IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research

The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) provides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconducting ECR-ion source and axial injection system. The specialized beam channel with...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Gikal, B., Dmitriev, S., Gulbekian, G., Apel’, P., Bashevoi, V., Bogomolov, S., Borisov, O., Buzmakov, V., Cherevatenko, A., Efremov, A., Ivanenko, I., Ivanov, O., Kazarinov, N., Khabarov, M., Kolesov, I., Mironov, V., Papash, A., Patschenko, S., Skuratov, V., Tikhomirov, A., Jazvitsky, N.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111493
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research / B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 24-27. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111493
record_format dspace
spelling irk-123456789-1114932017-01-11T03:02:55Z IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research Gikal, B. Dmitriev, S. Gulbekian, G. Apel’, P. Bashevoi, V. Bogomolov, S. Borisov, O. Buzmakov, V. Cherevatenko, A. Efremov, A. Ivanenko, I. Ivanov, O. Kazarinov, N. Khabarov, M. Kolesov, I. Mironov, V. Papash, A. Patschenko, S. Skuratov, V. Tikhomirov, A. Jazvitsky, N. Физика и техника ускорителей The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) provides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconducting ECR-ion source and axial injection system. The specialized beam channel with two coordinates scanning system and equipment for irradiation of polymer films has been installed in the implantation part of the complex. High intensity heavy ion beams of Ne, Ar, Fe, Kr, Xe, I, W have been accelerated to 1 MeV/nucleon energy. The investigation of irradiated crystals features, irradiation of different polymer films have been provided. Also few thousands square meters of track films with holes in the wide range of densities have been produced. The cyclotron based complex is capable to solve different kinds of scientific and applied problems as well. На циклотронному комплексі ИЦ100 Лабораторії ядерних реакцій ОІЯД (м. Дубна, Россія) реалізовано промислове виготовлення ядерних фільтрів. У результаті проведення повної модернізації циклотрон був оснащений надпровідним ЕЦР-джерелом і системою зовнішньої аксіальної інжекції пучка. Інплантаційний комплекс був обладнаний спеціалізованим каналом транспортування з системою сканування пучка і установкою для опромінення полімерних плівок. Були отримані інтенсивні пучки важких іонів Ne, Ar, Fe,Kr, Xe, I, W з енергією біля 1 МеВ/нуклон. Був проведений ряд наукових досліджень по вивченню властивостей опромінених кристалів, проведене опромінення різних полімерних плівок, виготовлено кілька тисяч квадратних метрів трекових мембран у широкому діапазоні змін щільності отворів. Циклотронний комплекс здатний також вирішувати і інші науково-прикладні завдання. На циклотронном комплексе ИЦ100 Лаборатории ядерных реакций ОИЯИ (г. Дубна, Россия) реализовано промышленное изготовление ядерных фильтров. В результате проведения полной модернизации циклотрон был оснащен сверхпроводящим ЭЦР-источником и системой внешней аксиальной инжекции пучка. Имплантационный комплекс был оборудован специализированным каналом транспортировки с системой сканирования пучка и установкой для облучения полимерных пленок. Были получены интенсивные пучки тяжелых ионов Ne, Ar, Fe,Kr, Xe, I, W с энергией около 1 МэВ/нуклон. Был проведен ряд научных исследований по изучению свойств облученных кристаллов, проведено облучение различных полимерных пленок, изготовлено несколько тысяч квадратных метров трековых мембран в широком диапазоне изменения плотности отверстий. Циклотронный комплекс способен также решать и другие научно-прикладные задачи. 2008 Article IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research / B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 24-27. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 29.20.Hm http://dspace.nbuv.gov.ua/handle/123456789/111493 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика и техника ускорителей
Физика и техника ускорителей
spellingShingle Физика и техника ускорителей
Физика и техника ускорителей
Gikal, B.
Dmitriev, S.
Gulbekian, G.
Apel’, P.
Bashevoi, V.
Bogomolov, S.
Borisov, O.
Buzmakov, V.
Cherevatenko, A.
Efremov, A.
Ivanenko, I.
Ivanov, O.
Kazarinov, N.
Khabarov, M.
Kolesov, I.
Mironov, V.
Papash, A.
Patschenko, S.
Skuratov, V.
Tikhomirov, A.
Jazvitsky, N.
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
Вопросы атомной науки и техники
description The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) provides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconducting ECR-ion source and axial injection system. The specialized beam channel with two coordinates scanning system and equipment for irradiation of polymer films has been installed in the implantation part of the complex. High intensity heavy ion beams of Ne, Ar, Fe, Kr, Xe, I, W have been accelerated to 1 MeV/nucleon energy. The investigation of irradiated crystals features, irradiation of different polymer films have been provided. Also few thousands square meters of track films with holes in the wide range of densities have been produced. The cyclotron based complex is capable to solve different kinds of scientific and applied problems as well.
format Article
author Gikal, B.
Dmitriev, S.
Gulbekian, G.
Apel’, P.
Bashevoi, V.
Bogomolov, S.
Borisov, O.
Buzmakov, V.
Cherevatenko, A.
Efremov, A.
Ivanenko, I.
Ivanov, O.
Kazarinov, N.
Khabarov, M.
Kolesov, I.
Mironov, V.
Papash, A.
Patschenko, S.
Skuratov, V.
Tikhomirov, A.
Jazvitsky, N.
author_facet Gikal, B.
Dmitriev, S.
Gulbekian, G.
Apel’, P.
Bashevoi, V.
Bogomolov, S.
Borisov, O.
Buzmakov, V.
Cherevatenko, A.
Efremov, A.
Ivanenko, I.
Ivanov, O.
Kazarinov, N.
Khabarov, M.
Kolesov, I.
Mironov, V.
Papash, A.
Patschenko, S.
Skuratov, V.
Tikhomirov, A.
Jazvitsky, N.
author_sort Gikal, B.
title IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
title_short IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
title_full IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
title_fullStr IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
title_full_unstemmed IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
title_sort ic100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Физика и техника ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/111493
citation_txt IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research / B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 24-27. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT gikalb ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT dmitrievs ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT gulbekiang ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT apelp ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT bashevoiv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT bogomolovs ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT borisovo ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT buzmakovv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT cherevatenkoa ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT efremova ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT ivanenkoi ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT ivanovo ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT kazarinovn ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT khabarovm ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT kolesovi ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT mironovv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT papasha ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT patschenkos ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT skuratovv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT tikhomirova ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
AT jazvitskyn ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch
first_indexed 2025-07-08T02:14:39Z
last_indexed 2025-07-08T02:14:39Z
_version_ 1837043159857627136
fulltext IC100 CYCLOTRON BASED FACILITY FOR PRODUCTION OF NUCLEAR FILTERS AS WELL AS FOR SCIENTIFIC AND APPLIED RESEARCH B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky LNR JINR, Dubna, Russia The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) pro- vides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconduct- ing ECR-ion source and axial injection system. The specialized beam channel with two coordinates scanning system and equipment for irradiation of polymer films has been installed in the implantation part of the complex. High in- tensity heavy ion beams of Ne, Ar, Fe, Kr, Xe, I, W have been accelerated to 1 MeV/nucleon energy. The investiga- tion of irradiated crystals features, irradiation of different polymer films have been provided. Also few thousands square meters of track films with holes in the wide range of densities have been produced. The cyclotron based complex is capable to solve different kinds of scientific and applied problems as well. PACS: 29.20.Hm INTRODUCTION The Facility for nuclear filters production has been developed by Laboratory for Nuclear Reactions of JINR in 1985 [1]. Complex is based on the cyclotron IC100 [2]. The cyclotron has been designed to accelerate multi-charged ions from Carbon (12�2+) to Argon (40Ar7+). Beam energy is fixed to 1.2 MeV/A at 4th ac- celeration harmonic and to 0.6 MeV/A at 6th harmonic of RF. The internal PIG ion source was installed at IC100 which defines possible range of ions [3]. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. � 5. Series: Nuclear Physics Investigations (50), p.24-27. 24 Fig.1. IC100 cyclotron. Shown are the SC ECR source, injection line, magnet and resonance cavity To improve performance and to realize industrial pro- duction of nuclear filters it was proposed to produce nu- clear filters using film irradiation by more heavy ions [4]. CYCLOTRON UPGRADE In 2003-2006 the applied research facility has been equipped with Superconducting ECR Ion Source and axial injection system (Fig.1). High intensity beams of high-charge state ions of heavy element are supplied from Ion Source [5]. Cyclotron commissioning and first beam tests have been done using 86Kr15+ and 132Xe23+ ions. The extracted beam current has exceeds 2 μA. Ions of Ar, Fe, I, W and other elements were accelerated and extracted from the cyclotron (Tabl.1). Table 1. Ions accelerated at IC100 Element Ion A/Z Current μA Neon 22Ne4+ 5,5 0,7 Argon 40Ar7+ 5,714 2,5 Iron 56Fe10+ 5,6 0,5 Krypton 86Kr15+ 5,733 2 Iodine 127I22+ 5,773 0,25 Xenon 132Xe23+ 5,739 1,2 Xenon 132Xe24+ 5,5 0,6 Tungsten 182W32+ 5,6875 0,015 Tungsten 184W31+ 5,9355 0,035 Tungsten 184W32+ 5,75 0,017 During commission period original design has been tailored to improve cyclotron performance. In addition to focusing elements in the injection line third solenoid was installed at distance of ∼600 mm from cyclotron median plane and acceptance of vertical part of injection line was increased. The position and the shape of central region elec- trodes was rearranged and optimized in order to im- prove efficiency of ion acceleration at first turns. The electrostatic deflector and two magnetic channels were installed in the IC100 in order to extract beam. Distor- tions of magnetic field caused by passive iron channels have been compensated by shimming plates of special shape. The field deviation from isochronous profile was reduced to an acceptable level and imperfection first harmonic was suppressed to few Gauss. The beam cen- tering was improved. Independent RF power supply of each resonator from two RF generators essentially im- proves cyclotron tuning and provides guarantee of long term beam stability on target. With new 3/2βλ drift buncher beam current was increased in three times. The specialized beam channel and equipment for film irra- diation as well as box for applied research were de- signed and assembled at IC100. Two coordinates beam scanning system provides homogenous ion implantation into large surface polymer films [6]. Comprehensive measurements of beam parameters were performed and influence of different factors on beam quality has been investigated. IC100 operating parameters are close to designed values (Table 2). Table 2. IC100 parameters Parameter Designed Realized Accelerated ions Ar, Kr, Xe Ne, Ar, Fe, Kr, I,Xe,W A/Z range 5,3…6,0 5,545,95 RF harmonic 4 4 Ion energy, MeV 1…1,25 0,9…1,1 Field, kGs 18,8…20,1 17,8419,3 RF frequency, MHz 20,4…20,9 19,8…20,6 Injection voltage, kV 12,5 14…15 Injection vacuum, Torr 5·10-7 1,5·10-7 Cyclotron vacuum, Torr 5·10-7 5·10-8 RF Dee voltage, kV 50 45455 Beam emittance (4RMS) AM separation, π mm⋅mr 250π ∼250π Inj.line Accept, π mm⋅mr 225π ∼220π 86Kr15+ beam intensity ∼1012 �-1 (2.5 μA) 8⋅1011 �-1 (2 μA) 132Xe23+ beam intensity 2.6·1011�-1 (1 μA) 3⋅1011 �-1 (1.2 μA) holes density uniformity multiple irradiation ± 10% ± 10% ±3% Long term beam stability ± 10% ± 4…10% Total beam transmission 8% 7% Superconducting ECR Ion Source was designed for SRF frequency range up to 24 GHz and axial magnetic field up to 30 kGs [4,5]. 18 GHz SRF Generator of 1 kW power is employed at IC100 DECRIS-SC. Fig.2. Kr spectrum from DECRIS-SC. Extraction voltage 12.5 kV. SRF power is 380 W Beam current of injected ions exceeds 60 μA for 86Kr15+ and 30 μA for 132Xe23+ (Fig.2). Source produces high charge states of very heavy ions. Wide range variation of beam current is routine procedure for DECRIS-SC. The axial injection line is accomplished with three focusing solenoids S1-S2-S3, single quad lens Q, ana- lyzing magnet AM and correction magnets (Fig.3) [7]. With S3 solenoid Acceptance of injection channel was upgraded to 250π mm·mr and beam is focused at the inflector entrance to 8 mm spot. The gap between sectors in the cyclotron was re- duced to 20 mm in order to provide high level magnetic field (19 kGs). Isochronous field profile has been formed by shaping of sectors and by using of plate shims. There are no trim coils in IC100. Central region was modified and Dee-ground gaps were reduced to 7 mm in order to improve beam focusing in axial direc- tion and to increase RF acceptance. Fig.3. Axial injection channel (length ≈5 m) DECRIS − superconducting ECR Ion source; �� – analyzing magnet; S1,S2, S3 – focusing solenoids; Q – correction quads; FC2 – Faraday cup Drift 3/2βλ grid buncher has been tested at IC100. To minimize transit time effects the gap between grid electrodes has been reduced to 3 mm. Distance between wires was decreased from 8 to 4 mm in order to provide homogenous electric field distribution. With Buncher on ion current is increased in three times which is close to designed values. Beam measurements. IC100 accelerated beam en- ergy is fixed at ∼1 MeV/A [8]. A/Z range of ions and RF frequency might be slightly varied (Tabl.2). Beam current distribution of Ar7+, Kr15+ and Xe32+ ions during acceleration in the IC100 is presented in Fig.4. The RF phase selection of ions takes place up to ∼150 mm. RF capture efficiency of DC beam (Buncher is off) is close to 10% of injected current which is close to 40ο RF phase band. With Buncher on RF acceptance of IC100 cyclotron is increased in three times up to 30% [9]. Resonance (Garren-Smith) curves were measured to control beam phase motion inside cyclotron (Fig.5). Symmetry position of resonance curves at all radii as well as for extracted beam provides experimental evi- dence of good quality field profile. 0 1 2 3 4 5 6 0 100 200 300 400 500 радиус, мм Т о к п у ч к а , м к А Kr+15 Ar+7 Xe+23 пучок после Дефлектора Fig.4.Beam current distribution during acceleration of Ar, Kr, and Xe ions Cyclotron Vacuum system consists of two sets of Cryo- and turbo-pumps. Cyclotron operates at vacuum level of 10-8 Torr. Acceleration efficiency due to vac- uum losses inside the cyclotron (from ∼150 to 400 mm radii) is in complete agreement with preliminary com- puter simulations and it is about 60…70% for all ions [10]. The slope of beam current distribution curves is similar for all ions and does not depend on ion charge (Fig.4). There are no significant vacuum losses in the 25 IC100 cyclotron due to gas stripping of heavy ions. Slight decline of ion current is caused by aperture losses of beam on small vertical gaps (20 mm). 0 1 2 3 4 18,7 18,8 18,9 19 19,1 Field, Gs R=150 mm 200250300 350 400 R=100 mm Cu rr en t, μΑ Fig.5. Resonance curves of 86Kr15+. Plato is symmetrical at all radii Ions of 184W32+ have been accelerated and delivered to the target. Beam current of W ions on the target exceeds 17 nA (3·109 pps). Technology of composite hexa- carbonyl tungsten powder W(CO)6 sublimation has been used for ion production in ECR source [11]. For produc- tion of Fe ions vapors of metallotzen Fe(C5H5)2 compos- ite unit have been injected into the discharge chamber of ECR source. Injected current of Fe ions of +9, +10,+11 charge states is equal to 3…5 μA. Extracted beam of 56Fe10+ ions is almost 0.5 μA (3·1011 pps). Extraction system of IC100 consists from an Elec- trostatic Deflector and two magnetic channels. Deflector is located at free valley. The first channel is installed in the free space between sectors. Second channel MC2 of 20×10 mm aperture is located in the field region with high azimuth gradient. To provide smooth compensa- tion of gradient fields along the beam trajectory the MC2 was divided in 5 sections with different local gra- dients. Drop of average field in the acceleration region caused by iron channels has been reduced to an accept- able level by special shim plates installed in the valley between channels. 70% of beam passes Deflector. Total extraction efficiency of beam is almost 50%. Extracted beam shape after second channel is 5×4 mm (Fig.6). Fig.6. Foto of extracted beam of 86Kr15+ after magnetic channel. Distance between wires is 5 mm Beam diagnostics and current stability. Special measures have been made to improve long term stability of beam and to provide uniform distribution of beam current on 300×200 mm2 target area. Two RF generators are used for independent feed of two RF resonators. Back loop phase stability system ensures precise tuning of RF phase and amplitude on both Dees independently. Beam line multi-wire probe with 90% transparency, Faraday Cups located on both sides of radiation area, the central collector intercepting part of beam were em- ployed for on-line beam diagnostics during films irra- diation. Faraday Cup in the beam line and other ele- ments are used for current calibration. For production of nuclear Tracking Membrans (TM) the film is moving in the vertical direction. Beam is focused in elongated ellipse in vertical direction and spread out in horizontal direction by scanning magnets with repetition rate of 100 Hz. Special attention was paid to symmetry of beam current on both sides of film. Production cycle usually takes about 2-4 hours because of the film rotation speed is 5 to 10 cm⋅c-1. Beam current is stabilized by tuning of injection line solenoid S1 as well as by changing of buncher voltage and power of ECR source. Long term stability of beam current is bet- ter than ±5% providing the automatic tuning system is on (Fig.7). To guarantee high uniform hole density dis- tribution as well as to reduce influence of sparks in the cyclotron the film is irradiated two times. Fig.7. Long term stability of 132Xe23+ beam. Current was measured on target. Irradiation period one hour TM channel. Differential pumping system along beam channel of 10 m length separates cyclotron volume from irradiation chamber and consists of 4 turbo-pumps and two for-vacuum lines (Fig.8). Fig.8. Beam delivery line to device for polymer films production Fig.9. Chamber for TM production 26 2. G. Gulbekian, et al. JINR publication �9-86-785, Dubna. 1986, p.12. Film rewinding chamber and three high speed turbo- pumps are shown in Fig.9. Cryogenic panel system of 50,000 l/s pumping speed for water vapors will provide high vacuum even with heavy gas load during fast film rotation. 3. A. Andrijanov, et al. JINR preprint �9-85-598, Dubna, 1985, p.11. 4. B. Gikal, et al. Modernization of cyclotron implant facility IC100: JINR preprint �9-2003-121, Dubna. 2003, p.18. CONCLUSIONS Intense beams of 1 MeV/A heavy ions of Ne, Ar, Fe,Kr, Xe, I., W elements have been successfully accel- erated at IC100 cyclotron. Parameters of irradiated crys- tals have been studied. Industrial production of different kinds of polymer films was performed and few tens of thousands of square meter of TM was produced in the wide range of hole densities – from 5·105 to 3·108 cm−2. IC100 cyclotron based facility is well fitted to solve other scientific and applied research programs including nanotechnologies. Modification and improvement of different subsystems is under way. Special attention is paid to expand range of accelerated ions, to increase beam intensity, to upgrade beam diagnostics, automatic control system, to improve beam stability, to modify vacuum system of radiation channel etc. Authors are greatly appreciate to LNR staff and all people who helps to upgrade facility performance. 5. A. Efremov, et al. Status of the ion source DECRIS- SC // Rev. of Scient. Instr. 2006, v.77, 03A320, p.235-239. 6. G. Gulbekian, et al. JINR preprint �9-87-495, Dubna, 1987, p.10. 7. A. Alexandrov, et al. Space Charge Dominated Beam // Proc. of the Workshop on Physics for Heavy Ion Fusion ECR-Sources. Riken, Japan, 1998, p.49. 8. B. Gikal, et al. JINR preprint �9-02-240, Dubna, 2002, p.14. 9. B. Gikal, G. Gulbekian, et al. // Proc. EPAC98, Sweeden, 1998, p.2199-2201. 10. A. Tikhomirov, P. Journ. Kováč // Vacuum Technol- ogy. 1999, v.52, p.401. 11. T. Nakagava. Production of highly charged metal ion beams from organic metal compounds at RIKEN 18 GHz ECRIS // Nucl. Instr. and Meth. 1997, v.A396, p.9-12. REFERENCES Статья поступила в редакцию 30.07.2007 г. 1. B. Gikal, et al. JINR publication P9-86-305. Dubna. 1986, p.7. УСКОРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ПРОИЗВОДСТВА ЯДЕРНЫХ ФИЛЬТРОВ И ПРОВЕДЕНИЯ НАУЧНО-ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ НА БАЗЕ ЦИКЛОТРОНА ИЦ100 Б.Н. Гикал, С.Н. Дмитриев, Г.Г. Гульбекян, П.Ю. Апель, В.В. Башевой, С.Л. Богомолов, О.Н. Борисов, В.А. Бузмаков, А.П. Череватенко, А.А. Ефремов, И.А. Иваненко, О.М. Иванов, Н.Ю. Казаринов, М.В. Хабаров, И.В. Колесов, В.И. Миронов, А.И. Папаш, С.В. Пащенко, В.А. Скуратов, А.В. Тихомиров, Н.Ю. Язвицкий На циклотронном комплексе ИЦ100 Лаборатории ядерных реакций ОИЯИ (г. Дубна, Россия) реализовано промышленное изготовление ядерных фильтров. В результате проведения полной модернизации циклотрон был оснащен сверхпроводящим ЭЦР-источником и системой внешней аксиальной инжекции пучка. Имплантационный комплекс был оборудован специализированным каналом транспортировки с системой сканирования пучка и установкой для облучения полимерных пленок. Были получены интенсивные пучки тяжелых ионов Ne, Ar, Fe,Kr, Xe, I, W с энергией около 1 МэВ/нукл. Был проведен ряд научных исследований по изучению свойств облученных кристаллов, проведено облучение различных полимерных пленок, изготовлено несколько тысяч квадратных метров трековых мембран в широком диапазоне изменения плотности отверстий. Циклотронный комплекс способен также решать и другие научно-прикладные задачи. ПРИСКОРЮВАЛЬНИЙ КОМПЛЕКС ДЛЯ ВИРОБНИЦТВА ЯДЕРНИХ ФІЛЬТРІВ І ПРОВЕДЕННЯ НАУКОВО-ПРИКЛАДНИХ ДОСЛІДЖЕНЬ НА БАЗІ ЦИКЛОТРОНУ ІЦ100 Б.Н. Гікал, С.Н. Дмитриєв, Г.Г. Гульбекян, П.Ю. Апель, В.В. Башевой, С.Л. Богомолов, О.Н. Борисов, В.А. Бузмаков, А.П. Череватенко, А.А. Єфремов, І.А. Іваненко, О.М. Іванов, Н.Ю. Казарінов, М.В. Хабаров, І.В. Колесов, В.І. Миронов, А.І. Папаш, С.В. Пащенко, В.А. Скуратов, А.В. Тихомиров, Н.Ю. Язвицький На циклотронному комплексі ІЦ100 Лабораторії ядерних реакцій ОІЯД (м. Дубна, Росія) реалізовано промислове виготовлення ядерних фільтрів. У результаті проведення повної модернізації циклотрон був оснащений надпровідним ЕЦР-джерелом і системою зовнішньої аксіальної інжекції пучка. Інплантаційний комплекс був обладнаний спеціалізованим каналом транспортування з системою сканування пучка і установкою для опромінення полімерних плівок. Були отримані інтенсивні пучки важких іонів Ne, Ar, Fe,Kr, Xe, I, W з енергією біля 1 МеВ/нукл. Був проведений ряд наукових досліджень по вивченню властивостей опромінених кристалів, проведене опромінення різних полімерних плівок, виготовлено кілька тисяч квадратних метрів трекових мембран у широкому діапазоні змін щільності отворів. Циклотронний комплекс здатний також вирішувати і інші науково-прикладні завдання. 27 INTRODUCTION УСКОРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ПРОИЗВОДСТВА ЯДЕРНЫХ ФИЛЬТРОВ И ПРОВЕДЕНИЯ НАУЧНО-ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ НА БАЗЕ ЦИКЛОТРОНА ИЦ100 ПРИСКОРЮВАЛЬНИЙ КОМПЛЕКС ДЛЯ ВИРОБНИЦТВА ЯДЕРНИХ ФІЛЬТРІВ І ПРОВЕДЕННЯ НАУКОВО-ПРИКЛАДНИХ ДОСЛІДЖЕНЬ НА БАЗІ ЦИКЛОТРОНУ ІЦ100