3D intense beam dynamics simulation by using moments method

The program for 3D simulation of the intense charge particle beam dynamics on the base of the Multi-Component Ion Beam code is described. Fast analysis and study of the averaged beam characteristicsis performed by the moments method.

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Kazarinov, N., Aleksandrov, V., Shevtsov, V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111534
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:3D intense beam dynamics simulation by using moments method / N. Kazarinov, V. Aleksandrov, V. Shevtsov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 140-142. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111534
record_format dspace
spelling irk-123456789-1115342017-01-11T03:03:41Z 3D intense beam dynamics simulation by using moments method Kazarinov, N. Aleksandrov, V. Shevtsov, V. Новые методы ускорения, сильноточные пучки The program for 3D simulation of the intense charge particle beam dynamics on the base of the Multi-Component Ion Beam code is described. Fast analysis and study of the averaged beam characteristicsis performed by the moments method. Дано опис програми 3D-чисельного моделювання інтенсивного пучку заряджених частинок, що створена на основі Multі-Component Іon Beam коду. Швидкий аналіз і дослідження середніх характеристик пучку проводиться методом моментів. Описывается программа 3D-численного моделирования интенсивного пучка заряженных частиц, созданная на основе Multi-Component Ion Beam кода. Быстрый анализ и исследование средних характеристик пучка проводится методом моментов 2008 Article 3D intense beam dynamics simulation by using moments method / N. Kazarinov, V. Aleksandrov, V. Shevtsov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 140-142. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/111534 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые методы ускорения, сильноточные пучки
Новые методы ускорения, сильноточные пучки
spellingShingle Новые методы ускорения, сильноточные пучки
Новые методы ускорения, сильноточные пучки
Kazarinov, N.
Aleksandrov, V.
Shevtsov, V.
3D intense beam dynamics simulation by using moments method
Вопросы атомной науки и техники
description The program for 3D simulation of the intense charge particle beam dynamics on the base of the Multi-Component Ion Beam code is described. Fast analysis and study of the averaged beam characteristicsis performed by the moments method.
format Article
author Kazarinov, N.
Aleksandrov, V.
Shevtsov, V.
author_facet Kazarinov, N.
Aleksandrov, V.
Shevtsov, V.
author_sort Kazarinov, N.
title 3D intense beam dynamics simulation by using moments method
title_short 3D intense beam dynamics simulation by using moments method
title_full 3D intense beam dynamics simulation by using moments method
title_fullStr 3D intense beam dynamics simulation by using moments method
title_full_unstemmed 3D intense beam dynamics simulation by using moments method
title_sort 3d intense beam dynamics simulation by using moments method
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Новые методы ускорения, сильноточные пучки
url http://dspace.nbuv.gov.ua/handle/123456789/111534
citation_txt 3D intense beam dynamics simulation by using moments method / N. Kazarinov, V. Aleksandrov, V. Shevtsov // Вопросы атомной науки и техники. — 2008. — № 5. — С. 140-142. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kazarinovn 3dintensebeamdynamicssimulationbyusingmomentsmethod
AT aleksandrovv 3dintensebeamdynamicssimulationbyusingmomentsmethod
AT shevtsovv 3dintensebeamdynamicssimulationbyusingmomentsmethod
first_indexed 2025-07-08T02:18:04Z
last_indexed 2025-07-08T02:18:04Z
_version_ 1837043376022618112
fulltext 3D INTENSE BEAM DYNAMICS SIMULATION BY USING MOMENTS METHOD N. Kazarinov∗, V. Aleksandrov, V. Shevtsov Joint Institute for Nuclear Research, 6, Joliot-Curie, 141980, Dubna, Russia ∗E-mail: nyk@lnr.jinr.ru The program for 3D simulation of the intense charge particle beam dynamics on the base of the Multi-Compo- nent Ion Beam code is described. Fast analysis and study of the averaged beam characteristicsis performed by the moments method. PACS: 29.17.+w INTRODUCTION Within the framework of the Multi-Component Ion Beam code (MCIB04) [1] the program for 3D simula- tion of the intense charge particle beam dynamics is cre- ated. Fast analysis and study of the averaged beam char- acteristics, such as root-mean-square (RMS) dimen- sions, is performed by the moments method [2]. The main advantage of the moments method in com- parison with macro particle one is fast calculation and therefore applicability for transport line optimization. The model describing the charge density of the bunched beam is introduced. The external electromag- netic fields are assumed to be linear. The approach of effective linearization [2] of both longitudinal and transversal beam self fields gives possibility to get the closed system of the equations for second order mo- ments. The fitting procedure based on minimization of a quadratic functional at any point of the beam line by us- ing either gradient or simplex-method is available [3]. BEAM MODEL Let consider the train of bunches (Fig.1), moving with average velocity c0β with distance between its center-of-mass 00λβλ = . Here 0λ is cyclotron RF field wave length. Fig.1. The beam density may be defined as: ),()(),,( 0//0 yxctzNctzyx ⊥−=− ρβρβρ , (1) where cZe IN 0β λ= – the number of particle at spatial period λ , I – beam current, Ze – ion charge. Longitudinal //ρ and transverse densities ⊥ρ are equal to: ∑ ∞ − ∞=         −−= n zz nzz 2 2 // 2 )(exp 2 1)( σ λ σπ ρ (2.1)         −−=⊥ 2 2 2 2 22 exp 2 1),( yxyx yxyx σσσπ σ ρ (2.2) According to formula (2.1) longitudinal density is periodical function )()( //// λρρ += zz with a constant number of particles at period λ : ∫ − = 2/ 2/ // )( λ λ ρ Ndzz (3) In the case σz ≳ λ this model describes the beam with constant density and for σz << λ gives Gaussian beam. The dependencies on z of the longitudinal beam density for various values of ratio zσλ / are shown in Fig.2. -0.5 -0.25 0 0.25 0.5 z / λ 0 1 2 3 4 n / n 0 1 2 3 Fig.2. Longitudinal beam density Curve 1 – zσλ / = 1; 2 – zσλ / = 4; 3 – zσλ / = 8 BEAM SELF FIELD By using formulae (1, 2) the beam self field may be represent in the following form [4]: 222 2 22 0// 22 2 2 2 2 0 20// 0 20// , 22 1ln)(2 ))(()(; )4()( )()( )(2 )( )()( )(2 ayx a yx a bctzZeNE sssR s y s xT dsT sRs yctzZeNE dsT sRs xctzZeNE z yx yx y yxy x yxx ≤+    +−+−′≅ ++= + + + = + −≅ + −≅ ⊥ ∞ ⊥ ∞ ∫ ∫ βρ σσ σσ ρ σ σσβρπ ρ σ σσβρπ Here )(2 22 yxa σσ += – RMS radius of the beam, b – vacuum pipe radius and prime denotes derivative with respect to z. MOMENTS EQUATIONS Let us define the second order moments M of the beam distribution function f: ∫== dyfYY N YYM TT 1 , (5) ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5. Series: Nuclear Physics Investigations (50), p.140-142. z 140 λ λ where superscript T denotes transpose vector or matrix, ),(),,(),,,,,( ////0 TTTTTT YYYVXctzyxyxY ⊥==−′′= δβ – vector of phase space coordinates of the particle, 00 /)( βββδ −= – relative momentum spread. Integra- tion in (4) is fulfilled over all phase space occupied by bunch particles (at one spatial period), prime denotes derivative with respect to longitudinal coordinate of the bunch center-of-mass. The equations for transverse second order moments TYYM ⊥⊥⊥ = does not changed significantly in compari- son with the case of non-bunched beam[2]: TAMAMM ⊥⊥⊥ +=′ ;     + = extsext abb E A 0 (6) Here M⊥, A are fourth order matrices, E is second order unit matrix, aext and bext are 2×2 matrices defined by ex- ternal fields. Second order matrix bs depends on RMS dimensions and is defined by beam self fields:     + = ⊥ y x yxA s I I A Zkb σ σ σσβ /10 0/111 3 0 , (7) where А – ion mass, IA = mc3/e – Alfven’s current. The bunching factor k⊥ is connected with changing of the transverse beam self fields due to changing of the longitudinal density:         == ⊥ − ⊥ ∫ 2 0 22/ 2/ 2 2 02 // )( z zF z zdzzk λ λ ρλ (8) Here 2z is current longitudinal RMS dimension of the bunch: ∫ − = 2/ 2/ // 22 )( λ λ ρ dzzzz (9) and 3/2 0 λ=z its value for non-bunched beam. The plot of function )(xF⊥ is shown in Fig.3,a. 0 0.2 0.4 0.6 0.8 1 x 0.92 0.94 0.96 0.98 1 F ⊥ a 0 0.2 0.4 0.6 0.8 1 x 0 0.2 0.4 0.6 0.8 1 F / / b Fig.3. As may be seen from Fig.3,a function )(xF⊥ is ap- proximately equal to unity with difference does not greater than 6%. In the program this function is repre- sented as the sixth order polynomial. The equations for the longitudinal second order mo- ments M// has the following form:         == 2 2 ////// δδ δ z zzYYM T (10.1) δzz 22 = ′    (10.2) ( ) zzE cAm Zez 22 0 2 β δδ += ′ (10.3) δ β δ z z zE cAm Ze z 222 0 2 = ′    (10.4) Computation of average zzE in accordance with formu- lae (4, 5) results in:           + + = 4 1 )(2 ln1 223 0 //22 0 yxA z b I I A ZkzE cAm Ze σσββ (11) The bunching factor of the longitudinal motion k// is defined by formula:         =−= ⊥ − ∫ 2 0 2 // 2/ 2/ 2 // 2 //// )]2/()([ z zFkdzzk λ λ λρρλ (12) The plot of function )(// xF is shown in Fig.3,b. In the case x ∼ 1 function F// is close to zero because of the longitudinal electric field of non-bunched beam is equal to zero. For the well bunched beam(x << 1) due to small longitudinal density at point z = λ/2 formulae (11) and (12) become identical and function F// is close to unity. In the program function )(// xF is approximated by the fifth order polynomial for all values of x. MCIB04 CODE MODIFICATION The 3D moments equations were introduced into ex- isting program library code MCIB04 [1]. The interface of the program is shown in Fig.4. Fig.4. Interface of the program Before launching of the program the files containing the beam-line lattice, initial beam parameters and (op- tionally) the longitudinal magnetic field distribution have to be created. During working of the program the changes of the second order moments along the beam-line are comput- ed. The plots of the longitudinal magnetic field distribu- tion (green line in Fig.4) and RMS dimensions of the beam (red – x and blue – y) are given at monitor. The special windows are intended for values of the beam RMS dimensions at the exit of the channel (RMSX, RMSY) and initial parameters – RMS dimensions(X,Y), emittances (Xemit, Yemit), mass-to-charge ratio (A/Z), kinetic energy (Energy) and beam current (Current). The fitting procedure based on minimization by us- ing either gradient or simplex-method of a quadratic functional computed for every second order moments at any point of the beam line is available [3]. ____________________________________________________________ PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 5. Series: Nuclear Physics Investigations (50), p.140-142.141 The dependencies on distance along the channel of the beam envelopes, emittances, momentum spread and other parameters are writing to the file and processing by the graphing program package. BUNCHING SYSTEM COMPUTATION The simulation of the bunching system of the DC350 cyclotron axial injection beam-line [5] was ful- filled by using created 3D version of MCIB04 code. The bunching system consists of linear and sinu- soidal bunchers. The linear buncher is placed at 275 cm and sinusoidal – at 80 cm from median plane of the cy- clotron. In the simulation all bunchers were replaced by infinitesimal width gap with variable voltage. The initial parameters of the beam are contained in Table. 48Ca beam initial parameters Injected beam 48Ca6+ Mass, A 48 Charge, Z 2…8 Injected current, µA 0…190 Ca beam current, µA 0…700 He beam current, µA 200 48Ca6+ kinetic energy, keV/u 3.1375 Diametr, mm 8 Emittance, π mm×mrad 142 The initial conditions for the moments were defined at the entrance of the linear buncher and were found by macro-particle simulation. Charge state distributions for ion beam and its self fields were taken into account in this simulation. The beam focusing is provided by two solenoids. The longitudinal magnetic field of the cyclotron is consid- ered also. 225 235 245 255 265 275 distance, cm 0 10 20 30 40 En ve lo pe s, m m H V A Fig.5. Apertutre (A), horizontal (H) and vertical (V) 48- Ca6+ beam envelopes near inflector The matching condition at the entrance of the spiral inflector corresponds to the steady state of the beam (without envelopes oscillation) in the uniform magnetic field with magnitude to be equal to the field in the cy- clotron center. The amplitude of the voltage at linear buncher was found to provide the equality k⊥ = 2 at the entrance of sinusoidal buncher. The beam envelopes near spiral inflector of the cy- clotron are shown in Fig.5. Let define the bunching efficiency as ratio of the number of particles within RF phase interval 015≤∆ ϕ to non-bunched beam one. This quantity shows the pos- sible increasing of the number of particle captured into acceleration in the cyclotron due to the bunching sys- tem. The dependence of the bunching efficiency on the 48Ca6+ beam current is shown in Fig.6. 0 40 80 120 160 200 I, µ A 1 3 5 7 9 Bu nc hi ng ef fic ie nc y Fig.6. Bunching efficiency versus beam current REFERENCES 1. V. Aleksandrov, N. Kazarinov, V. Shevtsov. Multi- Component Ion Beam code–MCIB04 // Proc. XIX Russian Particle Accelerator Conference (RuPAC- 2004). Dubna, Russia, 2004, p.201. 2. N.Yu. Kazarinov, E.A. Perelstein, V.F. Shevtsov. Moments method in charged particle beams dyna- mics // Particle Accelerators. 1980, v.10, p.33-48. 3. N.Yu. Kazarinov, V.F. Shevtsov. Optimization of transportation channel parameters for beam with big spatial charge // JINR communication. P9-2002- 148, Dubna, 2002. 4. A.W. Chao. Physics of Collective Beam Instabili- ties in High Energy Accelerators // Wiley Series in Beam Physics and Accelerator Technology. ISBN 0-471-55184-8, New-York, 1993. 5. G. Gulbekyan, et al. Axial injection channel of the DC-350 cyclotron // 18-th International Confer- ence on Cyclotron and their Application. 30 September – 5 October, Giardini Naxos, Italy, 2007. Статья поступила в редакцию 07.09.2007 г. 3D-МОДЕЛИРОВАНИЕ ДИНАМИКИ СИЛЬНОТОЧНОГО ПУЧКА С ИСПОЛЬЗОВАНИЕМ МЕТОДА МОМЕНТОВ Н. Казаринов, В. Александров, В. Шевцов Описывается программа 3D-численного моделирования интенсивного пучка заряженных частиц, созданная на осно- ве Multi-Component Ion Beam кода. Быстрый анализ и исследование средних характеристик пучка проводится методом моментов 3D-МОДЕЛЮВАННЯ ДИНАМІКИ ПОТУЖНОСТРУМОВОГО ПУЧКА З ВИКОРИСТАННЯМ МЕТОДУ МОМЕНТІВ Н. Казарінов, В. Олександров, В. Шевцов Дано опис програми 3D-чисельного моделювання інтенсивного пучку заряджених частинок, що створена на основі Multі-Component Іon Beam коду. Швидкий аналіз і дослідження середніх характеристик пучку проводиться методом моментів. 142