The decay of ¹⁹¹Pt

The energy difference for γ268 and γ295 lines was measured with gamma-spectrometer. The γ268 keV transition is excited in the ¹⁹¹Pt decay, while another transition, the energy of which is known up to a high precision, accompanies the ¹⁹²Ir decay. A measured energy value of the 3/2- → 7/2- transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
1. Verfasser: Lashko, A.P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2009
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111276
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The decay of ¹⁹¹Pt / A.P. Lashko // Вопросы атомной науки и техники. — 2009. — № 3. — С. 33-37. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111276
record_format dspace
spelling irk-123456789-1112762017-01-10T03:02:21Z The decay of ¹⁹¹Pt Lashko, A.P. Ядерная физика и элементарные частицы The energy difference for γ268 and γ295 lines was measured with gamma-spectrometer. The γ268 keV transition is excited in the ¹⁹¹Pt decay, while another transition, the energy of which is known up to a high precision, accompanies the ¹⁹²Ir decay. A measured energy value of the 3/2- → 7/2- transitions (268 keV ), along with the data from our previous work, allowed us to perform a high-precision calculation of energy levels in ¹⁹¹Ir and energies of γ-rays deexciting these levels. На гамма-спектрометрі поміряли різницю енергій ліній γ268 та γ295 кеВ. Перехід γ268 кеВ збуджується при розпаді ¹⁹¹Pt, а другий, енергія якого відома з високою точністю, супроводжує розпад ¹⁹²Ir. Отримане значення енергії переходу 3/2- → 7/2- 268 кеВ дозволило, разом з даними нашої попередньої роботи, розрахувати з високою точністю енергії рівнів ¹⁹¹Ir та енергії розряджаючих їх γ-променів. На γ-спектрометре измерена разность энергий линий γ268 и γ295 кэВ. Переход γ268 кэВ возбуждается при распаде ¹⁹¹Pt, а второй, энергия которого известна с высокой точностью, сопровождает распад ¹⁹²Ir. Измеренное значение энергии перехода 3/2- → 7/2- 268 кэВ позволило, совместно с данными нашей предыдущей работы, рассчитать с высокой точностью энергии уровней ¹⁹¹Ir и энергии разряжающих их γ-лучей. 2009 Article The decay of ¹⁹¹Pt / A.P. Lashko // Вопросы атомной науки и техники. — 2009. — № 3. — С. 33-37. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 23.20.Lv, 27.80.+w, 29.30.Kv http://dspace.nbuv.gov.ua/handle/123456789/111276 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Lashko, A.P.
The decay of ¹⁹¹Pt
Вопросы атомной науки и техники
description The energy difference for γ268 and γ295 lines was measured with gamma-spectrometer. The γ268 keV transition is excited in the ¹⁹¹Pt decay, while another transition, the energy of which is known up to a high precision, accompanies the ¹⁹²Ir decay. A measured energy value of the 3/2- → 7/2- transitions (268 keV ), along with the data from our previous work, allowed us to perform a high-precision calculation of energy levels in ¹⁹¹Ir and energies of γ-rays deexciting these levels.
format Article
author Lashko, A.P.
author_facet Lashko, A.P.
author_sort Lashko, A.P.
title The decay of ¹⁹¹Pt
title_short The decay of ¹⁹¹Pt
title_full The decay of ¹⁹¹Pt
title_fullStr The decay of ¹⁹¹Pt
title_full_unstemmed The decay of ¹⁹¹Pt
title_sort decay of ¹⁹¹pt
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2009
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/111276
citation_txt The decay of ¹⁹¹Pt / A.P. Lashko // Вопросы атомной науки и техники. — 2009. — № 3. — С. 33-37. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lashkoap thedecayof191pt
AT lashkoap decayof191pt
first_indexed 2025-07-08T01:54:00Z
last_indexed 2025-07-08T01:54:00Z
_version_ 1837041860879581184
fulltext THE DECAY OF 191Pt A.P. Lashko∗ Institute for Nuclear Research, National Academy of Sciences of Ukraine, 03680, Kiev, Ukraine (Received March 17, 2008) The energy difference for γ268 and γ295 lines was measured with gamma-spectrometer. The γ268 keV transition is excited in the 191Pt decay, while another transition, the energy of which is known up to a high precision, accompanies the 192Ir decay. A measured energy value of the 3/2− → 7/2− transitions (268 keV ), along with the data from our previous work, allowed us to perform a high-precision calculation of energy levels in 191Ir and energies of γ-rays deexciting these levels.. PACS: 23.20.Lv, 27.80.+w, 29.30.Kv 1. INTRODUCTION Decay of the 191Pt (Iπ = 3/2−, T1/2 = 2.8 days) oc- curs by the electron capture to 16 levels of the 191Ir, excluding the 11/2− isomeric state. In the process 50 γ-transitions in the energy range 42 to 935 keV are excited. According to the recent review [1], energies of these transitions are measured, at best, to within several tens of electron-volts. The data on energies of excited states of atomic nuclei known with an accu- racy of several electron-volts and higher become in- creasingly required today. The evolution of technique of high-precision measurement of γ-ray energy based on the semiconductor spectrometers, along with the essential extension of nuclear-spectroscopic standards mesh, have provided great scope for all-inclusive mea- surements of energies of excited nuclear states popu- lated in the decay of sources with more or less notice- able life-time. Isotope 191Pt appeared to be an ap- propriate object for such purpose. Our long-standing researches [2-5] allowed high-precision determination of the energies of 9 levels of the 191Ir and the ener- gies of 36 γ-quanta accompanying the decay of 191Pt. Until recently, energies of 7/2− level (390 keV ) and 11/2− level (171 keV ) can not be determined with such an accuracy. We failed to measure energies of any transitions that might relate these levels with others. To this end, either the energy of the very weak (6.4× 10−5%) 41 keV γ-transition or the energies of the 268.0 + 268.8 keV doublet should be measured. This problem was finally resolved in the present pa- per. 2. EXPERIMENTAL TECHNIQUE The number of levels exciting in the radioactive decay of mother nucleus is generally less than the number of γ-rays deexciting these levels. It is not necessary for all γ-rays to be measured, in order to get information about their energies. The reference nuclear transition method can be used instead. Ap- plication of this method allows one to essentially re- duce laboriousness of the experiments. Procedure of determination of energies of excited nuclear states and γ-rays deexciting these states by the reference nuclear transition method reduces to the following basis stages: 1) the most appropriate for measurement single intense γ-lines are chosen as reference lines; 2) the set of references is selected from the list of recommended energy standards for nuclear spec- troscopy. In order to minimize the errors arising from an ambiguity of calibration curve, it is necessary to select such references that would be close to the mea- sured γ-line while still being easily resolved in the spectrum; 3) the mixed radioactive source of required com- position is prepared with desired ratios of specific ac- tivities of radionuclides entering into the source. For statistical error (uncertainty in determination of dis- tance between lines) to be minimized, the reference and measured line should have close intensities; 4) to minimize possible systematic errors, mea- surements are performed by series on different de- tectors, at various geometries, different amplification coefficients and different quantization levels of the in- put signal on amplitude-digital converters; 5) energies of reference transitions are deter- mined; 6) to calculate energies of levels, a set of linear equations is derived and then it is solved with the least-squares procedure; 7) energies of all γ-quanta accompanying the de- cay of mother nucleus are calculated on basis of the obtained data. The technique of such measurements and the problems concerning preparation of a mixed radioac- tive source of optimal composition were reported in detail in [6-7]. ∗Corresponding author E-mail address: lashkoa@kinr.kiev.ua PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2009, N3. Series: Nuclear Physics Investigations (51), p.33-37. 33 The energy difference for γ267 and γ295 lines was measured with gamma-spectrometer, which com- prises two horizontal detectors made from high-purity germanium (coaxial GEM−40195 with 1.73 keV res- olution for γ1332-line of 60Co and planar GLP − 36360/13 with 580 eV resolution for γ122-line of 57Co) and multichannel ORTEC buffer 919 SPEC- TRUM MASTER. The γ267 keV transition is excited in the 191Pt decay, while another transition, the en- ergy of which is known up to a high precision, accom- panies the 192Ir decay. To prepare a mixed radioac- tive source of required composition, the 191Pt was ob- tained in (n, γ) reaction under irradiation of enriched platinum (190Pt isotope content is 0, 8%) with re- search reactor WWR-M. The 192Ir (T1/2 = 74 days) was also produced in (n, γ) reaction under irradiation of enriched iridium (191Ir isotope content is 94%) by slow neutrons. The functional dependence of the energy calibra- tion of the γ-spectrometer was investigated in detail. It was established that the deviation from linearity does not exceed 3 × 10−5 for the energy range from 84 to 604 keV . To minimize possible systematic er- rors, we performed a series of measurements using sources with different ratios of specific activities of 191Pt, 182Ta, and 192Ir, at different gains and chan- nel widths of an amplitude digital converter (4096 and 8192 quantization levels of the input signal). 18 series of measurements were performed in all. The spectra were also analyzed with respect to the half- decay period to exclude possible impurities of other radionuclides. To the same end, we determined with high accuracy the relative intensities of the γ-lines accompanying decay of 191Pt. The results of these measurements are shown in Table 1. Good agree- ment with the data of other researchers is observed, which confirms the absence of ”foreign” γ-lines in the spectral regions of interest. Table 1. Intensities I of the γ-lines from the decay of 191Pt for the energy range above 150 keV in the relative units Energy, keV I, Our data I, Compilation [8] Energy, keV I, Our data I, Compilation [8] 172.2 39.8± 1.2 44± 2 479.9 0.71± 0.05 0.71± 0.07 179.0 11.2± 0.3 12.7± 0.6 494.7 0.77± 0.03 0.75± 0.07 187.7 4.69± 0.14 5.2± 0.3 538.9 180± 4 171± 9 219.7 10.1± 0.3 10.3± 0.5 541.7 5.00± 0.15 4.6± 0.5 221.8 1.80± 0.06 1.45± 0.15 568.9 0.69± 0.04 0.66± 0.05 223.7 1.54± 0.05 1.40± 0.15 576.4 1.56± 0.06 1.47± 0.11 268.0 9.2± 0.4 9.7± 1.0 583.6 1.02± 0.05 0.95± 0.07 268.8 19.8± 0.9 20.6± 2.0 618.4 0.17± 0.04 0.11± 0.04 351.2 41.8± 1.0 42± 2 624.1 19.1± 0.6 17.6± 0.9 359.9 74.2± 1.8 75± 4 633.1 0.40± 0.07 0.30± 0.03 396.6 0.21± 0.05 0.13± 0.04 658.9 0.20± 0.04 0.19± 0.02 409.5 100 100± 5 680.2 0.096± 0.009 0.086± 0.017 445.1 0.76± 0.05 0.68± 0.07 762.6 0.169± 0.011 0.15± 0.02 456.5 42.3± 1.0 42± 2 806.4 0.068± 0.020 0.047± 0.009 458.6 0.78± 0.08 0.54± 0.10 935.3 0.143± 0.009 0.15± 0.02 3. RESULTS AND DISCUSSION The g-spectra were treated using the programs devel- oped by us [9–11] based on the method of fitting the ”instrumental” peak into the spectrum region of in- terest. This method allows a high-precision measure- ment of energies and intensities of the components in the case of lines of asymmetric shape and overlap- ping lines. This technique implies measuring a single gamma peak from the obtained spectrum (or, if such a peak is absent, specially measured single gamma peak with the shape similar to that of the line in the studied region of spectrum) with high statistical accuracy. After subtraction of the background, it is described by the multiple cubic-spline interpolation, and it is used as ”instrumental”, i.e. defines the ex- perimental peak shape for the subsequent analysis by the least-squares method. The experiment was a considerable challenge due to the fact that the γ267 line is not completely resolved in the spectrum with the γ268 line (see Fig.1). Fig.1. Part of the γ-spectrum in the energy region 260...300 keV from the decay of 191Pt, measured with the HPGe-detector GLP − 36360/13 34 Special care must be used to control an accuracy of component decomposition of the γ267 + γ268 dou- blet. Intensities of these two γ-lines are known to within 5%. Control over the change in component intensities still did not ensure correctness of determi- nation of γ-line energies with an accuracy of several electron-volts. We made use of the fact that the γ268 energy was previously determined with a precision of 1.7 eV as the energy difference of the 5/2+ 351 keV and 1/2+ 82 keV levels, between which this transi- tion occurs [5]. Simultaneously with the component decomposition of the doublet the energy difference for γ267, γ268 keV lines of 191Pt and γ295 keV line of 192Ir was determined. Requirement for the devi- ation of the γ268 energy from measured value not to exceed 3σ served as a criterion of accuracy of γ-spectrum fitting procedure. First, the energy dif- ference for γ267 line of 191Pt and γ295 line of 192Ir were determined as a weighted mean from the results of all measurements and then the transition energies were found. The measurement results are in good agreement with each other. Taking into account that the energy of the recoil nucleus for γ267 of 191Pt is 0.20 eV , we obtained the value 267952.8± 1.8 eV for the transition energy. In the same way we previously determined the energies of 19 transitions from the decay of 191Pt [3-5]. Their location in the 191Pt decay scheme is shown in Fig.2. Fig.2. Fragment of the schematic diagram of 191Pt decay Using the data on the transition energies and the Ritz rule for cascade transitions (E1 + E2 = E3, where E3 is the energy of the closing direct tran- sition between the boundary levels), we formulated the system of linear approximate equations of differ- ent weight to calculate the level energies: a1x + b1y + ... + m1ν = t1 ±∆t1 , a2x + b2y + ... + m2ν = t2 ±∆t2 , ................................. = ............... aNx + bNy + ... + mNν = tN ±∆tN , (1) where a, b,. . . , m are specified numbers (generally they are equal to ±1 or zero), t and ∆t are the tran- sition energies and their errors; x, y, . . . , ν are un- known level energies. Since N is larger than the num- ber of unknowns, the system was solved by the least- squares method [12]; i.e., we determined such values of unknowns at which the sum N∑ i=1 pi(ti − aix− biy − ...−miν)2 , (2) (pi = (∆ti)−2; i = 1, 2, ..., N) was minimum. The er- rors of all parameters can be obtained using the par- abolic dependence χ2 = χ2(αi), where αi(x, y, ..., ν) is the parameter studied. In this case, all other pa- rameters are fixed and correspond to optimal values. The standard errors ∆α are determined using the re- lation: χ2(αopt i ±∆αi) = χ2 min + 1 , (3) where αopt i is the optimal value of the parameter ai, which minimizes χ2. After determination of the en- ergies of nuclear excited states, it was quite easy to calculate the γ-transition energies between these states. The results of the calculations, along with the weighted mean values from compilation [1], are shown in Table 2. We determined the energies of 11 levels of 191Ir and the energies of 39 γ-quanta accom- panying decay of 191Pt with an accuracy exceeding the known values by an order of magnitude. Most of them completely correspond to the requirements imposed on the fourth-order energy normals. 35 Table 2. Energies of the 191Ir levels and γ-ray photons excited in 191Pt decay: present work and compilation [1] Energy levels, eV γ-rays energy, eV Energy levels, eV γ-rays energy, eV [1] [1] 82427.0± 0.9 82427.0± 0.9 82405± 7 82398± 7 129431.9± 1.0 47004.9± 1.4 129396± 7 − 129431.9± 1.0 129400± 7 171296± 6 41864± 6 171320± 30 41930± 30 178977.3± 0.9 49545.4± 1.4 178934± 10 49590± 30 96550.3± 1.3 965517± 9 178977.2± 0.9 178960± 30 351187.5± 1.4 172210.1± 1.7 351139± 16 172190± 20 221755.5± 1.7 221740± 80 268760.3± 1.7 268710± 80 351187.1± 1.4 351170± 30 390968± 4 219672± 5 390970± 50 219650± 50 538904.2± 0.9 187716.6± 1.7 538839± 15 187690± 40 359926.5± 1.3 359880± 30 409471.8± 1.4 409440± 20 456476.6± 1.3 456470± 50 538903.4± 0.9 538870± 50 624098± 5 85194± 5 624060± 40 85150± 80 445120± 5 445130± 80 494666± 5 494690± 70 541671± 5 541640± 100 624097± 5 624060± 60 658920.5± 3.2 267952.8± 1.8 658870± 50 267920± 80 307732.7± 3.5 308000± 1000 479942.5± 3.3 479950± 70 576492.6± 3.3 576460± 80 658919.3± 3.2 658750± 150 747833± 6 208929± 6 747780± 70 208960± 150 396645± 6 396700± 200 568855± 6 568810± 80 618400± 6 618700± 400 747833± 6 748000± 200 762580.3± 2.9 138482± 6 762520± 50 138200± 200 223676.0± 3.0 223670± 80 411392.3± 3.2 411000± 1000 583602.0± 3.0 583610± 80 633147.3± 3.1 633180± 100 680152.0± 3.0 680000± 200 762578.7± 2.9 762600± 150 4. CONCLUSION At present, the list of the recommended energy standards for nuclear spectroscopy includes about 240 γ-rays covering the energy range from 24 up to 4806 keV [13, 14]. For all of them the relative error in energy definition does not exceed 10−5. The reference line should be close to the mea- sured γ-line for precision determination of transi- tion energies. This allows minimization of the er- rors arising due to an ambiguity of calibration curve of the spectrometer. Therefore, in deciding on ref- erence γ-lines, the presence of convenient nuclear- spectroscopic standards in a given part of spectrum is of no small importance. 191Pt isotope is sufficiently produced in the slow- neutron reaction (n, γ) (activation cross-section is about 800 barns [15]). Only the need for using plat- inum enriched by 190Pt isotope is a problem, because content of this isotope in natural isotopic mixture does not exceed 0, 013%. However, the large number of sufficiently intense γ-lines, which can be used as references in energy range from 50 to 760 keV , makes up for this inconvenience. 36 References 1. V.R. Vanin, N.L. Maidana, R.M. Castro et al. Nuclear Data Sheets for A=191 // Nuclear Data Sheets. 2007, v. 108, p. 2393-2588. 2. V.T. Kupryashkin, A.P. Lashko, A.I. Feoktistov. Energies of gamma-rays from the decay of 191Pt and 191Os // Proceedings of the annual confer- ence of the Institute for Nuclear Research. Kiev: KINR, 1994, p. 56-58 (in Russian). 3. V.V. Bulgakov, A.B. Kaznovecky, S.A. Ko- valenko, et al. Energies of gamma-rays from the decay of 191Pt // Book of abstracts of the 45th meeting on nuclear spectroscopy and nuclear structure. St-P.: PINF, 1995, p. 105 (in Russian). 4. T.N. Lashko, A.P. Lashko. Gamma-rays from the decay of 191Pt // Book of abstracts of LIV In- ternational meeting on nuclear spectroscopy and nuclear structure ”Nucleus-2004”. June 22-25, 2004. Belgorod. 2004, p. 75 (in Russian). 5. A.P. Lashko, T.N. Lashko. Precision measure- ment of energy of gamma-rays accompanying the decay of 191Pt // Izv. Rus. Akad. Nauk. Ser. Fiz. 2007, v. 71, p. 765-768 (in Russian). 6. A.P. Lashko, T.N. Lashko. High-accuracy mea- surement of the energy of nuclear states excited in the radioactive decay // Nuclear Physics and Atomic Energy. 2006, N.2(18), p. 131-134 (in Russian). 7. A.P. Lashko, T.N. Lashko. Analysis of un- certainties of gamma-ray energy measurement made with semiconductor spectrometers // Nu- clear Physics and Atomic Energy. 2007, N.2(20), p. 121-125 (in Russian). 8. R.B. Firestone and V.S. Shirley. Table of Iso- topes. CD ROM Edition. Wiley Interscience. 1996. 9. V.V. Bulgakov, V.I. Gavrilyuk, A.P. Lashko, et al. High-resolution magnetic beta-spectrometer of KINR: Preprint KINR 86-33, Kiev: KINR, 1986, 48 p. (in Russian). 10. A.P. Lashko, T.N. Lashko, A.A. Odincov, V.P. Khomenkov. The complex analysis of the plutonium isotope composition from the accident release of the 4-th unit of Chernobyl NPP // Atomnaya Energiya. 2001, v. 91, N.6, p. 443-448 (in Russian). 11. V.T. Kupryashkin, A.P. Lashko, T.N. Lashko, et al. Determination of the energy standards by pre- cision beta-spectroscopy methods // Problems of Atomic Science and Technology. Series ”Nuclear Physics Investigations”. 2004, N.5, p. 67-71. 12. B.S. Dzhelepov. Methods of elaboration of com- plex decay schemes. L.: ”Nauka”. 1974, 232 p. 13. R.G. Helmer, C. Van der Leun. Recommended standards for g-ray energy calibration (1999) // Nucl. Instrum. Meth. Phys. Res. A. 1999, v. 422, p. 525-531. 14. R.G. Helmer, C. Van der Leun. Recommended standards for g-ray energy calibration (1999) // Nucl. Instrum. Meth. Phys. Res. A. 2000, v. 450, p. 35-70. 15. C.M. Lederer, V.S. Shirley. Table of Isotopes. N.Y., J. Wiley, 1978, 1632 p. РАСПАД 191Pt А.П. Лашко На γ-спектрометре измерена разность энергий линий γ268 и γ295 кэВ. Переход γ268 кэВ возбуждается при распаде 191Pt, а второй, энергия которого известна с высокой точностью, сопровождает распад 192Ir. Измеренное значение энергии перехода 3/2− → 7/2− 268 кэВ позволило, совместно с данными нашей предыдущей работы, рассчитать с высокой точностью энергии уровней 191Ir и энергии разря- жающих их γ-лучей. РОЗПАД 191Pt А.П. Лашко На гамма-спектрометрi помiряли рiзницю енергiй лiнiй γ268 та γ295 кеВ. Перехiд γ268 кеВ збуджується при розпадi 191Pt, а другий, енергiя якого вiдома з високою точнiстю, супроводжує розпад 192Ir. От- римане значення енергiї переходу 3/2− → 7/2− 268 кеВ дозволило, разом з даними нашої попередньої роботи, розрахувати з високою точнiстю енергiї рiвнiв 191Ir та енергiї розряджаючих їх γ-променiв. 37