Development of ribbon ion beam source and transport system for industrial applications
The design of ribbon ion source and transport system is discussed in this paper. This system is created at ITEP for ion beam implantation in semiconductor technology. The Bernas type ion sources are used for ribbon ion beam production. The periodic system of electrostatic lenses is proposed for inte...
Gespeichert in:
Datum: | 2008 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111482 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Development of ribbon ion beam source and transport system for industrial applications / E.S. Masunov, S.M. Polozov, T.V. Kulevoy, R.P. Kuibeda, V.I. Pershin, S.V. Petrenko, D.N. Seleznev, I.M. Shamailov, A.L. Sitnikov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 64-67. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111482 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1114822017-01-11T03:02:52Z Development of ribbon ion beam source and transport system for industrial applications Masunov, E.S. Polozov, S.M. Kulevoy, T.V. Kuibeda, R.P. Pershin, V.I. Petrenko, S.V. Seleznev, D.N. Shamailov, I.M. Sitnikov, A.L. Физика и техника ускорителей The design of ribbon ion source and transport system is discussed in this paper. This system is created at ITEP for ion beam implantation in semiconductor technology. The Bernas type ion sources are used for ribbon ion beam production. The periodic system of electrostatic lenses is proposed for intensive ion beam transport. The results of implanter component development are observing. Розглядаються питання, пов'язані з розробкою стрічкового іонного пучка і системи транспортування. Система імплантації розробляється в ІТЕФ для імплантації іонного пучку у напівпровідники. Для одержання стрічкового іонного пучка використається джерело типу "Бернас". Для транспортування пучку запропоновано використати періодичну систему електростатичних лінз. Розглядаються результати розробки окремих частин імплантору. Рассматриваются вопросы, связанные с разработкой ленточного ионного пучка и системы транспортировки. Система имплантации разрабатывается в ИТЭФ для имплантации ионного пучка в полупроводники. Для получения ленточного ионного пучка используется источник типа «Бернас». Для транспортировки пучка предложено использовать периодическую систему электростатических линз. Рассматриваются результаты разработки отдельных частей имплантора. 2008 Article Development of ribbon ion beam source and transport system for industrial applications / E.S. Masunov, S.M. Polozov, T.V. Kulevoy, R.P. Kuibeda, V.I. Pershin, S.V. Petrenko, D.N. Seleznev, I.M. Shamailov, A.L. Sitnikov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 64-67. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 29.25.Ni, 61.72.Tt http://dspace.nbuv.gov.ua/handle/123456789/111482 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика и техника ускорителей Физика и техника ускорителей |
spellingShingle |
Физика и техника ускорителей Физика и техника ускорителей Masunov, E.S. Polozov, S.M. Kulevoy, T.V. Kuibeda, R.P. Pershin, V.I. Petrenko, S.V. Seleznev, D.N. Shamailov, I.M. Sitnikov, A.L. Development of ribbon ion beam source and transport system for industrial applications Вопросы атомной науки и техники |
description |
The design of ribbon ion source and transport system is discussed in this paper. This system is created at ITEP for ion beam implantation in semiconductor technology. The Bernas type ion sources are used for ribbon ion beam production. The periodic system of electrostatic lenses is proposed for intensive ion beam transport. The results of implanter component development are observing. |
format |
Article |
author |
Masunov, E.S. Polozov, S.M. Kulevoy, T.V. Kuibeda, R.P. Pershin, V.I. Petrenko, S.V. Seleznev, D.N. Shamailov, I.M. Sitnikov, A.L. |
author_facet |
Masunov, E.S. Polozov, S.M. Kulevoy, T.V. Kuibeda, R.P. Pershin, V.I. Petrenko, S.V. Seleznev, D.N. Shamailov, I.M. Sitnikov, A.L. |
author_sort |
Masunov, E.S. |
title |
Development of ribbon ion beam source and transport system for industrial applications |
title_short |
Development of ribbon ion beam source and transport system for industrial applications |
title_full |
Development of ribbon ion beam source and transport system for industrial applications |
title_fullStr |
Development of ribbon ion beam source and transport system for industrial applications |
title_full_unstemmed |
Development of ribbon ion beam source and transport system for industrial applications |
title_sort |
development of ribbon ion beam source and transport system for industrial applications |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2008 |
topic_facet |
Физика и техника ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111482 |
citation_txt |
Development of ribbon ion beam source and transport system for industrial applications / E.S. Masunov, S.M. Polozov, T.V. Kulevoy, R.P. Kuibeda, V.I. Pershin, S.V. Petrenko, D.N. Seleznev, I.M. Shamailov, A.L. Sitnikov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 64-67. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT masunoves developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT polozovsm developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT kulevoytv developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT kuibedarp developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT pershinvi developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT petrenkosv developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT seleznevdn developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT shamailovim developmentofribbonionbeamsourceandtransportsystemforindustrialapplications AT sitnikoval developmentofribbonionbeamsourceandtransportsystemforindustrialapplications |
first_indexed |
2025-07-08T02:13:47Z |
last_indexed |
2025-07-08T02:13:47Z |
_version_ |
1837043105570750464 |
fulltext |
DEVELOPMENT OF RIBBON ION BEAM SOURCE AND TRANSPORT
SYSTEM FOR INDUSTRIAL APPLICATIONS
E.S. Masunov1, S.M. Polozov1, T.V. Kulevoy2, R.P. Kuibeda2, V.I. Pershin2,
S.V. Petrenko2, D.N. Seleznev2, I.M. Shamailov1, A.L. Sitnikov1
1Moscow Engineering Physics Institute, Kashirskoe shosse, 31, 115409, Moscow, Russia;
2Institute of Theoretical and Experimental Physics
Bolshaya Cheremushkinskaya, 25, 117218, Moscow, Russia
E-mail: smpolozov@mephi.ru
The design of ribbon ion source and transport system is discussed in this paper. This system is created at ITEP
for ion beam implantation in semiconductor technology. The Bernas type ion sources are used for ribbon ion beam
production. The periodic system of electrostatic lenses is proposed for intensive ion beam transport. The results of
implanter component development are observing.
PACS: 29.25.Ni, 61.72.Tt.
1. INTRODUCTION
Progressive semiconductor device scaling in each
technology node requires the formation of shallower
junctions, and thus lower energy implants. The continu-
ing need to reduce implantation energies creates signifi-
cant challenges for the designers of advanced im-
planters. Current density limitation associated with ex-
tracting and transporting low energy ion beams result in
lower beam currents that in turn adversely affects the
process throughput. At the beginning, the cold cathode
ion sources with “low currents” were used for mushi-
ness for early MOS (Metal-Oxide-Semiconductor) cir-
cuit fabrication, which requires doses of 1011…1012 ions
cm-2. The use of hot filament ion source (IS) technology
with currents of tens of milliamperes followed some
years later, when ion implantation was applied to MOS
transistor source-drain formation (which required doses
1015…1016 ions cm-2).
The research and development efforts of new ion
beam source and other implanter components provide in
ITEP in collaboration with MEPhI, HCEI (Tomsk) and
other. The ultimate goal is to develop steady state in-
tense ion sources to meet needs of hundreds of electron-
volt ion implanters has been in progress. The schematic
view of implanter developing is presented in Fig.1
where ion source, extraction system and transport are
shown. Here 1 is the schematic view of Bernas magnet,
2 – cathode and anticathode, 3 – plasma, 4 – extraction
system, 5 – electrostatical deflector, 6 – anode, 7 – elec-
trodes of electrostatical undulator. The Bernas (see
Fig.2) and Freeman ion sources are proposed for ribbon
ion beam production in common R&D project. The
beam transport choice is one of main problems of im-
planter design. The periodical system of electrostatics
lenses (electrostatical undulator) was proposed for this
goal (see Fig.3). The common results of development
implanter components are discussed in this paper as ion
source, extraction system and transport line.
2. BERNAS ION SOURCE
The Bernas ion source is under investigation as a
most perspective in framework of ITEP program of im-
planter ion source development for extreme regimes [1].
The photo of ITEP Bernas ion source is shown in
Fig.2,a. The construction of it is shown in Fig.2,b. Here
1 is filament, 2 – cathode, 3 – anticathode, 4 – anode,
5 – extraction system, 6 – oven for solid materials, 7 –
HV insulator. The electrical lay-out is shown in Fig.2,c.
This IS can be used for both gases and solids ion beams
generation. For solid ion beam generation depending on
the temperature needed, the oven can be installed both
inside and outside the IS. The discharge region consists
of the cathode, the anticathode and the anode. Both
cathodes are made from tungsten. The anode can be ei-
ther from the molybdenum or from the graphite. To start
and control discharge, the cathode is heated by electron
beam from filament. The e-beam is accelerated by 1.5
kV between filament and the cathode. The control of
discharge current is provided by the variation of fila-
ment heating current. This IS originally can provide the
dc ion beams of boron, phosphorus, arsenic and antimo-
ny with ion beams with current up to a few tens mA, ac-
celerated by 4…12 kV.
Fig.1. Schematic view of ion implanter
The extraction slit has dimension – 2×20 mm. The
cathode life time of the ion source is not exceeds 100 h.
For high energy implantation, the significant increasing
of generated ions charge states was achieved by injec-
tion additional electron beam into the discharge region
[2]. The typical beam spectra are given in Figs.4,5.
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5.
Series: Nuclear Physics Investigations (50), p.64-67.64
Fig.2. The general view (a), construction (b) and elec-
trical scheme (c) of the IHC Bernas ion source
Progressive semiconductor device scaling in each
technology node requires the formation of shallower
junctions, and thus lower energy implants. The continu-
ing need to reduce implantation energies creates signifi-
cant challenges for the designers of advanced im-
planters. The current density limitation associated with
extracting and transporting low energy ion beams result
in lower beam currents that in turn adversely affects the
process throughput.
Fig.3. The general view of electrostatic undulator
Fig.4. Spectrum of antimony beam from ITEP Bernas
ion source
Fig.5. Spectrum of phosphorus beam from ITEP Bernas
ion source
It has been proposed [3] that by implanting clusters
of boron atoms, the implanted dose rate will be larger
and the problems associated with low energy beam
transport will be less significant. The individual atoms
on a singly charged cluster of n identical atoms acceler-
ated with voltage V, have an energy of eV/n. The ex-
tracted energy would have to be n times greater to get
the same velocity as the monomer. In addition, the dose
rate would be n times the electric current. That is why
BF2 is used extensively in the industry – a 10 keV BF2
implant, for example, is equivalent to a 2 keV boron im-
plant. A much more dramatic example of this energy
partitioning is decaborane (B10H14). The boron atoms in
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5.
Series: Nuclear Physics Investigations (50), p.64-67.65
ion beam of molecule decaborane have energy less of
approximately 1/11 of the molecule’s energy. The im-
planted dose is ten times larger for integrated beam cur-
rent [4]. For low energy implantation program, the ITEP
Bernas ion source was modified for decaborane ion
beam generation [5]. The stable decaborane beam with
total current of 1 mA under 4 keV energy (boron equiv-
alent − ~380 eV) was obtained. The charge state distri-
bution measured is shown in Fig.6.
Fig.6. Decaborane spectrum from ITEP Bernas IS
3. EXTRACTION SYSTEM
The standard three electrodes acceleration − deceler-
ation system is used
The magnetic field of Bernas source can negative in-
fluence to beam quality. This influence, at first, pro-
vides to the beam transverse emittance enlarging and, at
second, can turn the beam from axis. The beam can
propagate to the back side with any conditions.
Fig.7. Electrostatic deflector
Two ways was proposed for this negative influence
compensation. The transport can be shielded by means
of soft magnetic steel case. But this method can not be
useful in drift. In such gap the magnetic field has the
maximal value also (up to 0.1 T). The magnet field can
be compensated by means of especially designed elec-
trostatical deflector here. Fig.7 shows the field distribu-
tion of the deflector axis that is necessary for compensa-
tion (a) and the form of electrodes realize this distribu-
tion (b). This form can not be easily realized but the
beam dynamics investigation shows that electrodes of
simple trapezoidal form are useful. The field distribu-
tion will close to showed in Fig.7 this case.
4. BEAM TRANSPORT
The electrostatical undulator was proposed for beam
transport [6] as it was noted above. It was shown using
BEAMDULAC-Tr code that low velocity beams of
boron, phosphorus, antimony, decaboran and other ions
(β=0.001) with current I=1…10 mA can be transported
to the some meters using electrostatic undulator. The am-
plitude of undulator field Е0 must be equal to 12…
14 kV/cm for ions with charge to mass ratio range
A/Z=10…120. The current transmission coefficient is
100 % in this case and high output beam quality can be
derived [7].
Fig.8. The results of beam dynamics simulation with
Z/A=1/117 and Z/A=1/100
The ions with different charge to mass ratio Z/A are
producing by Bernas source. It is interesting problem to
simulate the dynamics of beam including different ions. It
was shown that the electrostatical undulator can transport
multi ion beam. It is possible when the charge to mass
ratio of different ions is not very differs and the ion
velocities are close. As an example (see Fig.8) the
decaboran (B10H14) beam has ions with Z/A=1/100…
1/124. Figure shows the output transverse emittance in (β
y, y) (a) and (βx, x) (b) planes and beam cross-section (c).
The ions with Z/A=1/100 are plotted by “×” and for
Z/A=1/117 by points. Figure is plotted with ion energy
10 keV (β=4.27⋅10-4 for A=117 and β=4.62⋅10-4 for
A=100), the channel has 25 periods, total beam current is
1 mA. It is clear that both ion types are transported
simultaneously. But the ions with different Z/A as B10
+
and B10
2+ can not be transported simultaneously because
the ion velocities were differ appreciably. For example,
66
if the B10
+ ion energy is equal 10 keV (β=1.46⋅10-3) for
B10
2+ W=20 keV (β=2.07⋅10-3).
The transport channel construction and tuning errors
can influence to the beam dynamics. The correct
treatment of this influence is one of difficult problem in
accelerator design. New method was proposed for this
goal [8]. Note that several construction errors can be
observed in undulator based transport: the shifts of
electrodes along three axes, rotation around one of axis,
the errors in electrode aperture and thickness sizes, etc.
The investigation method includes two stages: the
calculation of electrostatical field in channel with
construction errors and the simulation of beam
dynamics in this channel. The especial version of
BEAMDULAC code was used for beam dynamics
study.
Fig.9. The results of construction errors influence study
An example illustrating this method is presented in
[8]. Such example shows that the maximal shift of elec-
trodes along longitudinal axis z can not be larger 300 µ.
The second example is shown in Fig.9. The ribbon
boron ion beam dynamics was studied in transport chan-
nel with the next parameters: the beam current 10 mA,
ion energy 10 keV, the channel has 25 periods. The out-
put transverse emittance in (βy, y) and (βx, x) planes and
beam cross-section are shown for “ideal” channel (no
constriction errors, left figures) and with treatment of
electrodes rotation around longitudinal axis (right fig-
ures). The maximal rotation is equal 0.5° in this exam-
ple. It is clear from figures that such error is not critical
for ion beam transport.
At last the errors of electrodes manufacturing and
tuning must be not larger than 300 µ along longitudinal
axis z, 200 µ along transverse axis and 0.5…1° for rota-
tion angles as it was shown by means of the numerical
simulation. All this tolerances can be easily realized.
CONCLUSIONS
The common ITEP ion implanter R&D activities
were observed. The results of Bernas ion source, extrac-
tion system and transport design are presented. The re-
sults of multi ion beam dynamics study and the influence
of construction errors to the beam dynamics are dis-
cussed.
REFERENCES
1. T.V. Kulevoy, et al. Highly stripped ion sources for
MeV ion implantation // Rev. Sci. Instrum. 2004,
v.75, N 5, p.1900.
2. T.V. Kulevoy, et al. ITEP Berna IS with additional
e-beam // Rev. Sci. Instrum. 2006, v.77, N 3,
03C110.
3. I. Yamada, W.L. Brown, J.A. Northby, M. Sos-
nowski // NIM. 1993, v.B79. p.223.
4. A.S. Perel, W.K. Loizides, W.E.Reynolds // Rev.
Sci. Instrum. 2003, v.73, N 2, p.877.
5. T.V. Kulevoy, et al. Decaborane beam from ITEP
Berna ion source // Rev. Sci. Instrum. 2006, v.77,
N 3, 03C102.
6. E.S. Masunov, S.M. Polozov. Low energy beam
transport for heavy ions in electrostatic undulator //
Proc. of RuPAC. 2004, p.225-227.
7. E.S. Masunov, S.M. Polozov, T.V. Kulevoy,
V.I. Pershin. The low energy ribbon ion beam
source and transport system // Problems of Atomic
Science and Technology, Series “Nuclear Physics
Investigations” (46). 2006, N 2, p.123-125.
8. E.S. Masunov, S.M. Polozov. Using BEAMDU-
LAC code for multi beam dynamics investigation in
ion linac // Problems of Atomic Science and Tech-
nology, Series “Nuclear Physics Investigations”
(50). 2008, N 5, p.136-139.
Статья поступила в редакцию 05.09.2007 г.
РАЗРАБОТКА ИСТОЧНИКА И СИСТЕМЫ ТРАНСПОРТИРОВКИ ЛЕНТОЧНЫХ ИОННЫХ ПУЧКОВ ДЛЯ
ПРОМЫШЛЕННЫХ ЦЕЛЕЙ
Э.С. Масунов, С.М. Полозов, Т.В. Кулевой, Р.П. Куйбида, В.И. Першин, С.В. Петренко,
Д.Н. Селезнев, И.М. Шамаилов, А.Л. Ситников
Рассматриваются вопросы, связанные с разработкой ленточного ионного пучка и системы транспортировки. Система
имплантации разрабатывается в ИТЭФ для имплантации ионного пучка в полупроводники. Для получения ленточного
ионного пучка используется источник типа «Бернас». Для транспортировки пучка предложено использовать периодиче-
скую систему электростатических линз. Рассматриваются результаты разработки отдельных частей имплантора.
РОЗРОБКА ДЖЕРЕЛА І СИСТЕМИ ТРАНСПОРТУВАННЯ СТРІЧКОВИХ ІОННИХ ПУЧКІВ
ДЛЯ ПРОМИСЛОВИХ ЦІЛЕЙ
Е.С. Масунов, С.М. Полозов, Т.В. Кулевой, Р.П. Куйбіда, В.І. Першин, С.В. Петренко,
Д.Н. Селезнев, І.М. Шамаілов, А.Л. Сітников
Розглядаються питання, пов'язані з розробкою стрічкового іонного пучка і системи транспортування. Система
імплантації розробляється в ІТЕФ для імплантації іонного пучку у напівпровідники. Для одержання стрічкового іонного
пучка використається джерело типу "Бернас". Для транспортування пучку запропоновано використати періодичну
систему електростатичних лінз. Розглядаються результати розробки окремих частин імплантору.
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5.
Series: Nuclear Physics Investigations (50), p.64-67.67
2. bernas ion source
|