Computer simulation of low-energy high-current electron beam dynamics in a long plasma-filled diode

Results of computer simulation of low-energy high-current electron beam dynamics in a low-impedance system consisting of a diode with a long plasma anode, just siding with an explosive emission cathode and an auxiliary thermionic cathode are presented. Plasma anode plays simultaneously a role of t...

Full description

Saved in:
Bibliographic Details
Date:2008
Main Authors: Agafonov, A.V., Tarakanov, V.P.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/111394
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Computer simulation of low-energy high-current electron beam dynamics in a long plasma-filled diode / A.V. Agafonov, V.P. Tarakanov // Вопросы атомной науки и техники. — 2008. — № 3. — С. 136-138. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Results of computer simulation of low-energy high-current electron beam dynamics in a low-impedance system consisting of a diode with a long plasma anode, just siding with an explosive emission cathode and an auxiliary thermionic cathode are presented. Plasma anode plays simultaneously a role of the transport channel providing charge neutralization of high-current beam and is created by means of the residual gas ionisation by low-current, low-voltage electron beam emitted from the auxiliary cathode in an external longitudinal magnetic field. The main peculiarities of the beam-plasma system are discussed: 1) the formation of the beam of currents exceeding the limiting Alven’s ones; 2) the formation of paramagnetic states of the beam under condition of beam charge density close to the plasma density. These peculiarities complicate beam-plasma interaction significantly due to sharp nonuniform distribution of the beam current density, significant transverse motion of the beam electrons and redistribution of ion plasma density under the influence of high-current electron beam fields. Computer simulation was performed using electromagnetic PIC code KARAT.