Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter
Composite films were formed by vacuum-arc method using two plasma sources equipped with aluminum and titanium cathodes. The sources were coupled with a dual channel T-shaped magnetic filter. Ability of Ti-Al-N films composition adjustment by deposition of mixed plasma streams from the plasma sources...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2011
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111438 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter / D.S. Aksyonov, I.I. Aksenov, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij // Вопросы атомной науки и техники. — 2011. — № 4. — С. 140-144. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111438 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1114382017-01-20T21:00:30Z Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter Aksyonov, D.S. Aksenov, I.I. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. Физика радиационных и ионно-плазменных технологий Composite films were formed by vacuum-arc method using two plasma sources equipped with aluminum and titanium cathodes. The sources were coupled with a dual channel T-shaped magnetic filter. Ability of Ti-Al-N films composition adjustment by deposition of mixed plasma streams from the plasma sources was investigated. It has been found that film composition can be varied by changing arc currents in plasma sources. However adjustment range of film composition is rather limited, and can be expanded by changing magnetic field intensity in anode area of plasma sources. Obtained films have uniform composition and thickness on 180 mm diameter surface. Conditions for aluminum content adjustment range from 14 to 60 wt.% were found. Досліджено можливість регулювання складу Ti-Al-N-покриттів, які отримано вакуумно-дуговим методом шляхом змішування потоків плазми від генераторів із титановим та алюмінієвим катодом. Фільтрація потоків здійснювалась за допомогою спільного для обох генераторів T-подібного двоканального фільтра. Встановлено, що зміни вмісту алюмінію та титану в покритті можливо досягти шляхом регулювання співвідношення розрядних струмів генераторів плазми. Збільшення діапазону регулювання складу покриття досягається шляхом підбору інтенсивності магнітних полів в анодних секціях генераторів плазми. Отримані покриття однорідні за складом на підкладці діаметром 180 мм. Визначено умови, які дозволяють регулювати концентрацію алюмінію у межах від 14 до 60 ваг. %. Исследована возможность регулировки состава Ti-Al-N-покрытий, получаемых вакуумно-дуговым методом путём смешения потоков плазмы от генераторов с титановым и алюминиевым катодом. Фильтрация потоков осуществлялась с помощью общего для обоих генераторов Т-образного двухканального фильтра. Установлено, что изменения содержания алюминия и титана в покрытии можно достичь путём регулировки соотношения разрядных токов в генераторах плазмы. Увеличение диапазона регулировки состава покрытия достигается путём подбора интенсивности магнитных полей в анодных секциях генераторов плазмы. Полученные покрытия однородны по составу на подложке диаметром 180 мм. Определены условия, позволяющие регулировать концентрацию алюминия в пределах от 14 до 60 вес. %. 2011 Article Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter / D.S. Aksyonov, I.I. Aksenov, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij // Вопросы атомной науки и техники. — 2011. — № 4. — С. 140-144. — Бібліогр.: 10 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/111438 621.793 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика радиационных и ионно-плазменных технологий Физика радиационных и ионно-плазменных технологий |
spellingShingle |
Физика радиационных и ионно-плазменных технологий Физика радиационных и ионно-плазменных технологий Aksyonov, D.S. Aksenov, I.I. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter Вопросы атомной науки и техники |
description |
Composite films were formed by vacuum-arc method using two plasma sources equipped with aluminum and titanium cathodes. The sources were coupled with a dual channel T-shaped magnetic filter. Ability of Ti-Al-N films composition adjustment by deposition of mixed plasma streams from the plasma sources was investigated. It has been found that film composition can be varied by changing arc currents in plasma sources. However adjustment range of film composition is rather limited, and can be expanded by changing magnetic field intensity in anode area of plasma sources. Obtained films have uniform composition and thickness on 180 mm diameter surface. Conditions for aluminum content adjustment range from 14 to 60 wt.% were found. |
format |
Article |
author |
Aksyonov, D.S. Aksenov, I.I. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. |
author_facet |
Aksyonov, D.S. Aksenov, I.I. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. |
author_sort |
Aksyonov, D.S. |
title |
Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter |
title_short |
Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter |
title_full |
Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter |
title_fullStr |
Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter |
title_full_unstemmed |
Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter |
title_sort |
composition adjustment of vacuum-arc ti-al-n films, deposited with use of two-channel filter |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2011 |
topic_facet |
Физика радиационных и ионно-плазменных технологий |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111438 |
citation_txt |
Composition adjustment of vacuum-arc Ti-Al-N films, deposited with use of two-channel filter / D.S. Aksyonov, I.I. Aksenov, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij // Вопросы атомной науки и техники. — 2011. — № 4. — С. 140-144. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT aksyonovds compositionadjustmentofvacuumarctialnfilmsdepositedwithuseoftwochannelfilter AT aksenovii compositionadjustmentofvacuumarctialnfilmsdepositedwithuseoftwochannelfilter AT luchaninovaa compositionadjustmentofvacuumarctialnfilmsdepositedwithuseoftwochannelfilter AT reshetnyaken compositionadjustmentofvacuumarctialnfilmsdepositedwithuseoftwochannelfilter AT strelnitskijve compositionadjustmentofvacuumarctialnfilmsdepositedwithuseoftwochannelfilter |
first_indexed |
2025-07-08T02:10:57Z |
last_indexed |
2025-07-08T02:10:57Z |
_version_ |
1837042930223677440 |
fulltext |
140 ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2011. №4.
Серия: Физика радиационных повреждений и радиационное материаловедение (98), с. 140-144.
Раздел пятый
ФИЗИКА РАДИАЦИОННЫХ И ИОННО-ПЛАЗМЕННЫХ
ТЕХНОЛОГИЙ
УДК 621.793
COMPOSITION ADJUSTMENT OF VACUUM-ARC Ti-Al-N FILMS,
DEPOSITED WITH USE OF TWO-CHANNEL FILTER
D.S. Aksyonov, I.I. Aksenov, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij
National Science Center “Kharkov Institute of Physics and Technology”,
Kharkov, Ukraine
E-mail: strelnitskij@kipt.kharkov.ua
Composite films were formed by vacuum-arc method using two plasma sources equipped with aluminum and
titanium cathodes. The sources were coupled with a dual channel T-shaped magnetic filter. Ability of Ti-Al-N films
composition adjustment by deposition of mixed plasma streams from the plasma sources was investigated. It has
been found that film composition can be varied by changing arc currents in plasma sources. However adjustment
range of film composition is rather limited, and can be expanded by changing magnetic field intensity in anode area
of plasma sources. Obtained films have uniform composition and thickness on 180 mm diameter surface. Conditions
for aluminum content adjustment range from 14 to 60 wt.% were found.
INTRODUCTION
Multicomponent nitride-based films have higher (as
compared to single-component ones) hardness, wear
resistance, thermal stability and oxidation resistance.
Such films are typically used as protective in high-speed
cutting machinery in aggressive environments, where
use of coolant and/or lubricant fluids are limited or
inadmissible. Composite films usage lowers or
eliminates need in said liquids and finally reduces
production cost.
Multicomponent films can be produced by vacuum
arc method using cathodes with predefined composition,
corresponding to the desirable film composition. But
such cathodes manufacturing is complicated, expensive
and often is not possible. Composition of the obtained
films can be changed only by changing the cathode
itself. These circumstances make difficulties in
experimental search of new film compositions.
Composite films can be obtained by simultaneous
deposition of plasma streams from several plasma
sources equipped with cathodes made of different (pure)
materials. Single-channel [1, 2] or multichannel [3, 4]
plasma filters can be used for this purpose. Plasma
source with a single–channel filter has one common
anode and plasma duct and its cathodes are placed in
vicinity to each other [1, 2]. Plasma streams from each
cathode are being transported in common longitudinal
magnetic field and so they are mixed weakly. This
results in highly nonuniform composition of deposited
films.
In multichannel systems plasma streams can be
transported separately up to common output section.
Here, each of them is transported by its "own" group of
magnetic lines of force parallel to each other, so streams
mixing degree is nearly none. As a result, such systems
also can not provide a uniform distribution of film
components. Thus, deposition of composition-uniform
films is doubtful without using any additional mixing
devices (homogenizers). Known mixers are not well
studied; either they can not provide sufficient plasma
mixing degree [3] or have material-demanding and
difficult-to-made design [5, 6].
Previously [7] we have shown the ability to deposit
Ti-Al-N films using separate plasma streams mixing.
These films have uniform composition and thickness on
180 mm diameter surface. Aluminum content is about
40 wt.%. Two-channel T-shaped plasma filter was used
for film deposition [8]. Magnetic system of the filter
allows mixing of separate plasma streams without
additional complications of the system design.
Objective of this work is to investigate the system
capabilities to deposit films with controllable
composition and with uniform composition and
thickness uniformity on 180 mm diameter surface.
EXPERIMENTAL DETAILS
Investigated system is schematically shown in
Fig. 1. It has two plasma sources 1 and 2, each of them
respectively consists of cathode C1 and C2, anode A1
and A2, stabilizing coil S1 and S2 and focusing (anode)
coils F11, F12 and F21, F22. The plasma sources are
axially arranged and are attached to T-shaped plasma
Fig. 1. Scheme of T-shaped magnetic filter equipped
with two plasma sources
141
duct 3 input sections P1 and P2. Filter output section P3
is located between input sections at the right angle to
them. Input sections contain deflecting coils D1 and D2,
output section contains two output coils L1 and L2.
Plasma filter 3 has its output section attached to vacuum
chamber of "Bulat-6" apparatus (not shown). Substrate
holder 4 is placed away from magnetic filter output
section on distance z. The system was described in more
detailed way earlier [8].
Cathode C1 is made of aluminum and cathode C2 –
of titanium. Films were deposited on polished
20×17×1 mm sized molybdenum samples.
Nine samples were used in each experiment. They
were arranged in one row (along x in Fig. 1) with
20 mm offset.
Distance z between substrate holder 4 and system
output section was 25 mm and 100 mm. The system was
pumped out to 2·10P
−5
P Torr residual pressure before each
deposition cycle. Films deposited in nitrogen
environment at 3 mTorr pressure level. Stabilizing,
deflecting, output and focusing coils F11 and F21 had
fixed current values, which respectively were
IBS1B = I BS2 B = 1.5 A, IBF11B = IBF21B = − 0.4 A, IBD1 B = IBD2 B = 2 A,
IBL1 B = 4 A, IBL2 B = − 3 А. Coil currents, which generate
magnetic field directed accordingly to arrows in Fig. 1
will be mentioned hereafter as positive and vice versa.
Films composition was controlled by means of
discharge currents ratio IBAlB/I BTiB variation in range from
0.75 to 2.14. Anode coils F12 and F22 current value and
polarity were changed from − 1 to + 0,5 A to control
plasma streams transport efficiency. Aluminum cathode
arc current IBAlB was changed in range 75…150 A, and
titanium cathode arc current I BTiB – in range 70…100 A.
Substrate was at floating potential during film
deposition process.
Aluminum and titanium content (nitrogen content
was not taken into account) were determined by X-ray
fluorescent analysis using "SPRUT" spectrometer.
Optical interferometer "MII-4" was used to determine
film thickness. Eight measurements were made for
each sample to determine film thickness: four at the
top sample area and four – at the bottom one. Obtained
thickness data were averaged.
RESULTS AND DUSCUSSION
Earlier performed investigation [7] has shown that
changing of such deposition process conditions as
nitrogen pressure, negative substrate bias, magnetic
field intensity at the system output and output-to-
substrate distance (z) does not involve significant
change of aluminum to titanium component ratio of the
films. The conditions adjustment leads to components
redistribution through the coating area. It is obvious that
arc current variation will influence amount of plasma
emitted by cathode spot. Thus, film elemental
composition can be affected by controlling discharge
currents ratio.
Such composition control technique during film
deposition process in multiple-cathode systems was
shown previously (see, for example, [3, 9]). Arc
currents ratio influence on radial (along x in Fig. 1)
distributions of film thickness and composition is shown
in Fig. 2,a. It can be seen that current ratio change from
0.75 to 1.71 does not provide significant modification of
Ti-Al-N film composition. Aluminum content value
varies from 30 to 49 wt.%. Content range widening can
be achieved by enhancement of available arc currents
range, but it is not always possible as will be mentioned
below.
Arc currents ratio unbalancing (IBAlB/I BTiB ≠ 1) shifts
plasma stream peak density towards plasma source with
higher arc current. It can be observed in Fig. 2,b.
Measurements were taken in the vicinity of the output
section (z = 25 mm) where plasma streams are not
completely mixed yet.
Regulation curves for the investigated system,
adopted from work [9] and calculated from data
presented in work [3] are shown in Fig. 3. A regulation
curve reveals arc currents ratio change, which is needed
to attain the desirable film components ratio. The higher
the slope of regulation curve the more affect of arc
currents ratio alteration on film composition. Shift of
the curve indicates offset of available adjustment range.
Fig. 2. Radial distribution of film aluminum content (a) and deposition rate (b) for different arc currents
ratios. z = 25 mm, IBF12B = IBF22B = 0,5 A
a) b)
Fig. 3. Regulation curves of two-cathode systems
142
However, restrictions applied by power supplies and
vacuum-arc maintenance or/and stability conditions
make a wide range of component ratios unreachable.
That is, for Ti-Al-N film fabrication with 20 at.% of
aluminum using the investigated system, titanium
cathode arc current value must be 4 times higher then
aluminum one. If arc currents values will not exceed
available range for the system (see above), they will be
75 A for aluminum and 300 A for titanium or 25 A and
100 A respectively. For Y-shaped system [3] the
difference is only 2 times, and so it can be implemented
without any difficulties.
For the purpose of film composition adjustment
range widening, it is necessary to additionally influence
on plasma streams intensity or transporting efficiency,
emitted by each of the cathodes or transported from
them to deposition site. It can be supposed that magnetic
field symmetry unbalancing (relatively to the system
output axis) should significantly affect transporting
capabilities of the system. That is, changing the
intensity of magnetic field inside one of the anodes will
change corresponding component transport conditions
thereby changing intensity of plasma stream, which
leaves plasma duct input section and reaches the system
output. Dependencies demonstrated in Fig. 4,a prove
that controllable reduction of one of the plasma streams
intensity can be achieved by simultaneous unbalancing
of arc currents and magnetic field symmetry. Thereby
additional magnetic field symmetry unbalancing is
extending available film compositions range. In our case
adjustment of aluminum content becomes possible in
range from 13 to 67 wt.% if arc currents ratio changed
from 0.75 to 2.14 along with changing focusing coils
currents. For minimum aluminum concentration in
deposited film coil F12 current was changed from + 0.5
to − 1 A. For maximum aluminum concentration coil
F22 current was changed from + 0.5 to − 1 A. Such
approach reduces arc power supplies requirements:
when magnetic field inside anode is weakened
discharge voltage drop decreases, as a result – less
powerful supply is needed to maintain arc discharge.
Moreover, decreased discharge power dissipation
lowers heat load for corresponding anode and thereby
reduces requirements for cooling system.
It should be noted that considered method of
composition adjustment range expansion has unwanted
side effect. Deposited films have significantly much less
thickness uniformity (Fig. 4,b). Change of aluminum
content permits thickness peak appearance and its
growth. This peak is shifted towards plasma source with
aluminum cathode for high aluminum content films and
to the opposite side for low aluminum content. It is
connected with plasma density maximum growth at the
side of plasma source with increased arc current (see
also Fig. 2,b) and magnetic field asymmetry, such shift
is typical to knee-shaped filters having said asymmetry.
The way to reduce this effect will be discussed further.
Nonuniformity of films thickness is greater for
higher values of IBAlB/I BTiB ratio. It can be explained by
cathodes materials (aluminum and titanium) erosion
rates differences [10]. This assumption may be
supported by fact, that increase of total arc current
(IBAlB + IBTiB) lowers integral deposition rate of the film. For
curves shown in Fig. 2,b for 0.75, 1.0 and 1.71 IBAlB/I BTi B
ratios, total arc currents are equal to 210, 200 and 190 A
respectively.
If one assumes that specific erosion rates of cathode
materials are equal, then alteration of total arc current
should lead to proportional change of integral
deposition rate. However, changing of total current on
+ 5 and − 5% changes integral deposition rate on − 17
and + 7.5% respectively (Fig. 2,b), and the current
change by + 10 and − 12.5% changes integral
deposition rate by + 120 and − 40% respectively
(Fig. 4,b). In addition, increase of total arc current can
either lower integral deposition rate (Fig. 2,b) or elevate
it (Fig. 4,b). It means that integral deposition rate is
dependent on both arc current ratio and their sum. Thus,
aluminum and titanium have different erosion rates,
which agree with existing data [10]. However, such
strong dependence shown in experiments is unlikely the
result of that relatively small difference between erosion
Fig. 4. Radial distribution of aluminum content (a, c) and deposition rate (b, d)
a) b)
c) d)
143
rates of aluminum and titanium, which are given in
work [10].
To establish the mechanisms which are underlying
discussed "contradictions" further study is required.
Increasing arc current in one of the plasma sources
and total arc current, leads to increase of plasma stream
density in corresponding channel and system output
(from the side of this channel). Homogenization of
plasma stream in this case requires extended (along
system output axis) space with weakened magnetic
field. It can be achieved by increasing the distance (z)
between output of plasma duct and substrate position.
From the practical application viewpoint of the
investigated system, results obtained at distance z
greater then 25 mm are more interesting. The
measurement data shown in Fig. 4,c,d and earlier
results [7] indicate that with increasing of distance z,
deposited films become significantly more uniform in
thickness and composition. It should be noted however,
that deposition rate in this case notably decreases.
Reasons of the phenomenon were discussed in previous
work [7]. It can be clearly seen from Fig. 4,c that
aluminum content adjustment range narrows with
distance z increasing. At z = 100 mm the range becomes
14…60 wt.% against 13…67 wt.% at z = 25 mm.
Such adjustment range narrowing can be explained
in the following way. Radial distribution of Al and Ti
plasma stream components is not perfectly
homogeneous: peripheral part of the stream close to
plasma source with Al cathode is more aluminum-rich
and vice versa. In the magnetic field with nearly zero
intensity (inside vacuum chamber) plasma stream is
dissipating and its peripheral part does not get to the
substrate. If the stream is not centred on the system
output axis then loses of its peripheral parts are equal (if
the stream is symmetric about the axis). When plasma
stream is shifted towards plasma source with Al
cathode, the amount of Al-rich part losses become
higher and Ti-rich – lower. As a result, amount of Al
component reaching the substrate becomes lower too.
Opposite plasma stream shift (towards plasma source
with Ti cathode) for similar reasons produces opposite
effect – aluminum concentration in deposited films
increases.
CONCLUSION
Possibility of Ti-Al-N films fabrication by
simultaneous deposition of aluminum and titanium
plasma streams from two vacuum-arc plasma sources
using two-channel T-shaped magnetic filter was studied.
It was shown, that Al and Ti film composition
adjustment using traditional means – by changing
plasma sources arc current ratio is possible in relatively
small range: Al content can be changed from 30 to
49 wt.%. Adjustment range is limited by available arc
currents values and vacuum-arc burning/stability
conditions.
Range of film components content adjustment can
be significantly widened by changing magnetic field
intensity and geometry inside anodes of the plasma
sources. Use of such method in discussed conditions has
given an ability to deposit content-uniform films on
180 mm diameter substrate with adjustable aluminum
concentration in range 14…60 wt.%.
REFERENCES
1. R. Ben-Ami, V.N. Zhitomirsky, R.L. Boxman,
S. Goldsmith. Plasma distribution in a triple-cathode
vacuum arc deposition apparatus // Plasma Sources
Sci. Technol. 1999, v. 8, p. 355−362.
2. A. Anders, N. Pasaja, S. Sansongsiri. Filtered
cathodic arc deposition with ion-species-selective
bias // Rev. Sci. Instrum. 2007, v. 78, p. 063901−5.
3. T. Mashiki, H. Hikosaka, H. Tanoue, H. Takikawa,
et al. TiAlN film preparation by Y-shape filtered-
arc-deposition system // Thin Solid Films. 2008,
v. 516, p. 6650−6654.
4. H. Dai, Y. Shen, J. Wang, M. Xu, et al. Fabrication
for multilayered composite thin films by dual-
channel vacuum arc deposition // Rev. Sci. Instrum.
2008, v. 79, p. 065104−5.
5. S. Anders, S. Raoux, K. Krishnan, R.A. MacGill,
I.G. Brown. Plasma distribution of cathodic arc
deposition systems // J. Appl. Phys. 1996, v. 79 (9),
p. 6785−6790.
6. M.M.M. Bilek, A. Anders, I.G. Brown. Magnetic
system for producing uniform coatings using a
filtered cathodic arc // Plasma Sources Sci. Technol.
2001, v. 10, р. 606−613.
7. D.S. Aksyonov, I.I. Aksenov, A.A. Luchaninov,
E.N. Reshetnyak, V.E. Strel´nitskij. Deposition of
Ti-Al-N Coatings Using Two-Channel T-Shaped
Magnetic Filter // Proc. of XXIVth ISDEIV,
Braunschweig, Germany. 2010, p. 494−496.
8. I.I. Aksenov, D.S. Aksyonov, V.V. Vasilyev,
A.A. Luchaninov, E.N. Reshetnyak,
V.E. Strel'nitskij. Two-Cathode Filtered Vacuum
Arc Plasma Source // IEEE Trans. Plasma Sci. 2009,
v. 37, iss. 8, p. 1511−1516.
9. J.G. Han, J.S. Yoon, H.J. Kim, K. Song, High
temperature wear resistance of (TiAl)N films
synthesized by cathodic arc plasma deposition
// Surf. Coat. Technol. 1996, v. 86−87, p. 82 − 87.
10. A. Anders. Cathodic Arcs: From Fractal Spots to
Energetic Condensation. New York, Springer, 2008,
542 p.
Статья поступила в редакцию 18.04.2011 г.
144
РЕГУЛИРОВКА СОСТАВА ВАКУУМНО-ДУГОВЫХ Ti-Al-N-ПОКРЫТИЙ,
ОСАЖДАЕМЫХ С ИСПОЛЬЗОВАНИЕМ ДВУХКАНАЛЬНОГО ФИЛЬТРА
Д.С. Аксёнов, И.И. Аксёнов, А.А. Лучанинов, Е.Н. Решетняк, В.Е. Стрельницкий
Исследована возможность регулировки состава Ti-Al-N-покрытий, получаемых вакуумно-дуговым
методом путём смешения потоков плазмы от генераторов с титановым и алюминиевым катодом.
Фильтрация потоков осуществлялась с помощью общего для обоих генераторов Т-образного
двухканального фильтра. Установлено, что изменения содержания алюминия и титана в покрытии можно
достичь путём регулировки соотношения разрядных токов в генераторах плазмы. Увеличение диапазона
регулировки состава покрытия достигается путём подбора интенсивности магнитных полей в анодных
секциях генераторов плазмы. Полученные покрытия однородны по составу на подложке диаметром 180 мм.
Определены условия, позволяющие регулировать концентрацию алюминия в пределах от 14 до 60 вес. %.
РЕГУЛЮВАННЯ СКЛАДУ ВАКУУМНО-ДУГОВИХ Ti-Al-N-ПОКРИТТІВ,
ОСАДЖУВАНИХ З ВИКОРИСТАННЯМ ДВОКАНАЛЬНОГО ФІЛЬТРА
Д.С. Аксьонов, І.І. Аксьонов, О.А. Лучанінов, О.М. Решетняк, В.Є. Стрельницький
Досліджено можливість регулювання складу Ti-Al-N-покриттів, які отримано вакуумно-дуговим
методом шляхом змішування потоків плазми від генераторів із титановим та алюмінієвим катодом.
Фільтрація потоків здійснювалась за допомогою спільного для обох генераторів T-подібного двоканального
фільтра. Встановлено, що зміни вмісту алюмінію та титану в покритті можливо досягти шляхом
регулювання співвідношення розрядних струмів генераторів плазми. Збільшення діапазону регулювання
складу покриття досягається шляхом підбору інтенсивності магнітних полів в анодних секціях генераторів
плазми. Отримані покриття однорідні за складом на підкладці діаметром 180 мм. Визначено умови, які
дозволяють регулювати концентрацію алюмінію у межах від 14 до 60 ваг. %.
INTRODUCTION
EXPERIMENTAL DETAILS
RESULTS AND DUSCUSSION
CONCLUSION
REFERENCES
|