vertical axis
The doubly differential cross-section in itself is usu-
ally not measured in experiment, as long as recoiling
atoms are not detected. So, the picture described
above serves mainly for intuition purposes. Below
we shall discuss two most important cases of Ascat
dependence on nq⊥ . In both those cases there is
a factorization of azimuthal and radial dependences
Ascat(q⊥) = Φ(nq⊥)A(|q⊥|), the latter being irrele-
vant for polarization effects in view of homogeneity of
Mrad dependence on q2
⊥. Hence, it suffices to discuss
averaging of
〈
|Mrad|2
〉
over nq⊥ .
3.1. Planar geometry
In the planar geometry Ascat(q⊥) exhibits a sharp
peak along some particular direction nq⊥ .3 If one
selects photons away from knot directions ±nq⊥/γ,
where polarization is maximal - say, emitted in the
middle band of angles
∣∣θknq⊥
∣∣ < 1/2γ (ref. to Fig.
1), the dependence of polarization on xω may be es-
timated from formula (12) upon substitution in it
2It may be worth pointing out, that except overall proportionality to q2
⊥,
D
|Mrad|2
E
is also dependent on nq⊥ despite
q2
⊥ ¿ m2 - unless it is integrated over directions of θk and summed over e′. That circumstance is often missed in presentations
of the equivalent photon method, including treatises [5], [6], though is taken care in [1].
3Physically, it may correspond either to electron passage through a thin crystal close to a strong crystalline plane, or to
passage through gap of a magnet deflecting electrons to small angles. It should be minded that in those cases actual dimensions
of the scattering system exceed the cross-section of electron beam in both transverse directions, so the concept of differential
cross-section looses direct physical sense. Nevertheless, values of polarization extracted from it do not depend on Ascat and are
correct.
92
k⊥ ⊥ q⊥:
〈
|Mrad|2
〉
=
4q2
⊥(1− xω)
m2
(
1
γ + γθ2
k
)2
{
1+
4(1− xω)
x2
ω
∣∣nq⊥e′
∣∣2
}
.
Then,
P ' P (xω) =
1
1 + x2
ω/2(1− xω)
, (
∣∣θknq⊥
∣∣ ¿ 1/γ)
independently on θk × nq⊥ . As Fig. 2 displays, po-
larization stays higher then 90% for xω < 0.35.
0.2 0.4 0.6 0.8 1
xΩ
0.2
0.4
0.6
0.8
1
P
Fig.2. Polarization of bremsstrahlung at planar
scattering and orthogonal radiation
∣∣θknq⊥
∣∣ ¿ 1/γ
On the other hand, if angular separation is not at-
tempted (which might be technically challenging at
γ > 104), and only the natural collimation due to
emission from an ultra-relativistic particle is used,
one needs to integrate over radiation angles, or equiv-
alently, photon transverse momenta. Evaluation of
the integral of (12) over d2k⊥ yields:
∫ 〈
|Mrad|2
〉 d2k⊥
(2π)2
=
∫ 〈
|Mrad|2
〉 ω2d2θk
(2π)2
=q2
⊥γ2 1− xω
π
{
x2
ω +
2
3
(1− xω)
[
1 + 2(nq⊥e′)2
]}
,
P ' P (xω) =
1− xω
3
2x2
ω + 2(1− xω)
.
Thus, without separation in θk, by means of only
keeping nq⊥ fixed, polarization can not be obtained
higher then 50% (see Fig. 3). On the other hand,
we are going to show below, that with separation in
θk performed, it is possible to achieve a 100% po-
larization even at a spherically-symmetric scatterer.
0.2 0.4 0.6 0.8 1
xΩ
0.1
0.2
0.3
0.4
0.5
P
Fig.3. Polarization of bremsstrahlung at planar
scattering, averaged over θk angles
3.2. Centrally-symmetric scatterer, az-
imuthal integration over q⊥
The averaging in (12) over directions of q⊥ is
achieved through the substitution (nq⊥)i(nq⊥)k →
1
2δik. One gets
〈
|Mrad|2
〉
→ 8q2
⊥
m2
(1− xω)2
(γ−1 + γθ2
k)2
·
{
x2
ω
2(1− xω)
+ 1− 4γ−2(θke′)2
(γ−2 + θk)2
}
,
P (xω, γ |θk|) =
2γ2θ2
k
x2
ω
2(1−xω) (1 + γ2θ2
k)2 + 1 + γ4θ4
k
.
1 2 3 4
ΓΘk
0.2
0.4
0.6
0.8
1
P
Fig.4. Polarization of bremsstrahlung on a
centrally-symmetric scatterer for xω = 0; 0.3; 0.6
(from top to bottom)
At xω → 0, |θk| = 1/γ polarization reaches 100%, in
spite of the angular averaging. That could hardly be
expected based on very general reasons only. (The
corresponding result was displayed in Fig. 4 of [1]
but with no explanation supplied for the backing of
such possibility). From our Fig.1 it is apparent that
100% magnitude of polarization may exist because at
|θk| = 1/γ polarization is oriented along a circle, cen-
tered at the origin of the plane and invariant under
rotations of nq⊥ , corresponding to angular averaging.
Thus, observation at some radiation angles of po-
larization close to 100% does not yet signal existence
in the target of some special collective fields, guiding
electron motion. Such an effect is also possible in an
amorphous medium 4.
4. SUMMARY
The present work has offered formulation of a method
for evaluation of differential cross-section of Comp-
ton scattering for polarized initial and final pho-
tons, based on advanced reduction of the matrix el-
ement. As was demonstrated, after the full reduc-
tion, the calculation leading to Lorentz-invariant for-
mula (7) consumes only a few lines. To compare
with, the derivation starting with squaring of the ini-
tial matrix element or expression (5), occupies a few
pages. The transition to differential cross-section of
4As usual, at that in order to be able to neglect multiple scattering effects as compared to deflection by emitting radiation, one
needs fulfillment of the Landau-Pomeranchuk’s type condition L ¿ e2Lrad (see, e.g., [5]), where L is target thickness and Lrad
the radiation length (centimeters to decimeters for solid targets). Moreover, at xω rather small, photon emission angle which is
of main interest for us exceeds electron deflection angle by a factor 1−xω
xω
, so the true condition may be L ¿
�
1−xω
xω
�2
e2Lrad.
93
bremsstrahlung in dipole approximation was based
on specification of covariant expressions in terms of
vector components in laboratory frame, which lifts
the necessity to manually implement the equivalent
photon method and transit between different refer-
ence frames - not very trivial task when dealing with
polarization of the emitted photon.
In application to bremsstrahlung, a previously
overlooked feature which seems to be worth empha-
sizing is that polarization as a function of (small)
radiation angles at fixed nq⊥ orients itself along per-
fect circles, including one centered at the origin. If
averaging over nq⊥ is performed, at the radius of the
latter circle |θk| = 1/γ only polarizations with the
same orientation add up. Moreover, at small polar-
ization values along the circle are close to 100%, and
so the averaged polarization can be close to 100%,
too. Actually, polarization stays in excess of 80% in
the interval 0.8 < γ |θk| < 1.3, xω < 0.3.
The practical conclusions reached were as follows.
If a beam of energetic and polarized γ-quanta needs
to be prepared, it is beneficiary to use bremsstrahlung
in an amorphous medium at |θk| ' 1/γ (not just
∼ 1/γ). The polarization is orthogonal to the ra-
diation plane - as had long been established. The
radiation recoil influence is always depolarizing, but
for xω < 0.3 rather weak. The method is most con-
venient to use for ω ≤ 10 GeV.
There is still an interesting question, whether po-
larization must necessarily be taken into account at
computations of electromagnetic shower spatial de-
velopment in matter. For showers polarizations of
γ-quanta are often neglected even at calculations of
the spatial picture subsequently used for evaluation
of radioemission from the shower as a whole. Taking
into account that polarization of bremsstrahlung on
a single atom/nucleus is orthogonal to the direction
of photon deflection from the shower axis, at each
step the development of the shower roughly makes an
azimuthal turn to 90◦. After a few steps the shower
shall become axially symmetric. Therefore, neglect of
polarization may prove acceptable in a thick (as com-
pared to the radiation length) target, but not when
the shower is short.
References
1. M.L. Ter-Mikaelian. High-Energy Electromag-
netic Processes in Condensed Media. N.Y.:
Wiley-Interscience, 1972, 458 p.
2. V.N. Baier, V.M. Katkov, V.S. Fadin. Radiation
of relativistic electrons. Moscow: ”Atomizdat”.
1973, 374 p.
3. R.P. Feynman. The Theory of Fundamental
Processes. New York: ”Benjamin”, 1961. 172 p.
4. M.V. Bondarenco. Covariant amplitude decom-
position in relativistic fermion scattering prob-
lems // Probl. Atom. Sci.and Techn. 2007, v.3
(1), p. 104-110.
5. V.B. Berestetskii, E.M. Lifshitz and
L.P. Pitaevskii. Quantum Electrodynamics.
Oxford: ”Pergamon-Press”. 1982. 652p.
6. A.I. Akhiezer, V.B. Berestetskii. Quantum Elec-
trodynamics. Moscow: ”Nauka”. 1981, 432p.
РАСЧЕТ И АНАЛИЗ ВЕЛИЧИНЫ ПОЛЯРИЗАЦИИ ДЛЯ ТОРМОЗНОГО
ИЗЛУЧЕНИЯ ПРИ ПЕРИФЕРИЧЕСКОМ РАССЕЯНИИ
Н.В. Бондаренко
Предложен упрощенный способ вычисления дифференциального сечения поляризованного тормозно-
го излучения при типичной атомной передаче импульса q ¿ m. Используемый подход основывается
на естественной редукции спинового матричного элемента процесса к форме V αγα + A5γ
5. Анали-
зируется распределение поляризации в полностью дифференциальном сечении. Показано, что если
производить угловую селекцию излученных фотонов, то даже после интегрировании по импульсам,
переданным атому, для определенных углов излучения поляризация может сохраняться до 100%. Без
угловой селекции фотонов, только за счет контроля отдачи, нельзя получить поляризацию излучения
выше 50%.
РОЗРАХУНОК ТА АНАЛIЗ СТУПЕНЮ ПОЛЯРИЗАЦIЇ ДЛЯ ГАЛЬМIВНОГО
ВИПРОМIНЮВАННЯ В УМОВАХ ПЕРИФЕРИЧНОГО РОЗСIЯННЯ
М.В. Бондаренко
Запропоновано спрощений спосiб обчислення диференцiального перерiзу поляризованого гальмiвно-
го випромiнення за типової атомної передачi импульсу q ¿ m. Використовуваний пiдхiд грунтується
на природнiй редукцiї спiнового матричного елементу процесу до форми V αγα + A5γ
5. Аналiзується
розподiл поляризацiї у повнiстю диференцiальному перерiзi. Показано, що якщо здiйснювати кутову
селекцiю випромiнених фотонiв, то навiть пiсля iнтегрування по импульсах переданих атому, для пев-
них кутiв випромiнення поляризацiя може зберiгатися до 100%. Без кутової селекцiї фотонiв, тiльки
за рахунок контролю вiддачi, неможливо отримати поляризацiю випромiнення вищу, нiж 50%.
94
|