IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research
The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) provides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconducting ECR-ion source and axial injection system. The specialized beam channel with...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , , , , , , , , , , , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111493 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research / B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 24-27. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111493 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1114932017-01-11T03:02:55Z IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research Gikal, B. Dmitriev, S. Gulbekian, G. Apel’, P. Bashevoi, V. Bogomolov, S. Borisov, O. Buzmakov, V. Cherevatenko, A. Efremov, A. Ivanenko, I. Ivanov, O. Kazarinov, N. Khabarov, M. Kolesov, I. Mironov, V. Papash, A. Patschenko, S. Skuratov, V. Tikhomirov, A. Jazvitsky, N. Физика и техника ускорителей The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) provides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconducting ECR-ion source and axial injection system. The specialized beam channel with two coordinates scanning system and equipment for irradiation of polymer films has been installed in the implantation part of the complex. High intensity heavy ion beams of Ne, Ar, Fe, Kr, Xe, I, W have been accelerated to 1 MeV/nucleon energy. The investigation of irradiated crystals features, irradiation of different polymer films have been provided. Also few thousands square meters of track films with holes in the wide range of densities have been produced. The cyclotron based complex is capable to solve different kinds of scientific and applied problems as well. На циклотронному комплексі ИЦ100 Лабораторії ядерних реакцій ОІЯД (м. Дубна, Россія) реалізовано промислове виготовлення ядерних фільтрів. У результаті проведення повної модернізації циклотрон був оснащений надпровідним ЕЦР-джерелом і системою зовнішньої аксіальної інжекції пучка. Інплантаційний комплекс був обладнаний спеціалізованим каналом транспортування з системою сканування пучка і установкою для опромінення полімерних плівок. Були отримані інтенсивні пучки важких іонів Ne, Ar, Fe,Kr, Xe, I, W з енергією біля 1 МеВ/нуклон. Був проведений ряд наукових досліджень по вивченню властивостей опромінених кристалів, проведене опромінення різних полімерних плівок, виготовлено кілька тисяч квадратних метрів трекових мембран у широкому діапазоні змін щільності отворів. Циклотронний комплекс здатний також вирішувати і інші науково-прикладні завдання. На циклотронном комплексе ИЦ100 Лаборатории ядерных реакций ОИЯИ (г. Дубна, Россия) реализовано промышленное изготовление ядерных фильтров. В результате проведения полной модернизации циклотрон был оснащен сверхпроводящим ЭЦР-источником и системой внешней аксиальной инжекции пучка. Имплантационный комплекс был оборудован специализированным каналом транспортировки с системой сканирования пучка и установкой для облучения полимерных пленок. Были получены интенсивные пучки тяжелых ионов Ne, Ar, Fe,Kr, Xe, I, W с энергией около 1 МэВ/нуклон. Был проведен ряд научных исследований по изучению свойств облученных кристаллов, проведено облучение различных полимерных пленок, изготовлено несколько тысяч квадратных метров трековых мембран в широком диапазоне изменения плотности отверстий. Циклотронный комплекс способен также решать и другие научно-прикладные задачи. 2008 Article IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research / B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 24-27. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 29.20.Hm http://dspace.nbuv.gov.ua/handle/123456789/111493 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика и техника ускорителей Физика и техника ускорителей |
spellingShingle |
Физика и техника ускорителей Физика и техника ускорителей Gikal, B. Dmitriev, S. Gulbekian, G. Apel’, P. Bashevoi, V. Bogomolov, S. Borisov, O. Buzmakov, V. Cherevatenko, A. Efremov, A. Ivanenko, I. Ivanov, O. Kazarinov, N. Khabarov, M. Kolesov, I. Mironov, V. Papash, A. Patschenko, S. Skuratov, V. Tikhomirov, A. Jazvitsky, N. IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research Вопросы атомной науки и техники |
description |
The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) provides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconducting ECR-ion source and axial injection system. The specialized beam channel with two coordinates scanning system and equipment for irradiation of polymer films has been installed in the implantation part of the complex. High intensity heavy ion beams of Ne, Ar, Fe, Kr, Xe, I, W have been accelerated to 1 MeV/nucleon energy. The investigation of irradiated crystals features, irradiation of different polymer films have been provided. Also few thousands square meters of track films with holes in the wide range of densities have been produced. The cyclotron based complex is capable to solve different kinds of scientific and applied problems as well. |
format |
Article |
author |
Gikal, B. Dmitriev, S. Gulbekian, G. Apel’, P. Bashevoi, V. Bogomolov, S. Borisov, O. Buzmakov, V. Cherevatenko, A. Efremov, A. Ivanenko, I. Ivanov, O. Kazarinov, N. Khabarov, M. Kolesov, I. Mironov, V. Papash, A. Patschenko, S. Skuratov, V. Tikhomirov, A. Jazvitsky, N. |
author_facet |
Gikal, B. Dmitriev, S. Gulbekian, G. Apel’, P. Bashevoi, V. Bogomolov, S. Borisov, O. Buzmakov, V. Cherevatenko, A. Efremov, A. Ivanenko, I. Ivanov, O. Kazarinov, N. Khabarov, M. Kolesov, I. Mironov, V. Papash, A. Patschenko, S. Skuratov, V. Tikhomirov, A. Jazvitsky, N. |
author_sort |
Gikal, B. |
title |
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research |
title_short |
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research |
title_full |
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research |
title_fullStr |
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research |
title_full_unstemmed |
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research |
title_sort |
ic100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2008 |
topic_facet |
Физика и техника ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111493 |
citation_txt |
IC100 cyclotron based facility for production of nuclear filters as well as for scientific and applied research / B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov, V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov, M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov, N. Jazvitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 24-27. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT gikalb ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT dmitrievs ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT gulbekiang ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT apelp ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT bashevoiv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT bogomolovs ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT borisovo ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT buzmakovv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT cherevatenkoa ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT efremova ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT ivanenkoi ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT ivanovo ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT kazarinovn ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT khabarovm ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT kolesovi ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT mironovv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT papasha ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT patschenkos ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT skuratovv ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT tikhomirova ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch AT jazvitskyn ic100cyclotronbasedfacilityforproductionofnuclearfiltersaswellasforscientificandappliedresearch |
first_indexed |
2025-07-08T02:14:39Z |
last_indexed |
2025-07-08T02:14:39Z |
_version_ |
1837043159857627136 |
fulltext |
IC100 CYCLOTRON BASED FACILITY FOR PRODUCTION
OF NUCLEAR FILTERS AS WELL AS FOR SCIENTIFIC
AND APPLIED RESEARCH
B. Gikal, S. Dmitriev, G. Gulbekian, P. Apel’, V. Bashevoi, S. Bogomolov, O. Borisov,
V. Buzmakov, A. Cherevatenko, A. Efremov, I. Ivanenko, O. Ivanov, N. Kazarinov,
M. Khabarov, I. Kolesov, V. Mironov, A. Papash, S. Patschenko, V. Skuratov, A. Tikhomirov,
N. Jazvitsky
LNR JINR, Dubna, Russia
The complex based on the cyclotron IC100 of the Laboratory of Nuclear Reactions (JINR, Dubna, Russia) pro-
vides industrial fabrication of nuclear filters. During modernization the cyclotron was equipped with superconduct-
ing ECR-ion source and axial injection system. The specialized beam channel with two coordinates scanning system
and equipment for irradiation of polymer films has been installed in the implantation part of the complex. High in-
tensity heavy ion beams of Ne, Ar, Fe, Kr, Xe, I, W have been accelerated to 1 MeV/nucleon energy. The investiga-
tion of irradiated crystals features, irradiation of different polymer films have been provided. Also few thousands
square meters of track films with holes in the wide range of densities have been produced. The cyclotron based
complex is capable to solve different kinds of scientific and applied problems as well.
PACS: 29.20.Hm
INTRODUCTION
The Facility for nuclear filters production has been
developed by Laboratory for Nuclear Reactions of JINR
in 1985 [1]. Complex is based on the cyclotron IC100
[2]. The cyclotron has been designed to accelerate
multi-charged ions from Carbon (12�2+) to Argon
(40Ar7+). Beam energy is fixed to 1.2 MeV/A at 4th ac-
celeration harmonic and to 0.6 MeV/A at 6th harmonic
of RF. The internal PIG ion source was installed at
IC100 which defines possible range of ions [3].
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. � 5.
Series: Nuclear Physics Investigations (50), p.24-27.
24
Fig.1. IC100 cyclotron. Shown are the SC ECR source,
injection line, magnet and resonance cavity
To improve performance and to realize industrial pro-
duction of nuclear filters it was proposed to produce nu-
clear filters using film irradiation by more heavy ions [4].
CYCLOTRON UPGRADE
In 2003-2006 the applied research facility has been
equipped with Superconducting ECR Ion Source and
axial injection system (Fig.1). High intensity beams of
high-charge state ions of heavy element are supplied
from Ion Source [5]. Cyclotron commissioning and first
beam tests have been done using 86Kr15+ and 132Xe23+
ions. The extracted beam current has exceeds 2 μA. Ions
of Ar, Fe, I, W and other elements were accelerated and
extracted from the cyclotron (Tabl.1).
Table 1. Ions accelerated at IC100
Element Ion A/Z
Current
μA
Neon 22Ne4+ 5,5 0,7
Argon 40Ar7+ 5,714 2,5
Iron 56Fe10+ 5,6 0,5
Krypton 86Kr15+ 5,733 2
Iodine 127I22+ 5,773 0,25
Xenon 132Xe23+ 5,739 1,2
Xenon 132Xe24+ 5,5 0,6
Tungsten 182W32+ 5,6875 0,015
Tungsten 184W31+ 5,9355 0,035
Tungsten 184W32+ 5,75 0,017
During commission period original design has been
tailored to improve cyclotron performance. In addition
to focusing elements in the injection line third solenoid
was installed at distance of ∼600 mm from cyclotron
median plane and acceptance of vertical part of injection
line was increased.
The position and the shape of central region elec-
trodes was rearranged and optimized in order to im-
prove efficiency of ion acceleration at first turns. The
electrostatic deflector and two magnetic channels were
installed in the IC100 in order to extract beam. Distor-
tions of magnetic field caused by passive iron channels
have been compensated by shimming plates of special
shape. The field deviation from isochronous profile was
reduced to an acceptable level and imperfection first
harmonic was suppressed to few Gauss. The beam cen-
tering was improved. Independent RF power supply of
each resonator from two RF generators essentially im-
proves cyclotron tuning and provides guarantee of long
term beam stability on target. With new 3/2βλ drift
buncher beam current was increased in three times. The
specialized beam channel and equipment for film irra-
diation as well as box for applied research were de-
signed and assembled at IC100. Two coordinates beam
scanning system provides homogenous ion implantation
into large surface polymer films [6]. Comprehensive
measurements of beam parameters were performed and
influence of different factors on beam quality has been
investigated. IC100 operating parameters are close to
designed values (Table 2).
Table 2. IC100 parameters
Parameter Designed Realized
Accelerated ions Ar, Kr, Xe Ne, Ar, Fe,
Kr, I,Xe,W
A/Z range 5,3…6,0 5,545,95
RF harmonic 4 4
Ion energy, MeV 1…1,25 0,9…1,1
Field, kGs 18,8…20,1 17,8419,3
RF frequency, MHz 20,4…20,9 19,8…20,6
Injection voltage, kV 12,5 14…15
Injection vacuum, Torr 5·10-7 1,5·10-7
Cyclotron vacuum, Torr 5·10-7 5·10-8
RF Dee voltage, kV 50 45455
Beam emittance (4RMS)
AM separation, π mm⋅mr
250π ∼250π
Inj.line Accept, π mm⋅mr 225π ∼220π
86Kr15+ beam intensity ∼1012 �-1
(2.5 μA)
8⋅1011 �-1
(2 μA)
132Xe23+ beam intensity 2.6·1011�-1
(1 μA)
3⋅1011 �-1
(1.2 μA)
holes density uniformity
multiple irradiation
± 10% ± 10%
±3%
Long term beam stability ± 10% ± 4…10%
Total beam transmission 8% 7%
Superconducting ECR Ion Source was designed for
SRF frequency range up to 24 GHz and axial magnetic
field up to 30 kGs [4,5]. 18 GHz SRF Generator of
1 kW power is employed at IC100 DECRIS-SC.
Fig.2. Kr spectrum from DECRIS-SC. Extraction
voltage 12.5 kV. SRF power is 380 W
Beam current of injected ions exceeds 60 μA for 86Kr15+
and 30 μA for 132Xe23+ (Fig.2). Source produces high
charge states of very heavy ions. Wide range variation
of beam current is routine procedure for DECRIS-SC.
The axial injection line is accomplished with three
focusing solenoids S1-S2-S3, single quad lens Q, ana-
lyzing magnet AM and correction magnets (Fig.3) [7].
With S3 solenoid Acceptance of injection channel was
upgraded to 250π mm·mr and beam is focused at the
inflector entrance to 8 mm spot.
The gap between sectors in the cyclotron was re-
duced to 20 mm in order to provide high level magnetic
field (19 kGs). Isochronous field profile has been
formed by shaping of sectors and by using of plate
shims. There are no trim coils in IC100. Central region
was modified and Dee-ground gaps were reduced to
7 mm in order to improve beam focusing in axial direc-
tion and to increase RF acceptance.
Fig.3. Axial injection channel (length ≈5 m)
DECRIS − superconducting ECR Ion source;
�� – analyzing magnet; S1,S2, S3 – focusing solenoids;
Q – correction quads; FC2 – Faraday cup
Drift 3/2βλ grid buncher has been tested at IC100.
To minimize transit time effects the gap between grid
electrodes has been reduced to 3 mm. Distance between
wires was decreased from 8 to 4 mm in order to provide
homogenous electric field distribution. With Buncher on
ion current is increased in three times which is close to
designed values.
Beam measurements. IC100 accelerated beam en-
ergy is fixed at ∼1 MeV/A [8]. A/Z range of ions and
RF frequency might be slightly varied (Tabl.2). Beam
current distribution of Ar7+, Kr15+ and Xe32+ ions during
acceleration in the IC100 is presented in Fig.4. The RF
phase selection of ions takes place up to ∼150 mm. RF
capture efficiency of DC beam (Buncher is off) is close
to 10% of injected current which is close to 40ο RF
phase band. With Buncher on RF acceptance of IC100
cyclotron is increased in three times up to 30% [9].
Resonance (Garren-Smith) curves were measured to
control beam phase motion inside cyclotron (Fig.5).
Symmetry position of resonance curves at all radii as
well as for extracted beam provides experimental evi-
dence of good quality field profile.
0
1
2
3
4
5
6
0 100 200 300 400 500
радиус, мм
Т
о
к
п
у
ч
к
а
, м
к
А
Kr+15
Ar+7
Xe+23
пучок после
Дефлектора
Fig.4.Beam current distribution during acceleration of
Ar, Kr, and Xe ions
Cyclotron Vacuum system consists of two sets of
Cryo- and turbo-pumps. Cyclotron operates at vacuum
level of 10-8 Torr. Acceleration efficiency due to vac-
uum losses inside the cyclotron (from ∼150 to 400 mm
radii) is in complete agreement with preliminary com-
puter simulations and it is about 60…70% for all ions
[10]. The slope of beam current distribution curves is
similar for all ions and does not depend on ion charge
(Fig.4). There are no significant vacuum losses in the
25
IC100 cyclotron due to gas stripping of heavy ions.
Slight decline of ion current is caused by aperture losses
of beam on small vertical gaps (20 mm).
0
1
2
3
4
18,7 18,8 18,9 19 19,1
Field, Gs
R=150 mm
200250300
350
400
R=100 mm
Cu
rr
en
t,
μΑ
Fig.5. Resonance curves of 86Kr15+. Plato is symmetrical
at all radii
Ions of 184W32+ have been accelerated and delivered to
the target. Beam current of W ions on the target exceeds
17 nA (3·109 pps). Technology of composite hexa-
carbonyl tungsten powder W(CO)6 sublimation has been
used for ion production in ECR source [11]. For produc-
tion of Fe ions vapors of metallotzen Fe(C5H5)2 compos-
ite unit have been injected into the discharge chamber of
ECR source. Injected current of Fe ions of +9, +10,+11
charge states is equal to 3…5 μA. Extracted beam of
56Fe10+ ions is almost 0.5 μA (3·1011 pps).
Extraction system of IC100 consists from an Elec-
trostatic Deflector and two magnetic channels. Deflector
is located at free valley. The first channel is installed in
the free space between sectors. Second channel MC2 of
20×10 mm aperture is located in the field region with
high azimuth gradient. To provide smooth compensa-
tion of gradient fields along the beam trajectory the
MC2 was divided in 5 sections with different local gra-
dients. Drop of average field in the acceleration region
caused by iron channels has been reduced to an accept-
able level by special shim plates installed in the valley
between channels. 70% of beam passes Deflector. Total
extraction efficiency of beam is almost 50%. Extracted
beam shape after second channel is 5×4 mm (Fig.6).
Fig.6. Foto of extracted beam of 86Kr15+ after magnetic
channel. Distance between wires is 5 mm
Beam diagnostics and current stability. Special
measures have been made to improve long term stability
of beam and to provide uniform distribution of beam
current on 300×200 mm2 target area. Two RF generators
are used for independent feed of two RF resonators.
Back loop phase stability system ensures precise tuning
of RF phase and amplitude on both Dees independently.
Beam line multi-wire probe with 90% transparency,
Faraday Cups located on both sides of radiation area,
the central collector intercepting part of beam were em-
ployed for on-line beam diagnostics during films irra-
diation. Faraday Cup in the beam line and other ele-
ments are used for current calibration.
For production of nuclear Tracking Membrans (TM)
the film is moving in the vertical direction. Beam is
focused in elongated ellipse in vertical direction and
spread out in horizontal direction by scanning magnets
with repetition rate of 100 Hz. Special attention was
paid to symmetry of beam current on both sides of film.
Production cycle usually takes about 2-4 hours because
of the film rotation speed is 5 to 10 cm⋅c-1. Beam current
is stabilized by tuning of injection line solenoid S1 as
well as by changing of buncher voltage and power of
ECR source. Long term stability of beam current is bet-
ter than ±5% providing the automatic tuning system is
on (Fig.7). To guarantee high uniform hole density dis-
tribution as well as to reduce influence of sparks in the
cyclotron the film is irradiated two times.
Fig.7. Long term stability of 132Xe23+ beam. Current was
measured on target. Irradiation period one hour
TM channel. Differential pumping system along beam
channel of 10 m length separates cyclotron volume from
irradiation chamber and consists of 4 turbo-pumps and
two for-vacuum lines (Fig.8).
Fig.8. Beam delivery line to device for polymer films
production
Fig.9. Chamber for TM production
26
2. G. Gulbekian, et al. JINR publication �9-86-785,
Dubna. 1986, p.12.
Film rewinding chamber and three high speed turbo-
pumps are shown in Fig.9. Cryogenic panel system of
50,000 l/s pumping speed for water vapors will provide
high vacuum even with heavy gas load during fast film
rotation.
3. A. Andrijanov, et al. JINR preprint �9-85-598,
Dubna, 1985, p.11.
4. B. Gikal, et al. Modernization of cyclotron implant
facility IC100: JINR preprint �9-2003-121, Dubna.
2003, p.18.
CONCLUSIONS
Intense beams of 1 MeV/A heavy ions of Ne, Ar,
Fe,Kr, Xe, I., W elements have been successfully accel-
erated at IC100 cyclotron. Parameters of irradiated crys-
tals have been studied. Industrial production of different
kinds of polymer films was performed and few tens of
thousands of square meter of TM was produced in the
wide range of hole densities – from 5·105 to 3·108 cm−2.
IC100 cyclotron based facility is well fitted to solve
other scientific and applied research programs including
nanotechnologies. Modification and improvement of
different subsystems is under way. Special attention is
paid to expand range of accelerated ions, to increase
beam intensity, to upgrade beam diagnostics, automatic
control system, to improve beam stability, to modify
vacuum system of radiation channel etc. Authors are
greatly appreciate to LNR staff and all people who helps
to upgrade facility performance.
5. A. Efremov, et al. Status of the ion source DECRIS-
SC // Rev. of Scient. Instr. 2006, v.77, 03A320,
p.235-239.
6. G. Gulbekian, et al. JINR preprint �9-87-495,
Dubna, 1987, p.10.
7. A. Alexandrov, et al. Space Charge Dominated
Beam // Proc. of the Workshop on Physics for Heavy
Ion Fusion ECR-Sources. Riken, Japan, 1998, p.49.
8. B. Gikal, et al. JINR preprint �9-02-240, Dubna,
2002, p.14.
9. B. Gikal, G. Gulbekian, et al. // Proc. EPAC98,
Sweeden, 1998, p.2199-2201.
10. A. Tikhomirov, P. Journ. Kováč // Vacuum Technol-
ogy. 1999, v.52, p.401.
11. T. Nakagava. Production of highly charged metal
ion beams from organic metal compounds at RIKEN
18 GHz ECRIS // Nucl. Instr. and Meth. 1997,
v.A396, p.9-12. REFERENCES
Статья поступила в редакцию 30.07.2007 г. 1. B. Gikal, et al. JINR publication P9-86-305. Dubna.
1986, p.7.
УСКОРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ПРОИЗВОДСТВА ЯДЕРНЫХ ФИЛЬТРОВ
И ПРОВЕДЕНИЯ НАУЧНО-ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ НА БАЗЕ ЦИКЛОТРОНА ИЦ100
Б.Н. Гикал, С.Н. Дмитриев, Г.Г. Гульбекян, П.Ю. Апель, В.В. Башевой, С.Л. Богомолов, О.Н. Борисов,
В.А. Бузмаков, А.П. Череватенко, А.А. Ефремов, И.А. Иваненко, О.М. Иванов,
Н.Ю. Казаринов, М.В. Хабаров, И.В. Колесов, В.И. Миронов, А.И. Папаш, С.В. Пащенко,
В.А. Скуратов, А.В. Тихомиров, Н.Ю. Язвицкий
На циклотронном комплексе ИЦ100 Лаборатории ядерных реакций ОИЯИ (г. Дубна, Россия)
реализовано промышленное изготовление ядерных фильтров. В результате проведения полной
модернизации циклотрон был оснащен сверхпроводящим ЭЦР-источником и системой внешней аксиальной
инжекции пучка. Имплантационный комплекс был оборудован специализированным каналом
транспортировки с системой сканирования пучка и установкой для облучения полимерных пленок. Были
получены интенсивные пучки тяжелых ионов Ne, Ar, Fe,Kr, Xe, I, W с энергией около 1 МэВ/нукл. Был
проведен ряд научных исследований по изучению свойств облученных кристаллов, проведено облучение
различных полимерных пленок, изготовлено несколько тысяч квадратных метров трековых мембран в
широком диапазоне изменения плотности отверстий. Циклотронный комплекс способен также решать и
другие научно-прикладные задачи.
ПРИСКОРЮВАЛЬНИЙ КОМПЛЕКС ДЛЯ ВИРОБНИЦТВА ЯДЕРНИХ ФІЛЬТРІВ І ПРОВЕДЕННЯ
НАУКОВО-ПРИКЛАДНИХ ДОСЛІДЖЕНЬ НА БАЗІ ЦИКЛОТРОНУ ІЦ100
Б.Н. Гікал, С.Н. Дмитриєв, Г.Г. Гульбекян, П.Ю. Апель, В.В. Башевой, С.Л. Богомолов, О.Н. Борисов,
В.А. Бузмаков, А.П. Череватенко, А.А. Єфремов, І.А. Іваненко, О.М. Іванов,
Н.Ю. Казарінов, М.В. Хабаров, І.В. Колесов, В.І. Миронов, А.І. Папаш, С.В. Пащенко,
В.А. Скуратов, А.В. Тихомиров, Н.Ю. Язвицький
На циклотронному комплексі ІЦ100 Лабораторії ядерних реакцій ОІЯД (м. Дубна, Росія) реалізовано
промислове виготовлення ядерних фільтрів. У результаті проведення повної модернізації циклотрон був
оснащений надпровідним ЕЦР-джерелом і системою зовнішньої аксіальної інжекції пучка. Інплантаційний
комплекс був обладнаний спеціалізованим каналом транспортування з системою сканування пучка і
установкою для опромінення полімерних плівок. Були отримані інтенсивні пучки важких іонів Ne, Ar, Fe,Kr,
Xe, I, W з енергією біля 1 МеВ/нукл. Був проведений ряд наукових досліджень по вивченню властивостей
опромінених кристалів, проведене опромінення різних полімерних плівок, виготовлено кілька тисяч
квадратних метрів трекових мембран у широкому діапазоні змін щільності отворів. Циклотронний комплекс
здатний також вирішувати і інші науково-прикладні завдання.
27
INTRODUCTION
УСКОРИТЕЛЬНЫЙ КОМПЛЕКС ДЛЯ ПРОИЗВОДСТВА ЯДЕРНЫХ ФИЛЬТРОВ И ПРОВЕДЕНИЯ НАУЧНО-ПРИКЛАДНЫХ ИССЛЕДОВАНИЙ НА БАЗЕ ЦИКЛОТРОНА ИЦ100
ПРИСКОРЮВАЛЬНИЙ КОМПЛЕКС ДЛЯ ВИРОБНИЦТВА ЯДЕРНИХ ФІЛЬТРІВ І ПРОВЕДЕННЯ НАУКОВО-ПРИКЛАДНИХ ДОСЛІДЖЕНЬ НА БАЗІ ЦИКЛОТРОНУ ІЦ100
|