How old supergravity is: thirty five years or more?

These notes is aimed at comparing two different approaches to theory of gravity with a fermionic gauge field, which possesses the invariance under special transformations called supersymmetry. One of these approaches is the approach by Ferrara-Freedman-Nieuwenhuizen-Deser-Zumino (FFNDZ) of 1976; the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Nurmagambetov, A.J.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111464
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:How old supergravity is: thirty five years or more? / A.J. Nurmagambetov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 3-6. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111464
record_format dspace
spelling irk-123456789-1114642017-01-11T03:02:45Z How old supergravity is: thirty five years or more? Nurmagambetov, A.J. Ядерная физика и элементарные частицы These notes is aimed at comparing two different approaches to theory of gravity with a fermionic gauge field, which possesses the invariance under special transformations called supersymmetry. One of these approaches is the approach by Ferrara-Freedman-Nieuwenhuizen-Deser-Zumino (FFNDZ) of 1976; the other one is that of Volkov-Soroka (VS) of 1974. The analysis is based on the standard concept of realizing Supergravity as a gauge theory for the super- Poincare group. We deliberately sacrifice the rigor of the proposed consideration in compare to the pioneering papers on D=4 N=1 Supergravity to make our presentation simple as much as possible. In effect we emphasize the differences between the above mentioned approaches. We keep out of making rigorous conclusions throughout the paper, and suggest the reader to get the own answer to the question posed in the title. Метою цих нотаток є порівняння двох різних підходів до теорії гравітації з ферміонним калібровочним полем, що інваріантна щодо спеціальних перетворень, які одержали назву суперсиметрії. Одним з цих підходів є підхід Феррари, Фрідмана, Ньювенхойзена, Дезера і Зуміно 1976 року; іншим є підхід Волкова і Сороки, запропонований в 1974 році. Аналіз грунтується на стандартній реалізації супергравітації як калібровочної теорії для групи супер-Пуанкаре. Строгість розгляду, в порівнянні з піонерськими роботами з D=4 N=1 супергравітації, свідомо жертвується на користь максимального спрощення в поданні матеріалу. Наслідком цього є чітке висвітлення відмінностей між двома порівнюваними підходами. Нотатки не містять ніяких категоричних висновків, навпаки, читачеві пропонується отримати власну відповідь на питання, що фігурує в назві роботи. Целью данных заметок является сравнение двух различных подходов к теории гравитации с фермионным калибровочным полем, обладающей инвариантностью относительно специальных преобразований, получивших название суперсимметрии. Одним из этих подходов является подход Феррары, Фридмана, Ньювенхойзена, Дезера и Зумино 1976 года; другим является подход Волкова и Сороки, предложенный в 1974 году. Анализ основывается на стандартной реализации супергравитации как калибровочной теории для группы супер-Пуанкаре. Строгость рассмотрения, по сравнению с пионерскими работами по D=4 N=1 супергравитации, сознательно жертвуется в пользу максимального упрощения в представлении материала. Следствием этого является четкое обозначение различий между двумя сравниваемыми подходами. Заметки не содержат никаких категорических выводов; напротив, читателю предлагается получить собственный ответ на вопрос, фигурирующий в названии работы. 2011 Article How old supergravity is: thirty five years or more? / A.J. Nurmagambetov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 3-6. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 12.60.Jv; 04.65.+e http://dspace.nbuv.gov.ua/handle/123456789/111464 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Nurmagambetov, A.J.
How old supergravity is: thirty five years or more?
Вопросы атомной науки и техники
description These notes is aimed at comparing two different approaches to theory of gravity with a fermionic gauge field, which possesses the invariance under special transformations called supersymmetry. One of these approaches is the approach by Ferrara-Freedman-Nieuwenhuizen-Deser-Zumino (FFNDZ) of 1976; the other one is that of Volkov-Soroka (VS) of 1974. The analysis is based on the standard concept of realizing Supergravity as a gauge theory for the super- Poincare group. We deliberately sacrifice the rigor of the proposed consideration in compare to the pioneering papers on D=4 N=1 Supergravity to make our presentation simple as much as possible. In effect we emphasize the differences between the above mentioned approaches. We keep out of making rigorous conclusions throughout the paper, and suggest the reader to get the own answer to the question posed in the title.
format Article
author Nurmagambetov, A.J.
author_facet Nurmagambetov, A.J.
author_sort Nurmagambetov, A.J.
title How old supergravity is: thirty five years or more?
title_short How old supergravity is: thirty five years or more?
title_full How old supergravity is: thirty five years or more?
title_fullStr How old supergravity is: thirty five years or more?
title_full_unstemmed How old supergravity is: thirty five years or more?
title_sort how old supergravity is: thirty five years or more?
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/111464
citation_txt How old supergravity is: thirty five years or more? / A.J. Nurmagambetov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 3-6. — Бібліогр.: 17 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT nurmagambetovaj howoldsupergravityisthirtyfiveyearsormore
first_indexed 2025-07-08T02:12:15Z
last_indexed 2025-07-08T02:12:15Z
_version_ 1837043009456177152
fulltext NUCLEAR PHYSICS AND ELEMENTARY PARTICLES HOW OLD SUPERGRAVITY IS: THIRTY FIVE YEARS OR MORE? A.J. Nurmagambetov∗ National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received August 18, 2011) These notes is aimed at comparing two different approaches to theory of gravity with a fermionic gauge field, which possesses the invariance under special transformations called supersymmetry. One of these approaches is the approach by Ferrara-Freedman-Nieuwenhuizen-Deser-Zumino (FFNDZ) of 1976; the other one is that of Volkov-Soroka (VS) of 1974. The analysis is based on the standard concept of realizing Supergravity as a gauge theory for the super- Poincare group. We deliberately sacrifice the rigor of the proposed consideration in compare to the pioneering papers on D=4 N=1 Supergravity to make our presentation simple as much as possible. In effect we emphasize the differences between the above mentioned approaches. We keep out of making rigorous conclusions throughout the paper, and suggest the reader to get the own answer to the question posed in the title. PACS: 12.60.Jv; 04.65.+e FOREWORD This paper is based on the authors’ talk at the Spe- cial Research Scientific Council of Kharkov Institute of Physics and Technology in July of 2005 to Com- memorate the 80th Anniversary of Academician D.V. Volkov. My notes would never have appeared in print if it were not an accident this summer. Suddenly and very unexpectedly for us Vyacheslav Aleksandrovich Soroka passed away. He was a great man, good friend and colleague. Involved in many activities, related to studies of various aspects of modern theoretical physics, he took an active and direct part in stud- ies of supersymmetric models, which was resulted, in particular, in the Supergravity invention. That is why I took the liberty to publish these notes, which, I hope, will be useful in dating the Supergravity age. 1. INTRODUCTION There is a conventional wisdom that the foundation of Supergravity, or more precisely the simple N=1 D=4 Supergravity, took place in 1976 and began with two seminal papers by Ferrara-Freedman-Nieuwenhuizen [6] and by Deser-Zumino [7] (FFNDZ). This point of view is widespread [1], [2] and without no doubt is true. However, the history of Science learns us that every significant innovation has its own, perhaps dra- matic, pre-history, when a little gap in insight does not allow predecessors to make a final step towards a new discovery. The history of Science also learns us that sometimes a discovery of one person is er- roneously ascribed to another one as it happened for instance with the Kamerlingh Onnes superconductiv- ity, which was in fact observed by Gilles Holst [3]. It is not the unique example of course, so in the light of the above it is natural to ask could it be something like that with the Supergravity invention? The latter question gains a new insight once I re- call that in the Former Soviet Union the Supergrav- ity foundation is ascribed to D.V. Volkov and V.A. Soroka in view of [4], [5]. I make the special accent on the dates of these papers: 1973 and 1974. Hence, if the results of these two papers by Volkov-Soroka (VS) are correct, one should at least get a little doubt on the real date of the Supergravity foundation. To figure out the (in)correctness of the VS ap- proach we have to trace the way of reasoning by VS and that of FFNDZ back and to compare the for- mulations to each other. I should emphasize that such a comparison of two formulations (more pre- cisely, VS to FFNDZ) has been done, see e.g. [8], [9, 10], [11]. However, it is not so easy to realize the arguments of these papers since they appeal to the clear understanding the VS construction. Roots of misunderstanding are mainly twofold: The VS con- struction is based on the non-linear realization of the super-Poincare group with its subsequent gauging, the approach which is not so common, popular and well-known for the present days audience (see how- ever [12]); and the notation in [8]-[10], borrowed in part from the original papers [4, 5], is either far from the modern notation accepted in Supergravity, or de- notes different objects. Therefore, to make things clear we have to reformulate old results in a modern and commonly accepted fashion. I would not stick to any “preferred” point of view in the analysis below. Rather I suggest the reader to be a referee and to get the own answer to the question posed in the title. ∗ajn@kipt.kharkov.ua PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N5. Series: Nuclear Physics Investigations (56), p.3-6. 3 2. SUPERGRAVITY – WHAT’S THIS? To realize the announced program let us get started with recalling what Supergravity is? I will refer to the standard definition of Supergravity (cf. e.g. [2]): Su- pergravity is a theory of gauge fields, which is invari- ant under the local (i.e. with space-time dependent parameters) supersymmetry. Any theory of Super- gravity contains a spin 2 gauge field or graviton, – this field is responsible for the gravitational interac- tion, – together with its spin 3/2 super(symmetric) partner, the so-called gravitino. Supergravity may also include scalars, vector and antisymmetric ten- sor gauge fields of spin zero and one, together with their superpartners with spin 1/2. A field content of Supergravities is strongly dependent on the number of space-time dimensions, features of the considered theory (simple, i.e. with N = 1 local supersymmetry, or extended, i.e. with N > 1, Supergravity), gauged or un-gauged Supergravity and so on. However, in all cases the field content should be supersymmetric, that means it has to provide the precise balance of the bosonic and fermionic degrees of freedom, at least on the mass-shell. The off-shell matching the bosonic and fermionic degrees of freedom is also desired, but not necessary. There are many ways to Supergravity construct- ing. A general, but not always simple, method of the construction of Supergravity is based on the corre- sponding superalgebra gauging (see [13] for details). In general, the superalgebra possesses a complicated structure, but it always includes the super-Poincare algebra as a subalgebra. To reach conclusions on VS vs. FFNDZ model, no need to deal with a compli- cated superalgebra. It is enough to gauge the N=1 D=4 super-Poincare algebra to this end. 3. GAUGING THE SIMPLE SUPER-POINCARE ALGEBRA We follow the way of N=1 D=4 Supergravity con- structing in the spirit of the Yang-Mills theory, as it was done (but in more complicated manner) in [4, 5], and was recently discussed in [14]. The starting point is the N=1 D=4 super-Poincare algebra [Pa, Pb] = 0, [Jab, Pc] = ηac Pb − ηbc Pa, [Jab, Jcd] = ηac Jbd − ηbc Jad + ηbd Jac − ηad Jbc, [Jab, Q α] = −1 2 (γab)α β Qβ , [Pa, Qβ ] = 0, {Qα, Qβ} = 1 2 (γa)α β Pa. (1) The next step is to construct the Yang-Mills-type connections A = AAtA = eaPa + 1 2 ωabJab + QΨ, (2) and their field strengths (curvatures) F = FAtA = dA + A ∧A = = T aPa + 1 2 RabJab + RαQα, T a = dea + ωa b eb − 1 2 Ψ̄γaΨ, Rab = dωab + ωa b ωcb, Rα = dΨα + 1 4 ωab(γab)α βΨβ ≡ DΨα. (3) Using the superalgebra (1) it is easy to verify that the local transformations of the connections δA = Dλ = dλ+[A, λ}, λ = ρaPa + 1 2 κabJab +Qε, (4) which transform curvatures in the covariant way δF ∼ [F, λ}, (5) can be split on i) translations δtranslations ea = Dρa, δtranslations ωab = 0, δtranslations Ψα = 0; (6) ii) local Lorentz transformations δLorentz ea = κa be b, δLorentz ωab = −Dκa b, δLorentz Ψα = 1 4 κabγabΨα; (7) iii) local supersymmetry transformations δSUSY ea = 1 2 ε̄γaΨ, δSUSY ωab = 0, δSUSY Ψα = Dεα. (8) Clearly, the Poincare superalgebra gauging nat- urally leads to δSUSYωab = 0. The same transfor- mation property of the connection follows from the VS papers [4, 5]. However, this result contradicts the FFNDZ supergravity construction [6], [7], that can be treated as a manifestation of the difference between the Yang-Mills and gravitational theories, and calls into question (see for instance [14]) the correctness of the VS approach. One could stop here, since it seems to be unrea- sonable to proceed further after observing such a dis- crepancy. But this is not the end of the game. We have to turn to the corresponding actions, having in mind what we have figured out above. 4. FFNDZ VS. VS: ACTIONS ANALYSIS Now consider the action of D=4 N=1 supergravity, proposed in [6, 7] SFFNDZ = ∫ M4 εabcde aebRcd + 4Ψ̄γ5e aγaDΨ. (9) This action is not invariant under translations (6) without the additional requirement T a = dea + ωa b eb − 1 2 Ψ̄γaΨ = 0. (10) In effect 4 1) the connection is not an independent variable anymore ωab = ωab(e, Ψ); (11) 2) transformations of the connection are different from that of followed from the algebraic consid- eration; in particular δSUSY ωab 6= 0; (12) 3) the relative coefficient between two terms of the action (9) is completely fixed by the require- ment of the action invariance under the local supersymmetry transformations; 4) the algebra of the gauge transformations is closed off-shell only by use of auxiliary fields; 5) the structure constants of the gauge transfor- mations algebra become the structure functions of fields. That leads to additional drawbacks upon the quantization of the model. Now let us turn to the corresponding part of the Volkov-Soroka action [4, 5] SV S = ∫ M4 α1εabcdE aEbRcd + 4α2ψ̄γ5E aγaDψ (13) with arbitrary coefficients α1, α2. Aside from usual vielbeins ea, (13) involves additional ‘coordinates’ ξa entering the ‘generalized vielbeins’ Ea = ea + Dξa − 1 2 Ψ̄γaθ − 1 4 Dθ̄γaθ, (14) together with Goldstone-type fermionic coordinates θα, entering the combination ψα = Ψα + Dθα. (15) That is why the Volkov-Soroka action is invariant un- der translations (6) and the invariance is guaranteed by the following transformations δtranslation Ea = 0 ⇐⇒ δtranslation ea = Dρa, δtranslation ξa = −ρa, δtranslation θα = 0 (16) The VS action is manifestly invariant under the local SUSY transformations (8) as well, that is provided by δSUSY Ea = 0, δSUSY ψα = 0, δSUSY ξa = 1 4 ε̄γaθ, δSUSY θα = −εα. (17) As the result: a) the connection and the vielbein are independent variables; b) the local supersymmetry transformations of the connection are not different from that of coming from the superalgebra gauging, i.e. δSUSY ωab = 0; c) the gauge transformation algebra is closed off- shell and without introducing auxiliary fields; d) the relative coefficients between different terms of the action are not fixed since the action is constructed out the manifestly invariant un- der the local supersymmetry transformations forms; e) the transformation property of the ‘coordinates’ ξa, θα is the same as the transformation of the Goldstone fields, and they have no impact on physics described by the model; f) upon eliminating the Goldstone fields, (13) is reduced to (9). Then, arbitrary coefficients of (13) are fixed by the requirement of the local su- persymmetry of the action and δSUSY ωab 6= 0 is required. Before turning to final remarks, let me make an additional comment on the structure of the VS ac- tion (13). At a first sight it seems non plausible and unnatural that the local supersymmetry does not uniquely fix the relative coefficient between two manifestly invariant under the local supersymmetry transformations terms of the action. However, the requirement of local supersymmetry is not always enough to fix all the parameters entering the Super- gravity action. As a counter-example I recall that the supergravity-scalar fields coupling requires introduc- ing a real function of scalar fields, the precise form of which is not uniquely fixed by the supersymmetry invariance arguments (cf. e.g. [15]). 5. FINAL REMARKS To summarize, we have compared two different ap- proaches to Supergravity by Volkov-Soroka and by Ferrara-Freedman-Nieuwenhuizen-Deser-Zumino. I have emphasized the differences in these approaches, and have established the source of the differences. As I have mentioned at the beginning of the paper, I would not stick to any “preferred” point of view, suggesting the reader to make own conclusions on the main question of the paper. Let me finally note that the Goldstone-type variables ξa entering (14), which were appeared in [4, 5], are called now the Poincare coordinates, and the N=1 D=4 Supergravity formu- lation, which is invariant under the Poincare group translations, is presently known (notably due to the authors of [16]) as the Grignani-Nardelli-Stelle-West formulation [17, 16]. Acknowledgements. Discussions with V.A. Soroka on the history of Supergravity were very useful and are kindly acknowledged. The author is very in- debted to N.P. Merenkov and G.I. Gakh for fruitful discussions. Work is supported in part by the Joint DFFD-RFBR Project # F40.2/040. 5 References 1. M. Rocek, W. Siegel, G. Sterman and P. vanNieuwenhuizen. Supergravity celebrates quarter of a century // CERN Courier 2002, v.42, N7, p.23. 2. S. Duplij, W. Siegel, J. Bagger (Eds.). Concise Encyclopedia of Supersymmetry. ”Kluwer Acad- emic Publishers”, New York: 2003, 540 p. 3. J. deNobel, and P. Lindenfeld. The Discovery of Superconductivity // J. Phys. Today 1996, v.49 (9), p.40-43. 4. D.V. Volkov, and V.A. Soroka. Higgs Effect For Goldstone Particles With Spin 1/2 // JETP Lett. 1973, v.18, p.529-532 (Russian edition). 5. D.V. Volkov and V.A. Soroka. Gauge fields for symmetry group with spinor parameters // Theor. Math. Phys. 1974, v.20, p.291-298 (Russian edition). 6. D.Z. Freedman, P. vanNieuwenhuizen and S. Ferrara. Progress toward a theory of super- gravity // Phys. Rev. 1976, v.D13, p.3214-3218. 7. S. Deser and B. Zumino. Consistent supergravity // Phys. Lett. 1976, v.62B, p.335-337. 8. D.V. Volkov. On the Higgs effect and supergrav- ity: Preprint CERN-TH.2288, 1977. 9. D.V.Volkov. Supergravity before and after 1976: Preprint CERN-TH.7226/94, 1994 [hep-th/9404153]. 10. D.V.Volkov. Supergravity before 1976: E- Preprint hep-th/9410024, 1994. 11. V.A. Soroka. Starting-point of supergravity: E- Preprint hep-th/0111271, 2001. 12. T.E.Clark, S.T. Love, M. Nitta, T. terVeldhuis. Gauging Nonlinear Supersymmetry // Phys. Rev. 2006, v. D73 125006 [hep-th/0512078]. 13. L.Castellani, R.D’Auria, P. Fre. Supergravity and superstrings: A Geometric perspective. v.1-3. ”World Scientific”, Singapore: 1991. 2162 p. 14. P. vanNieuwenhuizen. Supergravity as a Yang- Mills theory: E-Preprint hep-th/0408137, 2004. 15. E.Cremmer, B. Julia, J. Scherk, S. Ferrara, L.Girardello, P. vanNieuwenhuizen. Sponta- neous symmetry breaking and Higgs effect in supergravity without cosmological constant // Nucl. Phys. 1979, v.B147, p.105-131. 16. G.Grignani and G.Nardelli. Gravity and the Poincare group // Phys. Rev. 1992, v.D45, p.2719-2731. 17. K.S. Stelle and P.C.West. Spontaneously Bro- ken De Sitter Symmetry And The Gravitational Holonomy Group // Phys. Rev. 1980, v.D21, p.1466-1488. НАСКОЛЬКО СУПЕРГРАВИТАЦИЯ СТАРА: ТРИДЦАТЬ ПЯТЬ ЛЕТ ИЛИ БОЛЬШЕ? А.Ю. Нурмагамбетов Целью данных заметок является сравнение двух различных подходов к теории гравитации с фермионным ка- либровочным полем, обладающей инвариантностью относительно специальных преобразований, получивших название суперсимметрии. Одним из этих подходов является подход Феррары, Фридмана, Ньювенхойзена, Де- зера и Зумино 1976 года; другим является подход Волкова и Сороки, предложенный в 1974 году. Анализ осно- вывается на стандартной реализации супергравитации как калибровочной теории для группы супер-Пуанкаре. Строгость рассмотрения, по сравнению с пионерскими работами по D=4 N=1 супергравитации, сознательно жертвуется в пользу максимального упрощения в представлении материала. Следствием этого является четкое обозначение различий между двумя сравниваемыми подходами. Заметки не содержат никаких категорических выводов; напротив, читателю предлагается получить собственный ответ на вопрос, фигурирующий в названии работы. НАСКIЛЬКИ СУПЕРГРАВIТАЦIЯ СТАРА: ТРИДЦЯТЬ П’ЯТЬ РОКIВ ЧИ БIЛЬШЕ? О.Ю. Нурмагамбетов Метою цих нотаток є порiвняння двох рiзних пiдходiв до теорiї гравiтацiї з фермiонним калiбровочним по- лем, що iнварiантна щодо спецiальних перетворень, якi одержали назву суперсиметрiї. Одним з цих пiдходiв є пiдхiд Феррари, Фрiдмана, Ньювенхойзена, Дезера i Зумiно 1976 року; iншим є пiдхiд Волкова i Сороки, запропонований в 1974 роцi. Аналiз грунтується на стандартнiй реалiзацiї супергравiтацiї як калiбровочної теорiї для групи супер-Пуанкаре. Строгiсть розгляду, в порiвняннi з пiонерськими роботами з D=4 N=1 супер- гравiтацiї, свiдомо жертвується на користь максимального спрощення в поданнi матерiалу. Наслiдком цього є чiтке висвiтлення вiдмiнностей мiж двома порiвнюваними пiдходами. Нотатки не мiстять нiяких категоричних висновкiв, навпаки, читачевi пропонується отримати власну вiдповiдь на питання, що фiгурує в назвi роботи. 6