On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes
A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are propose...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111533 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes / A. Papash, Y. Alenitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 143-145. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111533 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1115332017-01-11T03:03:41Z On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes Papash, A. Alenitsky, Y. Применение ускорителей A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are proposed. Компактні ізохронні циклотрони негативних іонів водню в діапазоні енергій до 30 МеВ широко використовуються для виробництва медичних ізотопів і інших застосувань. Проведено порівняння і аналіз різних моделей прискорювачів. Запропоновано способи підвищення ефективності роботи і збільшення інтенсивності пучків. Компактные изохронные циклотроны отрицательных ионов водорода в диапазоне энергий до 30 МэВ широко используются для производства медицинских изотопов и других применений. Проведено сравнение и анализ различных моделей ускорителей. Предложены способы повышения эффективности работы и увеличения интенсивности пучков. 2008 Article On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes / A. Papash, Y. Alenitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 143-145. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 29.20Hm http://dspace.nbuv.gov.ua/handle/123456789/111533 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Применение ускорителей Применение ускорителей |
spellingShingle |
Применение ускорителей Применение ускорителей Papash, A. Alenitsky, Y. On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes Вопросы атомной науки и техники |
description |
A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for production of medical isotopes and other applications. The physical and technical parameters of accelerators are compared. Measures to improve performance and to increase beam intensity are proposed. |
format |
Article |
author |
Papash, A. Alenitsky, Y. |
author_facet |
Papash, A. Alenitsky, Y. |
author_sort |
Papash, A. |
title |
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes |
title_short |
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes |
title_full |
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes |
title_fullStr |
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes |
title_full_unstemmed |
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes |
title_sort |
on commercial н⁻ cyclotrons up to 30 mev energy range for production of medicine isotopes |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2008 |
topic_facet |
Применение ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111533 |
citation_txt |
On commercial Н⁻ cyclotrons up to 30 MeV energy range for production of medicine isotopes / A. Papash, Y. Alenitsky // Вопросы атомной науки и техники. — 2008. — № 5. — С. 143-145. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT papasha oncommercialncyclotronsupto30mevenergyrangeforproductionofmedicineisotopes AT alenitskyy oncommercialncyclotronsupto30mevenergyrangeforproductionofmedicineisotopes |
first_indexed |
2025-07-08T02:17:59Z |
last_indexed |
2025-07-08T02:17:59Z |
_version_ |
1837043372675563520 |
fulltext |
ON COMMERCIAL Н− CYCLOTRONS UP TO 30 MeV ENERGY
RANGE FOR PRODUCTION OF MEDICINE ISOTOPES
A. Papash, Yu. Alenitsky
JINR, Dubna, Russia
A compact isochronous cyclotrons to accelerate negative hydrogen ions up to 30 MeV are widely used for
production of medical isotopes and other applications. The physical and technical parameters of accelerators are
compared. Measures to improve performance and to increase beam intensity are proposed.
PACS: 29.20Hm
INTRODUCTION
Commercial cyclotrons of the energy range of 104
30 MeV are widely used in isotope production and oth-
er medical applications. An 1 mA beam is extracted
from the TR30 H−
cyclotron. An 3 mA beam of H− ions
was accelerated to 1 MeV at the central region model at
TRIUMF [1,5]. Different types of cyclotrons are avail-
able on the market. The CYCLONE14+ (IBA) is an ex-
ample of a cyclotron with an internal target. 2 mA beam
of 14 MeV protons hits the target disposed inside the
vacuum chamber. Extraction is not foreseen.
The prototype of self extracted cyclotron (proton
beam up to 2 mA) is operating at IBA [4]. The field in-
dex drops rapidly in the extraction region. The radial
stability is lost and particles escape magnet without any
extraction device. There is no clear separation between
the last circulating turn and the extracted orbit even so
the beam precession is employed in order to separate
the orbits. 30% of the beam spread out in the halo and
should be dumped by the special beam stop.
H− CYCLOTRONS FOR PET
The advantage of H− cyclotron is easy and low loss
extraction by stripping negative hydrogen ions to pro-
tons on carbon foil. Single particle, fixed RF frequency
commercial cyclotrons are relatively chip and robust in
operation. The beam energy could be varied via the ra-
dial movement of the stripper. The CP42 cyclotrons are
still in use and provide up to 200 µA of H− beam. Com-
mercial cyclotrons of third generation were designed
specifically for producing PET isotopes (11C, 13N, 15O,
18F). Required beam current is quite moderate (Table 1).
Table 1. Cyclotrons to produce PET isotopes
Cyclotron Company H−/D−
Energy
H−/ D−
Current
CYCLONE10
“Light”
IBA
Belgium
10 MeV 60 µA
CYCLONE
18/9
IBA
Belgium
18/9 70/30
MINI-
TRACE
GE /SCND
USA
10/5 60/30
PET-TRACE
GE /SCND
USA
18/9 65/30
RDS-111 CTI (USA) 11 100
HM-12 SUMIT (JPN) 12/6 60/30
HM-18 SUMIT (JPN) 18/9 60/30
TR18/9 EBCO (CND) 18/9 300/150
H- beam distribution inside Cyclotron
0
20
40
60
80
100
0 2 4 6 8 10 12 14 16 18 20
Energy ( MeV)
Fr
ac
tio
n
of
b
ea
m
,
%
1 - vacuum 10-5 torr (C18)
2 - vacuum 5·10-7 torr (TR18)
1
2
stripping losses
Fig.1. Beam losses during acceleration caused by a
dissociation of H− ions on residual gas in the vacuum
chamber of a cyclotron
The four-fold symmetry magnetic structure of
cyclotron is of a closed type (Table 2). Eight holes in
upper and low valleys are used for pumping, support of
RF cavities, diagnostic equipment, etc. Dees are in-
stalled in opposite valleys and mechanically connected
by a strap. The gap between hills is reduced to 243 cm
while the valley gap is pretty large. The axial focusing
is provided for by straight sectors.
H− ions are produced in a cold PIG ion source loc-
ated inside the vacuum chamber of PET cyclotron. The
vacuum is quite poor because of a high gas flow to feed
the ion source. H−
losses due to gas stripping were
measured at the CYCLONE18/9 and TR18/9 (Fig.1).
To distinguish the beam losses due to the non-isochron-
ous motion from the gas losses of negative ions, the po-
larity of the main magnet was reversed and a proton
beam was accelerated. The magnet was tuned for an
isochronous field. Part of the proton beam was lost dur-
ing selection of the RF phases in the centre of machine.
No additional losses of the protons have been observed.
Then polarity of a magnet was reversed and H− ions
were accelerated. The degradation of the H− beam in
addition to the phase selection is clearly indicates the
stripping losses (Fig.2). Cold PIG ion source provides
up to 200 µA of Н ions at 1 MeV. Nevertheless the ex-
tracted beam from PET cyclotron is limited to 70 µA
due to the poor vacuum conditions (Table 1). With
proper design of the vacuum system of existing com-
mercial cyclotrons employing internal ion source it can
be possible to improve vacuum and double the H− beam
current (Fig.2).
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. 5.№
Series: Nuclear Physics Investigations (50), p.143-145.
143
Transmission of H- beam in the Cyclotron
0
10
20
30
40
50
60
70
80
90
100
0 2 4 6 8 10 12 14 16 18 20 22
Pressure in the Vacuum Chamber (10-6 torr)
Fr
ac
tio
n
of
b
ea
m
, %
TRANSMISSION = Ratio
between extracted
current and beam
current at 1 MeV
1
2
3
4
5
6
7
8
9
1,2,3,4,5 - data from C18/9
7,8,9 - data from TR18,TR30
6 - data from C30
stripping losses
Fig.2. Transmission of H−
beam inside a cyclotron at
different vacuum conditions
Table 2. Parameters of PET cyclotrons
Cyclotron C10
IBA
RDS
111
C18/9
IBA
TR18/9
EBCO
H−
/ D−
Energy
10 MeV USA
11
18/9 12…18/
6…9
H−
/D− current 60 µA 100 70/30 300/150
Sectors 4 4 4 4
Average field 10 kGs 12 10 12
Field in Hill 17 kGs 19 17 20
Fld in Valley 3 kGs 1.57 3 5
Pole radius 50 cm 45 75 60
Yoke diametr 150 cm 160 210 170×170
Hill gap 3 cm 1.5 3 3.5
Valley gap 67 cm 40 67 20
Sector angle 54ο 56ο 54ο 32…45ο
Trim coils NO NO flaps 5 coils
Hole in Plug NO NO NO ∅=5 cm
Coil, kA× turn 51 112 85
Coil PS 12 kW 22 24 24
Magnet weight 10 tons 10 20 25
RF freq 42 kHz 72 42 73/36
RF harmonic 2 4 2/4 4
Number of dee 2 4 2 2
Dee voltage 32 kV 30 32 50
Energy gain 60 kev 140 60 200
Dee ang. width 30ο 30ο 30ο 45…32ο
RF power 10 kW 10 10 20
Self-shield Yes Yes No No
Ion source int.PIG PIG 2 PIG CUSP
Source current 1 mA -- 1 5…15
Injection vltg -- 1 kV -- 25/12.5
Vacuum, Torr 10−5
10−5
8·10−6
4·10−7
Pumps Diff. Diff Diff Cryo
H− strip. losses 45% 40% <1%
Extract. ports 4 1 8 2
TR18/9 cyclotron (EBCO) with injection of H−
beam
from the external CUSP ion source is used for PET iso-
topes production as well as in high current mode of op-
eration. A few versions of CUSP source are available on
a market – from 5 to 15 mA beam of H− ions (4 RMS
normalized emittance is 0.35…0.8 mmπ ⋅mr) [2]. The in-
jection line (ISIS) consists of einzel lens, solenoid and
two axially rotated quads to match the beam to the
cyclotron acceptance. The electric radius of spiral in-
flector is 25 mm, the tilt parameter is k´= −0.76. The
gap between inflector plates is 8 mm and the aspect ra-
tio is 2. The beam transmission is improved by two
times with 3βλ/2 buncher. The beam centring is better
than 1 mm thanks to the shimming of the first harmonic
of magnetic field to less than 2 Gs. The deviation of
central phase from isochronous one is not exceeds ±10ο
RF.
The circulating radial emittance as well as other
beam parameters of the TR18 cyclotron were measured
by TRIUMF scientists [7]. The shadow method was ap-
plied. The fraction of beam included into the phase
space area is given in the Table 3. The area in the phase
space corresponding to the circulating radial emittance
of 1 π mm mr∙ covers almost 90% of the beam intensity.
The beam density distribution is slightly different from
gauss shape. The beam core of 3 mm in diameter is sur-
rounded by halo (beam tails).
Table 3.Circulating radial emittance of an H− beam
Norm.emittance 0.5 π 1 π 1.5 π 2 π
Beam fraction 66% 90% 97% 99%
Particles of the 80ο
RF phase band pass between the
TR18 central region electrodes. The RF acceptance of
TR18 is 50ο
RF for the injected beam of 0.35 mm·mrπ
emittance [6]. Operating vacuum is better than 4·10−
7
Torr. No H−
beam losses (except one for the phase selec-
tion in the centre) have been detected in the TR18. The
beam footprint on the stripping foil is (5×5) mm2.
Dependence of the beam transmission from ISIS to
the cyclotron on the transverse emittance of injected
beam was studied at the commercial cyclotron TRD9
which is a modified version of the TR18 [3]. The cy-
clotron RF acceptance is a ratio of CW beam after the
phase selection is completed to DC current in the injec-
tion line.
0
2
4
6
8
1 0
1 2
1 4
1 6
1 8
0 0 ,1 0 ,2 0 ,3 0 ,4 0 ,5 0 ,6 0 ,7 0 ,8 0 ,9
norma liz e d e mit t a nc e , PI mm.mra d
R
at
io
o
f C
W
:D
C
c
ur
re
nt
, %
1 - be a m hit Inf le c t or pla t e s
1
Fig.3. Dependence of the cyclotron acceptance on the
emittance of injected beam. The buncher is off [6]
The beam emittance was varied with collimators lo-
cated in the drift section of ISIS [6]. The transmission
from ISIS to cyclotron drops in by two times when the
beam emittance grows from 0.3 to 0.8 mm·mrπ π (Fig.3).
Simple increasing of beam current from the ion
source cannot benefit the goal to increase accelerated
beam to few mA because of the degradation of the beam
transmission. Existing commercial cyclotrons would al-
low to extract few mA of the H− beam, if one would be
able to inject over 20 mA of negative ions with an
4 RMS normalized emittance less than 0.6 mm·mr.π
30 MeV HIGH CURRENT CYCLOTRONS
Two commercial cyclotrons, CYCLONE-30 from
IBA (Belgium) and TR30 (EBCO, CANADA) are cap-
able of accelerating of more than 500 µA of H beam
(Table 4). Both machines are available in the H− and H−
/D− versions. The beam transmission in the C30 is im-
144
proved due to an efficient RF buncher. The vacuum in
the C30 is moderate. Up to 20% of beam is lost inside
the vacuum chamber because of the gas stripping. The
normalized emittance of the C30 extracted beam ex-
ceeds 5π mm·mr. Using a high performance version of
CUSP ion source, modified vacuum pumping system
(high speed turbo-pumps instead of diffusion pumps)
one can hope to accelerate up to an 1mA H−
beam in the
CYCLONE30.
Table 4. High current cyclotrons
Parameter CYCLONE30 TR30
Beam current 350…500 µA 1250 µA
Energy range (MeV) 15 4 30 15 4 30
Extracted emittance
(normalized = βγε)
Rad/ax=10 /5π π
mm mr∙
2 /1π π
mm mr∙
Energy spread 2% 1%
Average field Bav 10 kGs 12 kGs
Hill field Bhill 17 kGs 19 kGs
Valley field Bvall 1.2 kGs 5.5 kGs
Pole radius 91 cm 76 cm
Hill gap 5 cm 4 cm
Valley gap 100 cm 18 cm
Sector angle 54…58ο 32…45ο
Coil power 7 kW 30 kW
RF frequency 65.5 MHz 74 MHz
Number of dees 2 2
RF harmonic 4 4
Dee voltage 50 kV 50 kV
Number of turns 180 150
Dee angular width 30ο 45ο
RF power 15 kW 35 kW
H ion source multi-CUSP multi-CUSP
Source current (DC) 5 mA 15 mA
Source emittance 0.8 mm mrπ ∙ 0.8 mm mrπ ∙
H injection energy 30 keV 25 keV
Operating vacuum 3·10−6
Torr 3·10−7
Torr
Vacuum system CRP + DP 2 CRP
Cycl. RF acceptance 30% bnch ON 20%
H−
strip. losses 20% < 1%
Type of extraction Strip. foil Strip. foil
.
The TR30 cyclotron is equipped with high perform-
ance version of the CUSP Source [2]. Two TR30 oper-
ate with a beam current of more than 1 mA. The H−
beam transmission in the TR30 is better than 99%
thanks to the good vacuum and perfect isochronous
field. The ion source, the injection line, the vacuum sys-
tem, the RF, the extraction mechanism of TR30 and
TR18 are pretty similar. The beam energy is varied from
15 to 30 MeV by the radial movement of the stripping
foil mechanism.
CONCLUSIONS
Private companies deliver a standard commercial
cyclotron in a year from data the contract is signed. Few
months will be required to bring a cyclotron into a
stable operation. The price of a commercial PET unit is
varying from company to company. A very basic
10 MeV unit can be purchased for 0.8…1.2 MUSD. The
PET cyclotron with external injection can be purchased
for 2 MUSD. The price of an 30 MeV high current
cyclotron is close to 5 MUSD. It is a policy of private
companies to buy as many subsystems and spare parts
as possible rather than to manufacture itself. Most
private companies use storage facilities and assembly
halls. Cyclotron to accelerate an 3 mA H− beam can be
fabricated based on elements and equipment used in
commercially available machines. An original design of
the injection system, inflector and central region in
combination with well developed standard equipment
will ensure that the design goals can be achieved.
ACKNOWLEDGEMENT
Author is greatly thankful to Prof. R.Johnson from
EBCO technologies for warm reception and supervision
during the job term under TRD9 project, to Dr.
R.Laxdal for supervision during beam tests at TRIUMF,
to Y.Jongen (IBA) for useful discussions at the time of
experiments on C18 and Dr. T.Kuo from TRIUMF for
useful advise on the performance of CUSP ion source.
REFERENCES
1. T. Kuo, et al. Injection Study for high current H
Cyclotron // Proc. XV Cycl. Conf. 1998.
2. T. Kuo, et al. Development of a 15 mA DC H Multi-
CUSP Source // Proc. XVI Cycl. Conf. 2001.
3. K. Erdman, et al. Compact 9 MeV Deuteron
Cyclotron with Pulsed Beam // Proc. XVI Cycl.
Conf. 2001, p.383.
4. W. Kleeven, S. Zaremba, Y. Yongen. Self-extrac-
ted Cyclotron // Proc. XVI Cycl. Conf. 2001.
5. R. Baartman. Intensity limitations in Compact H
cyclotrons // Proc. XIV Cycl. Conf. 1995.
6. A. Papash, T. Zhang. On Commercial Cyclotron of
Intense Proton beam of 30 MeV Energy Range //
Proc. XVII Cycl. Conf. 2004, Tokyo.
7. R. Laxdal, T. Kuo. Beam tests on the TR13 Cyclotron
“TRIUMF”. Vancouver, Canada, 1994.
Статья поступила в редакцию 04.09.2007 г.
КОММЕРЧЕСКИЕ ЦИКЛОТРОНЫ ОТРИЦАТЕЛЬНЫХ ИОНОВ ВОДОРОДА В ДИАПАЗОНЕ
ЭНЕРГИЙ ДО 30 МэВ ДЛЯ ПРОИЗВОДСТВА МЕДИЦИНСКИХ ИЗОТОПОВ
А. Папаш, Ю. Аленицкий
Компактные изохронные циклотроны отрицательных ионов водорода в диапазоне энергий до 30 МэВ широко
используются для производства медицинских изотопов и других применений. Проведено сравнение и анализ различных
моделей ускорителей. Предложены способы повышения эффективности работы и увеличения интенсивности пучков.
КОМЕРЦІЙНІ ЦИКЛОТРОНИ НЕГАТИВНИХ ІОНІВ ВОДНЮ В ДІАПАЗОНІ ЕНЕРГІЙ ДО 30 МеВ
ДЛЯ ВИРОБНИЦТВА МЕДИЧНИХ ІЗОТОПІВ
А. Папаш, Ю. Аленицький
Компактні ізохронні циклотрони негативних іонів водню в діапазоні енергій до 30 МеВ широко використовуються
для виробництва медичних ізотопів і інших застосувань. Проведено порівняння і аналіз різних моделей прискорювачів.
Запропоновано способи підвищення ефективності роботи і збільшення інтенсивності пучків.
____________________________________________________________
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. 5.№
Series: Nuclear Physics Investigations (50), p.143-145.
145
INTRODUCTION
|