Mathematical modeling of radiolysis process of water under the impact of low-energy electrons

The radiolysis process of water (liquid phase) under the impact of low - energy electrons (E = 1, 2.5, 5, 10 keV ) was mathematically modeled using Monte-Carlo, single collision and pacing methods on the base of Mathcad program. The radiation-chemical yields of the physical (single ionized molecular...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Jafarov, Y.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111473
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mathematical modeling of radiolysis process of water under the impact of low-energy electrons / Y.D. Jafarov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 42-47 — Бібліогр.: 44 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111473
record_format dspace
spelling irk-123456789-1114732017-01-11T03:02:43Z Mathematical modeling of radiolysis process of water under the impact of low-energy electrons Jafarov, Y.D. Ядерно-физические методы и обработка данных The radiolysis process of water (liquid phase) under the impact of low - energy electrons (E = 1, 2.5, 5, 10 keV ) was mathematically modeled using Monte-Carlo, single collision and pacing methods on the base of Mathcad program. The radiation-chemical yields of the physical (single ionized molecular orbitals - H₂O⁺j (1a₁, 2a₁, 1b₁, 3a₁, 1b₁), e⁻sub electron - lost its energy up to a primary electron - excited energy and electron-excited states: H₂O* (A¹B₁, B¹A₁, Rydberg state, diffusion band, dissociative excitation and plasmon-H₂O**) and physicochemical (OH, e⁻aq, H, H₃O+, H₂, H₂O₂, HO₂, O₂, OH⁻, O⁻₂, HO⁻₂ ) phase products of the non-elastic collision of electrons and water molecules were determined. Проведено математичне моделювання радіолізу води (фаза рідини) під дією електронів з малою енергією (E = 1, 2.5, 5, 10 кеВ) за допомогою програми Mathcad з використанням Монте-Карло, однократних зіткнень та шагового методів. На основі цієї моделі обраховані радіаційно-хімічні виходи слідуючих продуктів непружних зіткнень електронів з молекулами води: фізичні (одноіонізовані молекулярні орбіталі - H₂O⁺j (1a₁, 2a₁, 1b₁, 3a₁, 1b₁) електрони з енергією, пониженою до рівня з першим електронно-збудженим станом - e⁻sub, і електронно-збуджені стани - H₂O* (A¹B₁, B¹A₁, рідберговскі стани, полоса дифузії, дисоціативне збудження і плазмон - H₂O**) і фізико-хімічна стадія (OH, e⁻aq, H, H₃O+, H₂, H₂O₂, HO₂, O₂, OH⁻, O⁻₂, HO⁻₂). Проведено математическое моделирование радиолиза воды (жидкая фаза) под действием электронов с малой энергией (E=1, 2.5, 5, 10 кэВ) при помощи программы Mathcad с использованием Монте-Карло, однократных столкновений и шагового методов. На основе этой модели вычислены радиационно-химические выходы следующих продуктов неупругих столкновений электронов с молекулами воды: физические (одноионизированные молекулярные орбитали -H₂O⁺j (1a₁, 2a₁, 1b₁, 3a₁, 1b₁), электроны с энергией, снизившейся до уровня с первым электронно-возбужденным состоянием - e-sub, и электронно-возбужденные состояния - H₂O*(A¹B₁, B¹A₁, ридберговские состояния, полоса диффузии, диссоциативное возбуждение и плазмон - H₂O**) и физико-химическая стадия (OH, e⁻aq, H, H₃O+, H₂, H₂O₂, HO₂, O₂, OH⁻, O⁻₂, HO⁻₂). 2011 Article Mathematical modeling of radiolysis process of water under the impact of low-energy electrons / Y.D. Jafarov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 42-47 — Бібліогр.: 44 назв. — англ. 1562-6016 PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk http://dspace.nbuv.gov.ua/handle/123456789/111473 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
spellingShingle Ядерно-физические методы и обработка данных
Ядерно-физические методы и обработка данных
Jafarov, Y.D.
Mathematical modeling of radiolysis process of water under the impact of low-energy electrons
Вопросы атомной науки и техники
description The radiolysis process of water (liquid phase) under the impact of low - energy electrons (E = 1, 2.5, 5, 10 keV ) was mathematically modeled using Monte-Carlo, single collision and pacing methods on the base of Mathcad program. The radiation-chemical yields of the physical (single ionized molecular orbitals - H₂O⁺j (1a₁, 2a₁, 1b₁, 3a₁, 1b₁), e⁻sub electron - lost its energy up to a primary electron - excited energy and electron-excited states: H₂O* (A¹B₁, B¹A₁, Rydberg state, diffusion band, dissociative excitation and plasmon-H₂O**) and physicochemical (OH, e⁻aq, H, H₃O+, H₂, H₂O₂, HO₂, O₂, OH⁻, O⁻₂, HO⁻₂ ) phase products of the non-elastic collision of electrons and water molecules were determined.
format Article
author Jafarov, Y.D.
author_facet Jafarov, Y.D.
author_sort Jafarov, Y.D.
title Mathematical modeling of radiolysis process of water under the impact of low-energy electrons
title_short Mathematical modeling of radiolysis process of water under the impact of low-energy electrons
title_full Mathematical modeling of radiolysis process of water under the impact of low-energy electrons
title_fullStr Mathematical modeling of radiolysis process of water under the impact of low-energy electrons
title_full_unstemmed Mathematical modeling of radiolysis process of water under the impact of low-energy electrons
title_sort mathematical modeling of radiolysis process of water under the impact of low-energy electrons
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Ядерно-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/111473
citation_txt Mathematical modeling of radiolysis process of water under the impact of low-energy electrons / Y.D. Jafarov // Вопросы атомной науки и техники. — 2011. — № 5. — С. 42-47 — Бібліогр.: 44 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT jafarovyd mathematicalmodelingofradiolysisprocessofwaterundertheimpactoflowenergyelectrons
first_indexed 2025-07-08T02:13:00Z
last_indexed 2025-07-08T02:13:00Z
_version_ 1837043057178968064
fulltext MATHEMATICAL MODELING OF RADIOLYSIS PROCESS OF WATER UNDER THE IMPACT OF LOW-ENERGY ELECTRONS Y.D. Jafarov∗ Institute of Radiation Problems, AZ1143, Baku, F.Aghayev 9 (Received April 29, 2011) The radiolysis process of water (liquid phase) under the impact of low - energy electrons (E = 1, 2.5, 5, 10 keV ) was mathematically modeled using Monte-Carlo, single collision and pacing methods on the base of Mathcad pro- gram. The radiation-chemical yields of the physical (single ionized molecular orbitals- H2O + j (1a1, 2a1, 1b2, 3a1, 1b1), e−sub electron - lost its energy up to a primary electron - excited energy and electron-excited states: H2O ∗ (A1B1, B1A1, Rydberg state, diffusion band, dissociative excitation and plasmon-H2O ∗∗) and physicochemical (OH, e−aq, H, H3O +, H2, H2O2, O2, OH−, O−2 , HO−2 ) phase products of the non-elastic collision of electrons and water molecules were determined. PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk 1. INTRODUCTION Low-(0.05...10 keV ), moderate-(10...100 keV ) and high-energy (100...5000 keV ) electrons gradually lose their kinetic energies while passing through water in elastic and non-elastic collisions with water mole- cules. According to the mechanism of radiation en- ergy loss at the physical phase of the non-elastic collision process (< 10−15 sec.) intermediate parti- cles such as H2O + j -direct single ionization of sev- eral molecular orbitals (MO), e−sub electron-lost its energy up to a primary electron-excited energy and electron-excited states: intermediate particles such as A1B1, B1A1 Rydberg state (Ry), diffusion band (ab), dissociative excitation (de) and plasmon (ce- collective excitation) are generating. As these parti- cles have a strong effect on the physical, chemical, bi- ological processes progressing in water and water so- lutions, it’s possible to predict events which are likely to happen in the future by studying their roles in dif- ferent fields of science (atomic, nuclear and plasma physics, astrophysics, modelling of atmospheric phe- nomena, radiochemistry, radiobiology etc.). There- fore, to theoretically and experimentally study the generation and consumption of these products is one of the main problems. In the world literature the reliable values of the effective cross-section of a water molecule ionization under an electron impact (e−, 2e−) was determined by authors [1-6] using different experimental meth- ods and by authors [7-16] using different theoretical approaches. There’s no reference regarding water molecule ex- citation under an electron impact yet. Only au- thors [17-19] determined water electron-excitation states using a photoabsorption spectroscopy method. At the present time authors [20-24] have theoreti- cally calculated the effective cross-section of water electron-excitation states using different polyempiri- cal methods on the base of the experimental results. The total effective cross-section of electron-water molecule scattering was identified by authors [25-30]. While comparing the results of the experimental and theoretical calculations it becomes evident that at the values of energy more than 30 eV they coincide but at lower values some deviations are observed. The radiation-chemical yields of the products gen- erated at both phases (physical and physicochemical) of the water radiolysis process were theoretically cal- culated by authors [31-41] according to different ap- proaches. There are some conformities with some er- rors between the theoretical and experimental results of different authors and our results. In the given work the radiolysis process of wa- ter (liquid phase) under the impact of low-energy (T = 1.0; 2.5; 5.0; 10 keV ) electrons were mathemat- ically modeled. The radiation - chemical yields of the primary products which were likely to generate in the physical (< 10−15 sec.) and physicochemical (10−15...10−12 sec.) phases of the process were calcu- lated. The more improved formula of Mott equation [7] was used to determine the effective cross - section of ionization process of molecular orbitals (MO), and the equations proposed by different authors were used to determine the effective cross - sections of electron - excited states of different types [13] in the model. Calculation was made on the base of Mathcad pro- ∗Corresponding author E-mail address: azirp@rambler.ru 42 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N5. Series: Nuclear Physics Investigations (56), p.42-47. gram using Monte-Carlo, single collision and pacing methods. 2. THEORETICAL METHODS AND OBTAINED RESULTS The energy balance between low-energy electrons and water molecules during a non-elastic collision can be simply expressed by T = Es+4E, here T and Es are accordingly kinetic energies of an electron before and after collision, 4E is the energy transferred to water molecule by an electron during collision. This energy is used for an electron-excitation of water molecule (1) and direct single ionization (2) of molecular or- bitals (MO) (1a1, 2a1, 1b2, 3a1, 1b1). e−0 + H2O → → { H2O ∗(H2O ∗∗) + e−s , ∆E = E0n, H2O + j + e−s + e−e , ∆E = W + Bj . (1) (2) Here e−0 , and e−e are accordingly incident, scattered and ejected electrons, H2O +, H2O ∗, H2O ∗∗ are cor- respondingly ionization, excitation and extreme ex- citation (plasmon) states. The transferred energy ∆E during these processes equals to an excitation energy of a molecule Eon in (1) case and the sum of the kinetic energy of an ejected electron W from j-molecular orbital and bound energy Bj of the corre- spondent orbital in (2) case. Kinetic energies of scat- tered and ejected electrons may accordingly change from Es = 0 up to Emax s = T −Bj or from W = 0 up to Wmax = (T − Bj)/2. A more improved formula [3] of Mott equation was used to calculate the effec- tive cross - section of the single ionization of water molecule’s j −MO: dσj(W,T ) dW = S Bj(t + u + 1) { 1 (w + 1)2 + 1 (w − 1)2 1 (w + 1)(t + w) + 4u 3 [ 1 (w + 1)3 + 1 (t− w)3 ]} , (3) here, t = T Bj , w = W Bj , u = Uj Bj , S = 4πa2 0Nj ( R Bj )2 , Uj and Nj are the kinetic energy and number of an electron correspondent to j − MO, a0-Bohr radius, R = 13.61 eV is Rydberg energy. The values of Bj , Nj and Uj according to different molecular orbitals were given in Table 1. If we integrate the (3) ex- pression for all possible values of ejected electrons’ energies, i.e. from W = 0 up to Wmax, we can get the expression describing the dependence of ioniza- tion effective cross - section on the kinetic energy of a primary (Fig.1) electron during non-inelastic colli- sison corresponding to j −MO: σj (T ) = ∫ W max 0 dσj(W,T ) dW dW . (4) Fig.1. Dependence of the effective cross - section of a direct single ionization corresponding to j − MO (σ1 − 1a1, σ2 − 2a1, σ3 − 1b2, σ4 − 3a1, σ5 − 1b1) of water molecules under the impact of low - energy electrons In order to get the total effective cross - section of ionization (Fig.1) we should to sum the (4) expres- sion according to the number of molecular orbitals (MO) [11]: σion (T ) = NMO∑ j=1 σj (T ) . (5) Here NMO = 5 is the number of molecular orbitals (MO) of a water molecule. During non-elastic col- lision between electrons and water molecules the ef- fective cross-section of electron transformation from a ground state (0) to (n) excited state was calculated on the base of [13] expression: σ0n (T ) = 4πa2 0R T + B + E0n [ a ln ( T R ) + b + c R T ] . (6) Here a, b and c are constants corresponding to 0 → n junction and E0n [13] is an excitation energy corre- spondent to that junction. Constants for each junc- tion were chosen according to the values of radiation- chemical yield obtained from the experiments. The values of the constants and E0n used in calculations were given in Table 2. In Fig.2 the dependence of the effective cross-sections of electron-excitation states (σ1 − A1B1, σ1 − B1A1, σ3-Rydberg state (Ry), σ4- diffusion band (db), σ5-dissociative excitation (de) and σ6-plasmon (ce)) in water under the impact of low-energy electrons on their energies were described. In order to obtain the totally effective cross- section of electron excitation (Fig.1) (6) expression should be summed according to the number of ex- cited states: σexc (T ) = ∑ n σ0n (T ) . (7) Primary electrons or δ-electrons of a new generation formed by them lose part of their energy during each 43 non-elastic collision and this process continues till the next non-elastic collision of an electron energy. Fig.2. The dependence of the effective cross- sec- tions of electron-excitation states (σ1 − A1B1,σ1 − B1A1,σ3-Rydberg state (Ry), σ4-diffusion band (db), σ5-dissociative excitation (de) and σ6-plasmon (ce)) in water under the impact of low-energy electrons on their energies The amount of the moderate energy ∆E(T ) lost during each non-elastic collision of the electron with T energy with a water molecule was taken as an equivalent to the following expression [38, 39, 41]: ∆E(T ) = ∑ n P0n(T )En + ∑ j Pj(T )εj(T ) . (8) Here P0n(T ) = σ0n(T ) σtot(T ) is the probability of trans- formation into n-excited state, Pj(T ) = σj(T ) σtot(T ) is the probability of the event occurrence corresponding to the ionization of j − MO, σtot(T ) = ∑ n σ0n(T ) + ∑ j σj(T ) - a total effec- tive cross-section (Fig.3), εj(T ) = ∫ T Bj ε dσj(T ) dε dε - a moderate energy calculated for form- ing one electron-positive ion pair in j − MO by the electron with T energy. Fig.3. The dependence of electron-excitation (σexc (T ) = ∑ n σ0n (T )), MO ionization (σion (T ) = = ∑ j σj (T )) states in water under the impact of low-energy electrons and the full effective cross- section σtot(T ) = σexc(T ) + σion(T ) on their energies Table 1. The radiation-chemical yield of a direct single ionization corresponding to molecular orbitals (MO) of water molecule (1a1, 2a1, 1b2, 3a1, 1b1) under the impact of low-energy electrons Molecular orbits N Bj , eV Uj , eV T, keV 1 2.5 5 10 1a1 2 539.7 793.4 1.685 1.687 1.689 1.691 2a1 2 36.88 70.71 0.951 0.950 0.954 0.957 1b2 2 19.83 48.36 0.697 0.701 0.704 0.704 3a1 2 15.57 59.52 0.259 0.260 0.263 0.265 1b1 2 12.61 61.91 0.0003 0.0005 0.0007 0.0009 Table 2. The radiation-chemical yields of electron-excited states (A1B1, B1A1, Ry- dberg states (Ry), diffusion band (db), dissosiative excitation (de) and plasmon (ce) states) formed in water under the impact of low-energy electrons Electron- excited state Excitation energy, eV Constants T, keV a b c 1 2.5 5 10 A1B1 8.4 0.7532 0.4751 -0.0675 0.870 0.877 0.872 0.875 B1A1 10.1 0.3900 0.1500 0.0015 0.412 0.407 0.413 0.409 Ry 12.26 0.0465 0.0282 -0.010 0.052 0.053 0.057 0.055 db 12.93 0.2380 0.0010 0.0265 0.267 0.269 0.264 0.260 de 14.1 0.2473 -0.010 0.0150 0.218 0.212 0.208 0.214 ce 21.4 1.2951 0.0120 -0.7532 1.089 1.086 1.087 1.094 44 On the base of the model calculations were made for the single ionization of five molecular orbitals (MO) and six electron-excited states of water mole- cules. The calculated values of the single ionization correspondent to 1a1, 2a1, 1b2, 3a1, 1b1 molecular orbitals (MO) were given in Table 1, and in Table 2 the calculated values of the radiation-chemical yields of A1B1, B1A1, Rydberg state (Ry), diffusion band (db), dissosiative excitation (de) and plasmon (ce) electron-excited states were given. The products of the physical phase gradually (in the course of 10−15...10−12 sec.) lose their energies at the next physicochemical phase: at the result of e−sub- electrons’ elastic collision and dipole relaxation and transform into thermal electrons and consequently solvates (e−sub → e−aq ), H2O + ions transform into H3O + ion and OH radical at the result of an ion- molecular reaction, and electron-excited molecules generate their next products due to relaxation, auto- ionization and dissociation. The next products [40] which were likely to be generated by the products of the physical phase in the course of ∼ 10−12 sec. were given in Table 3. Table 3. Percentage of the products which are likely to be generated by the products of the physical phase Products of the G Generation Percentage, physical phase 100 eV channels % e−sub 3.592 e−aq 100 H2O + 3.592 H3O + + OH 100 A1B1 0.870 { H2O H2 + OH { 25 75 B1A1 0.412 { H2O H2 + H2O2 { 45 55    Ry db de 0.487    H2O H + OH H3O + + OH + e−aq    23 20 57 ce 1.089 { H3O + + OH H+ + OH { 92.2 7.8 In the calculation carried out by us the radiation- chemical yields of the products generated in the physical and physicochemical phases of the radiolysis process progressing in the course of ∼ 10−12 sec. were determined and the obtained results (Table 4) were given in comparison with the theoretical [31, 42] and experimental ones [43,44] obtained by the authors. Table 4. Radiation-chemical yields of the products generated at the physic- ochemical phase (10−15...10−12 sec.) of the radiolysis process progressing in water under the impact of low-energy electrons Primary J.E.Turner I.Q.Kaplan Experimental Our products [42] [31] results [43,44] results OH 8.4 5.85 5.9 5.624 e−aq 6.3 5.16 4.7 4.874 H 2.1 0.61 0.7 0.75 H3O + 6.3 5.16 4.8 4.874 H2 0.3 0.39 0.45 0.227 H2O2 0.3 0.39 - 0.227 HO2 - - - - O2 - - - - OH− - - - - O−2 - - - - HO− 2 - - - - 45 The results obtained for the radiation-chemical yields of the active intermediate products generated in the physical and physicochemical phases of the ra- diolysis process progressing in water, calculated on the base of our model from the theoretical calcula- tions and experiments conducted by different authors according to different approaches conform with some errors. 3. CONCLUSIONS The processes progressing in water and water solu- tions under the impact of ionizing radiation (electron and ?-quantum) can be calculated on the base of this model. The model can be used to determine the processes progressing in aerosols of the atmosphere under the effect of space rays, changes in water and water solutions used in atomic and nuclear power- engineering as an energy-carrier or for different pur- poses, the nano-, micro and total absorption dose during radiating ancological patients by electrons and ?-quantum in the same and different directions as well as for the minimum selection of by-effects. References 1. M.A. Bolorizadeh, M.E. Rudd // Phys.Rev.A. 1986, v.33, p.882. 2. K.W. Hollman, G.W. Kerby, M.E. Rudd, J.H. Miller, S.T. Manson //Phys.Rev.A. 1988, v.38, p.3299. 3. B.G. Lindsay and M.A. Mangan. Photon and Electron Interactions with Atoms, Molecules and Ions. ”Landolt-Bornstein” v.I/17; Subvolume C, edited by Y. Itikawa. New York: ”Springer”, 2003. 4. H.C. Straub, B.G. Lindsay, K.A. Smith, and R.F. Stebbings // J. Chem. Phys. 1998, v.108, p.109. 5. M.V.S. Rao, I. Iga, and S.K. Srivastava // J. Geo- phys. Res. 1995, v.100, p.26421. 6. J. Schutten, F.J. de Heer, H.R. Moustafa, A.J.H. Boerboom, and J. Kistemaker // J. Chem. Phys. 1966, v.44, p.3924. 7. Y.K. Kim, M.E.Rudd // Phys.Rev.A. 1994, v.50, p.3954-3967. 8. M. Coplan, J.H.Moore, J.P.Doering // Rev.Mod.Phys. 1994, v.66, p.985. 9. Y.K. Kim, W.Hwang, N.M.Weinberger, M.A. Ali, M.E. Rudd // J.Chem.Phys. 1997, v.106(3), p.1026-1033. 10. M. Dingfelder, D. Hantke, M. Inokuti, H.G. Paretzke // Radiat.Phys.Chem. 1998, v.53, p.1-18. 11. Y.K.Kim, W.R. Johnson, M.E. Rudd // Phys.Rev.A. 2000, v.61, p.032702. 12. M.A.Haynes, B. Lohmann // J.Phys.B. 2000, v.33, p.4711. 13. Y.K.Kim, J.P.Desclaux // Phys.Rev.A. 2002, v.66, p.012708-12. 14. D. Emaietzoglou, K. Karava, G. Papamichael, M.Moscovich // Phys. Med. Biol. 2003, v.48, p.2355-2371. 15. W.Hwang, Y.K.Kim, and M.E. Rudd // J. Chem. Phys. 1996, v.104, p.2956. 16. C.Champion, J.Hanssen, and P.A.Hervieux // J. Chem. Phys. 2002, v.117, p.197. 17. W.F.Chan, G.Cooper, and C.E. Brion // Chem. Phys. 1993. v.178, p.387. 18. M.Gurtler, V. Saile, and E.E. Koch // Chem. Phys. Lett. 1977, v.51, p.386. 19. M.Chutjian, R.I. Hall, and S. Trajmar // J. Chem. Phys. 1975, v.63, p.892. 20. D.Gorfinkiel, L.A. Morgan, and J.Tennyson // J. Phys. 2002, B v.35, p.543. 21. W.A.Goddard and W.J.Hunt // Chem.Phys.Lett. 1974, v.24, p.464. 22. N.W.Winter, W.A. Goddard, and F.Bobrowicz // J.Chem.Phys. 1975, v.62, p.4325. 23. J.J.Olivero, R.W. Stagat, and A.E.S.Green // J.Geophys.Res. 1972, v.77, p.4797. 24. M. Zaider, D.J. Brenner, and W.E.Wilson // Rad. Res. 1983, v.95, p.231. 25. C. Szmytkowski // Chem. Phys. Lett. 1987, v.136 p.363. 26. A. Zecca, G. Karwasz, S.Oss, R. Grisenti, and R.S. Brusa // J. Phys. B. 1990, v.20, p.1500. 27. H.Nishimura and K.Yano // J. Phys. Soc. Jpn. 1988, v.57, p.1951. 28. Z. Saglam and N. Aktekin // J. Phys.B. 1990, v.23, p.1529. 29. Z. Saglam and N.Aktekin // J. Phys. B. 1991, v.24, p.3491. 30. M.Kimura, O. Sueoka, A. Hamada, and Y. Itikawa // Adv. Chem. Phys. 2000, v.111, p.537. 31. I.G.Kaolan, A.M. Miterev, V.Ya. Sukhanov // KhVE, 1986, v.20, N6, p.495-500. 32. M.Dingfelder, M. Inokuti, H.G. Paretzke // Radiat.Phys.Chem. 2000, v.59, p.255-275. 33. D. Emaietzoglou // Radiat.Phys.Chem. 2003, v.66. p.373-385. 46 34. C.Champion, J. Hanssen, P.A.Hervieux // Phys.Rev.A. 2001, v.63, p.052720-9. 35. C.Champion, J. Hanssen, P.A.Hervieux // Phys.Rev.A. 2002, v.65, p.022710-9. 36. D.S.Milne-Brownlie, S.J. Cavanagh, B. Lohmann, C. Champion, P.A.Hervieux, J.Hanssen // Phys.Rev.A. 2004, v.69, p.032701- 4. 37. Y.K.Kim // Phys.Rev.A. 2001, v.64, p.032713- 10. 38. A.A.Garibov, Ya.D. Jafarov, Ye.A. Shirshov, 4-th International Conference ”Nuclear and Ra- diation Physics”. Almaata, 2003, p.335-337. 39. Ya.D. Jafarov, A.A.Garibov. // International Conference ”Physical-Chamical processes in Nonorganic Matherials”, Kemerovo, Russia, 2004, v.1, p.32-34. 40. S.Uehara, H. Nikjoo // J. Radiat. Res. 2006, v.47, p.69-81. 41. Y.D. Jafarov, M.R.Hasanova, F.N.Nurmammadova // The Fifth Eurazian Conference Nuclear Science and its Application, Ankara, 2008, p.95-96. 42. J.E.Turner, R.N. Hamm, H.A. Wrighr, R,H.Rachie, J.L. Magee, A.Chatterjee, W.E.Bolch // Radiat. Phys. Chem. 1988, v.32, p.503-510. 43. A.K.Pikaev. Modern Radiation Chemistry. Radi- olysis of Gases and Liquids, M: ”Nauka”, 1986, p.440. 44. V.L.Bugaenko, V.M. Byakov, V.L. Grishin // Second Allunion Conference of Theoretical and Applied Radiation Chamistry, Obninsk, Russia, 1990, p.29. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА РАДИОЛИЗА ВОДЫ ПОД ДЕЙСТВИЕМ НИЗКОЭНЕРГЕТИЧЕСКИХ ЭЛЕКТРОНОВ Я.Д. Джафаров Проведено математическое моделирование радиолиза воды (жидкая фаза) под действием электронов с малой энергией (E = 1, 2.5, 5, 10 кэВ) при помощи программы Mathcad с использованием Монте- Карло, однократных столкновений и шагового методов. На основе этой модели вычислены радиационно- химические выходы следующих продуктов неупругих столкновений электронов с молекулами воды: физические (одноионизированные молекулярные орбитали - H2Oj (1a1, 2a1, 1b2, 3a1, 1b1) электроны с энергией, снизившейся до уровня с первым электронно-возбужденным состоянием - e−sub, и электронно- возбужденные состояния - H2O ∗ (A1B1, B1A1, ридберговские состояния, полоса диффузии, диссоциа- тивное возбуждение и плазмон - H2O ∗∗) и физико-химическая стадия ( OH, eaq, H, H3O +, H2, H2O2, HO2, O2, OH−, O−2 , HO− 2 ). МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПРОЦЕСУ РАДIОЛIЗУ ВОДИ ПIД ДIЄЮ НИЗЬКОЕНЕРГЕТИЧНИХ ЕЛЕКТРОНIВ Я.Д. Джафаров Проведено математичне моделювання радiолiзу води (фаза рiдини) пiд дiєю електронiв з малою енер- гiєю (E = 1, 2.5, 5, 10 кеВ) за допомогою програми Mathcad з використанням Монте-Карло, однократ- них зiткнень та шагового методiв. На основi цiєї моделi обрахованi радiацiйно-хiмiчнi виходи слiдуючих продуктiв непружних зiткнень електронiв з молекулами води: фiзичнi (одноiонiзованi молекулярнi ор- бiталi - H2Oj (1a1, 2a1, 1b2, 3a1, 1b1) електрони з енергiєю, пониженою до рiвня з першим електронно- збудженим станом - e−sub, i електронно-збудженi стани - H2O ∗ (A1B1, B1A1, рiдберговскi стани, полоса дифузiї, дисоцiативне збудження i плазмон - H2O ∗∗) i фiзико-хiмiчна стадiя ( OH, eaq, H, H3O +, H2, H2O2, HO2, O2, OH−, O− 2 , HO− 2 ). 47