On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes

A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are propose...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Papash, A., Alenitsky, Y.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111533
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes / A. Papash, Y. Alenitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 143-145. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111533
record_format dspace
spelling irk-123456789-1115332017-01-11T03:03:41Z On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes Papash, A. Alenitsky, Y. Применение ускорителей A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are proposed. Компактні ізохронні циклотрони негативних іонів водню в діапазоні енергій до 30 МеВ широко використовуються для виробництва медичних ізотопів і інших застосувань. Проведено порівняння і аналіз різних моделей прискорювачів. Запропоновано способи підвищення ефективності роботи і збільшення інтенсивності пучків. Компактные изохронные циклотроны отрицательных ионов водорода в диапазоне энергий до 30 МэВ широко используются для производства медицинских изотопов и других применений. Проведено сравнение и анализ различных моделей ускорителей. Предложены способы повышения эффективности работы и увеличения интенсивности пучков. 2008 Article On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes / A. Papash, Y. Alenitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 143-145. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.20Hm http://dspace.nbuv.gov.ua/handle/123456789/111533 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Применение ускорителей
Применение ускорителей
spellingShingle Применение ускорителей
Применение ускорителей
Papash, A.
Alenitsky, Y.
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
Вопросы атомной науки и техники
description A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are proposed.
format Article
author Papash, A.
Alenitsky, Y.
author_facet Papash, A.
Alenitsky, Y.
author_sort Papash, A.
title On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
title_short On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
title_full On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
title_fullStr On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
title_full_unstemmed On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
title_sort on commercial н⁻ cyclotrons up to 30 mev energy range for production of medicine isotopes
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Применение ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/111533
citation_txt On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes / A. Papash, Y. Alenitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 143-145. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT papasha oncommercialncyclotronsupto30mevenergyrangeforproductionofmedicineisotopes
AT alenitskyy oncommercialncyclotronsupto30mevenergyrangeforproductionofmedicineisotopes
first_indexed 2025-07-08T02:17:59Z
last_indexed 2025-07-08T02:17:59Z
_version_ 1837043372675563520
fulltext ON COMMERCIAL Н− CYCLOTRONS UP TO 30 MeV ENERGY RANGE FOR PRODUCTION OF MEDICINE ISOTOPES A. Papash, Yu. Alenitsky JINR, Dubna, Russia A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are proposed. PACS: 29.20Hm INTRODUCTION Commercial cyclotrons of the energy range of 104 30 MeV are widely used in isotope production and oth- er medical applications. An 1 mA beam is extracted from the TR30 H− cyclotron. An 3 mA beam of H− ions was accelerated to 1 MeV at the central region model at TRIUMF [1,5]. Different types of cyclotrons are avail- able on the market. The CYCLONE14+ (IBA) is an ex- ample of a cyclotron with an internal target. 2 mA beam of 14 MeV protons hits the target disposed inside the vacuum chamber. Extraction is not foreseen. The prototype of self extracted cyclotron (proton beam up to 2 mA) is operating at IBA [4]. The field in- dex drops rapidly in the extraction region. The radial stability is lost and particles escape magnet without any extraction device. There is no clear separation between the last circulating turn and the extracted orbit even so the beam precession is employed in order to separate the orbits. 30% of the beam spread out in the halo and should be dumped by the special beam stop. H− CYCLOTRONS FOR PET The advantage of H− cyclotron is easy and low loss extraction by stripping negative hydrogen ions to pro- tons on carbon foil. Single particle, fixed RF frequency commercial cyclotrons are relatively chip and robust in operation. The beam energy could be varied via the ra- dial movement of the stripper. The CP42 cyclotrons are still in use and provide up to 200 µA of H− beam. Com- mercial cyclotrons of third generation were designed specifically for producing PET isotopes (11C, 13N, 15O, 18F). Required beam current is quite moderate (Table 1). Table 1. Cyclotrons to produce PET isotopes Cyclotron Company H−/D− Energy H−/ D− Current CYCLONE10 “Light” IBA Belgium 10 MeV 60 µA CYCLONE 18/9 IBA Belgium 18/9 70/30 MINI- TRACE GE /SCND USA 10/5 60/30 PET-TRACE GE /SCND USA 18/9 65/30 RDS-111 CTI (USA) 11 100 HM-12 SUMIT (JPN) 12/6 60/30 HM-18 SUMIT (JPN) 18/9 60/30 TR18/9 EBCO (CND) 18/9 300/150 H- beam distribution inside Cyclotron 0 20 40 60 80 100 0 2 4 6 8 10 12 14 16 18 20 Energy ( MeV) Fr ac tio n of b ea m , % 1 - vacuum 10-5 torr (C18) 2 - vacuum 5·10-7 torr (TR18) 1 2 stripping losses Fig.1. Beam losses during acceleration caused by a dissociation of H− ions on residual gas in the vacuum chamber of a cyclotron The four-fold symmetry magnetic structure of cyclotron is of a closed type (Table 2). Eight holes in upper and low valleys are used for pumping, support of RF cavities, diagnostic equipment, etc. Dees are in- stalled in opposite valleys and mechanically connected by a strap. The gap between hills is reduced to 243 cm while the valley gap is pretty large. The axial focusing is provided for by straight sectors. H− ions are produced in a cold PIG ion source loc- ated inside the vacuum chamber of PET cyclotron. The vacuum is quite poor because of a high gas flow to feed the ion source. H− losses due to gas stripping were measured at the CYCLONE18/9 and TR18/9 (Fig.1). To distinguish the beam losses due to the non-isochron- ous motion from the gas losses of negative ions, the po- larity of the main magnet was reversed and a proton beam was accelerated. The magnet was tuned for an isochronous field. Part of the proton beam was lost dur- ing selection of the RF phases in the centre of machine. No additional losses of the protons have been observed. Then polarity of a magnet was reversed and H− ions were accelerated. The degradation of the H− beam in addition to the phase selection is clearly indicates the stripping losses (Fig.2). Cold PIG ion source provides up to 200 µA of Н ions at 1 MeV. Nevertheless the ex- tracted beam from PET cyclotron is limited to 70 µA due to the poor vacuum conditions (Table 1). With proper design of the vacuum system of existing com- mercial cyclotrons employing internal ion source it can be possible to improve vacuum and double the H− beam current (Fig.2). ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. 5.№ Series: Nuclear Physics Investigations (50), p.143-145. 143 Transmission of H- beam in the Cyclotron 0 10 20 30 40 50 60 70 80 90 100 0 2 4 6 8 10 12 14 16 18 20 22 Pressure in the Vacuum Chamber (10-6 torr) Fr ac tio n of b ea m , % TRANSMISSION = Ratio between extracted current and beam current at 1 MeV 1 2 3 4 5 6 7 8 9 1,2,3,4,5 - data from C18/9 7,8,9 - data from TR18,TR30 6 - data from C30 stripping losses Fig.2. Transmission of H− beam inside a cyclotron at different vacuum conditions Table 2. Parameters of PET cyclotrons Cyclotron C10 IBA RDS 111 C18/9 IBA TR18/9 EBCO H− / D− Energy 10 MeV USA 11 18/9 12…18/ 6…9 H− /D− current 60 µA 100 70/30 300/150 Sectors 4 4 4 4 Average field 10 kGs 12 10 12 Field in Hill 17 kGs 19 17 20 Fld in Valley 3 kGs 1.57 3 5 Pole radius 50 cm 45 75 60 Yoke diametr 150 cm 160 210 170×170 Hill gap 3 cm 1.5 3 3.5 Valley gap 67 cm 40 67 20 Sector angle 54ο 56ο 54ο 32…45ο Trim coils NO NO flaps 5 coils Hole in Plug NO NO NO ∅=5 cm Coil, kA× turn 51 112 85 Coil PS 12 kW 22 24 24 Magnet weight 10 tons 10 20 25 RF freq 42 kHz 72 42 73/36 RF harmonic 2 4 2/4 4 Number of dee 2 4 2 2 Dee voltage 32 kV 30 32 50 Energy gain 60 kev 140 60 200 Dee ang. width 30ο 30ο 30ο 45…32ο RF power 10 kW 10 10 20 Self-shield Yes Yes No No Ion source int.PIG PIG 2 PIG CUSP Source current 1 mA -- 1 5…15 Injection vltg -- 1 kV -- 25/12.5 Vacuum, Torr 10−5 10−5 8·10−6 4·10−7 Pumps Diff. Diff Diff Cryo H− strip. losses 45% 40% <1% Extract. ports 4 1 8 2 TR18/9 cyclotron (EBCO) with injection of H− beam from the external CUSP ion source is used for PET iso- topes production as well as in high current mode of op- eration. A few versions of CUSP source are available on a market – from 5 to 15 mA beam of H− ions (4 RMS normalized emittance is 0.35…0.8 mmπ ⋅mr) [2]. The in- jection line (ISIS) consists of einzel lens, solenoid and two axially rotated quads to match the beam to the cyclotron acceptance. The electric radius of spiral in- flector is 25 mm, the tilt parameter is k´= −0.76. The gap between inflector plates is 8 mm and the aspect ra- tio is 2. The beam transmission is improved by two times with 3βλ/2 buncher. The beam centring is better than 1 mm thanks to the shimming of the first harmonic of magnetic field to less than 2 Gs. The deviation of central phase from isochronous one is not exceeds ±10ο RF. The circulating radial emittance as well as other beam parameters of the TR18 cyclotron were measured by TRIUMF scientists [7]. The shadow method was ap- plied. The fraction of beam included into the phase space area is given in the Table 3. The area in the phase space corresponding to the circulating radial emittance of 1 π mm mr∙ covers almost 90% of the beam intensity. The beam density distribution is slightly different from gauss shape. The beam core of 3 mm in diameter is sur- rounded by halo (beam tails). Table 3.Circulating radial emittance of an H− beam Norm.emittance 0.5 π 1 π 1.5 π 2 π Beam fraction 66% 90% 97% 99% Particles of the 80ο RF phase band pass between the TR18 central region electrodes. The RF acceptance of TR18 is 50ο RF for the injected beam of 0.35 mm·mrπ emittance [6]. Operating vacuum is better than 4·10− 7 Torr. No H− beam losses (except one for the phase selec- tion in the centre) have been detected in the TR18. The beam footprint on the stripping foil is (5×5) mm2. Dependence of the beam transmission from ISIS to the cyclotron on the transverse emittance of injected beam was studied at the commercial cyclotron TRD9 which is a modified version of the TR18 [3]. The cy- clotron RF acceptance is a ratio of CW beam after the phase selection is completed to DC current in the injec- tion line. 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 0 0 ,1 0 ,2 0 ,3 0 ,4 0 ,5 0 ,6 0 ,7 0 ,8 0 ,9 norma liz e d e mit t a nc e , PI mm.mra d R at io o f C W :D C c ur re nt , % 1 - be a m hit Inf le c t or pla t e s 1 Fig.3. Dependence of the cyclotron acceptance on the emittance of injected beam. The buncher is off [6] The beam emittance was varied with collimators lo- cated in the drift section of ISIS [6]. The transmission from ISIS to cyclotron drops in by two times when the beam emittance grows from 0.3 to 0.8 mm·mrπ π (Fig.3). Simple increasing of beam current from the ion source cannot benefit the goal to increase accelerated beam to few mA because of the degradation of the beam transmission. Existing commercial cyclotrons would al- low to extract few mA of the H− beam, if one would be able to inject over 20 mA of negative ions with an 4 RMS normalized emittance less than 0.6 mm·mr.π 30 MeV HIGH CURRENT CYCLOTRONS Two commercial cyclotrons, CYCLONE-30 from IBA (Belgium) and TR30 (EBCO, CANADA) are cap- able of accelerating of more than 500 µA of H beam (Table 4). Both machines are available in the H− and H− /D− versions. The beam transmission in the C30 is im- 144 proved due to an efficient RF buncher. The vacuum in the C30 is moderate. Up to 20% of beam is lost inside the vacuum chamber because of the gas stripping. The normalized emittance of the C30 extracted beam ex- ceeds 5π mm·mr. Using a high performance version of CUSP ion source, modified vacuum pumping system (high speed turbo-pumps instead of diffusion pumps) one can hope to accelerate up to an 1mA H− beam in the CYCLONE30. Table 4. High current cyclotrons Parameter CYCLONE30 TR30 Beam current 350…500 µA 1250 µA Energy range (MeV) 15 4 30 15 4 30 Extracted emittance (normalized = βγε) Rad/ax=10 /5π π mm mr∙ 2 /1π π mm mr∙ Energy spread 2% 1% Average field Bav 10 kGs 12 kGs Hill field Bhill 17 kGs 19 kGs Valley field Bvall 1.2 kGs 5.5 kGs Pole radius 91 cm 76 cm Hill gap 5 cm 4 cm Valley gap 100 cm 18 cm Sector angle 54…58ο 32…45ο Coil power 7 kW 30 kW RF frequency 65.5 MHz 74 MHz Number of dees 2 2 RF harmonic 4 4 Dee voltage 50 kV 50 kV Number of turns 180 150 Dee angular width 30ο 45ο RF power 15 kW 35 kW H ion source multi-CUSP multi-CUSP Source current (DC) 5 mA 15 mA Source emittance 0.8 mm mrπ ∙ 0.8 mm mrπ ∙ H injection energy 30 keV 25 keV Operating vacuum 3·10−6 Torr 3·10−7 Torr Vacuum system CRP + DP 2 CRP Cycl. RF acceptance 30% bnch ON 20% H− strip. losses 20% < 1% Type of extraction Strip. foil Strip. foil . The TR30 cyclotron is equipped with high perform- ance version of the CUSP Source [2]. Two TR30 oper- ate with a beam current of more than 1 mA. The H− beam transmission in the TR30 is better than 99% thanks to the good vacuum and perfect isochronous field. The ion source, the injection line, the vacuum sys- tem, the RF, the extraction mechanism of TR30 and TR18 are pretty similar. The beam energy is varied from 15 to 30 MeV by the radial movement of the stripping foil mechanism. CONCLUSIONS Private companies deliver a standard commercial cyclotron in a year from data the contract is signed. Few months will be required to bring a cyclotron into a stable operation. The price of a commercial PET unit is varying from company to company. A very basic 10 MeV unit can be purchased for 0.8…1.2 MUSD. The PET cyclotron with external injection can be purchased for 2 MUSD. The price of an 30 MeV high current cyclotron is close to 5 MUSD. It is a policy of private companies to buy as many subsystems and spare parts as possible rather than to manufacture itself. Most private companies use storage facilities and assembly halls. Cyclotron to accelerate an 3 mA H− beam can be fabricated based on elements and equipment used in commercially available machines. An original design of the injection system, inflector and central region in combination with well developed standard equipment will ensure that the design goals can be achieved. ACKNOWLEDGEMENT Author is greatly thankful to Prof. R.Johnson from EBCO technologies for warm reception and supervision during the job term under TRD9 project, to Dr. R.Laxdal for supervision during beam tests at TRIUMF, to Y.Jongen (IBA) for useful discussions at the time of experiments on C18 and Dr. T.Kuo from TRIUMF for useful advise on the performance of CUSP ion source. REFERENCES 1. T. Kuo, et al. Injection Study for high current H Cyclotron // Proc. XV Cycl. Conf. 1998. 2. T. Kuo, et al. Development of a 15 mA DC H Multi- CUSP Source // Proc. XVI Cycl. Conf. 2001. 3. K. Erdman, et al. Compact 9 MeV Deuteron Cyclotron with Pulsed Beam // Proc. XVI Cycl. Conf. 2001, p.383. 4. W. Kleeven, S. Zaremba, Y. Yongen. Self-extrac- ted Cyclotron // Proc. XVI Cycl. Conf. 2001. 5. R. Baartman. Intensity limitations in Compact H  cyclotrons // Proc. XIV Cycl. Conf. 1995. 6. A. Papash, T. Zhang. On Commercial Cyclotron of Intense Proton beam of 30 MeV Energy Range // Proc. XVII Cycl. Conf. 2004, Tokyo. 7. R. Laxdal, T. Kuo. Beam tests on the TR13 Cyclotron “TRIUMF”. Vancouver, Canada, 1994. Статья поступила в редакцию 04.09.2007 г. КОММЕРЧЕСКИЕ ЦИКЛОТРОНЫ ОТРИЦАТЕЛЬНЫХ ИОНОВ ВОДОРОДА В ДИАПАЗОНЕ ЭНЕРГИЙ ДО 30 МэВ ДЛЯ ПРОИЗВОДСТВА МЕДИЦИНСКИХ ИЗОТОПОВ А. Папаш, Ю. Аленицкий Компактные изохронные циклотроны отрицательных ионов водорода в диапазоне энергий до 30 МэВ широко используются для производства медицинских изотопов и других применений. Проведено сравнение и анализ различных моделей ускорителей. Предложены способы повышения эффективности работы и увеличения интенсивности пучков. КОМЕРЦІЙНІ ЦИКЛОТРОНИ НЕГАТИВНИХ ІОНІВ ВОДНЮ В ДІАПАЗОНІ ЕНЕРГІЙ ДО 30 МеВ ДЛЯ ВИРОБНИЦТВА МЕДИЧНИХ ІЗОТОПІВ А. Папаш, Ю. Аленицький Компактні ізохронні циклотрони негативних іонів водню в діапазоні енергій до 30 МеВ широко використовуються для виробництва медичних ізотопів і інших застосувань. Проведено порівняння і аналіз різних моделей прискорювачів. Запропоновано способи підвищення ефективності роботи і збільшення інтенсивності пучків. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. 5.№ Series: Nuclear Physics Investigations (50), p.143-145. 145 INTRODUCTION